parallel_executor.cc 18.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
Yancey1989 已提交
24
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

D
dzhwinter 已提交
97
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
98 99
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
100
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
101
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
102

P
peizhilin 已提交
103
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
104
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
105
#endif
C
chengduoZH 已提交
106 107
  bool own_local_scope_;
  bool use_cuda_;
108
  bool use_all_reduce_;
109
  size_t nranks_;
S
sneaxiy 已提交
110

S
sneaxiy 已提交
111 112 113 114 115 116
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
117 118
};

S
sneaxiy 已提交
119 120 121 122 123 124 125
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
126
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
127
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
128 129
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
130 131
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
132
      } else {
S
sneaxiy 已提交
133 134
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
135 136
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
137
    } else {
S
sneaxiy 已提交
138
#endif
S
sneaxiy 已提交
139 140 141 142 143 144 145
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
146 147 148 149
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
150
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
151 152
  }

S
sneaxiy 已提交
153
  if (!gcs_.empty()) {
S
sneaxiy 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
  }

  return graph;
}

180 181 182 183
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
184
ParallelExecutor::ParallelExecutor(
185
    const std::vector<platform::Place> &places,
186
    const std::unordered_set<std::string> &bcast_vars,
X
Xin Pan 已提交
187 188 189 190
    const std::string &loss_var_name, Scope *scope,
    const std::vector<Scope *> &local_scopes,
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
    ir::Graph *graph)
Y
Yu Yang 已提交
191
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
192
  member_->global_scope_ = scope;
193
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
194
  member_->build_strategy_ = build_strategy;
195 196
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
197
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
198 199 200 201
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
202 203
  }

204
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
205
  // Create local scopes
206
  if (local_scopes.empty()) {
C
chengduoZH 已提交
207
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
208 209
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
210
      member_->local_scopes_.emplace_back(&scope->NewScope());
211 212
    }
  } else {
C
chengduoZH 已提交
213
    member_->own_local_scope_ = false;
214 215
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
216
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
217
    }
Y
Yu Yang 已提交
218 219
  }

X
Xin Pan 已提交
220 221
  std::unique_ptr<ir::Graph> temp_owned_graph(graph);

Y
Yancey1989 已提交
222 223 224
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
X
Xin Pan 已提交
225 226
  build_strategy.enable_parallel_graph_ = EnableParallelGraphExecution(
      *temp_owned_graph, exec_strategy, build_strategy);
Y
Yancey1989 已提交
227 228 229 230
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
231

C
chengduoZH 已提交
232
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
233
// Bcast Parameters to all GPUs
P
peizhilin 已提交
234
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
235 236 237
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
238
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
239
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
240
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
241
    }
X
Xin Pan 已提交
242
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
243 244 245 246
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
247
      }
C
chengduoZH 已提交
248
    }
Y
Yancey1989 已提交
249

C
chengduoZH 已提交
250
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
251 252
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
253 254
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
255
#endif
C
chengduoZH 已提交
256 257
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
258
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
259
  }
X
Xin Pan 已提交
260
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
261

X
Xin Pan 已提交
262 263
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
P
peizhilin 已提交
264
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
265

X
Xin Pan 已提交
266 267 268 269
  temp_owned_graph = build_strategy.Apply(
      std::move(temp_owned_graph), member_->places_, loss_var_name,
      member_->local_scopes_, member_->nranks_, member_->use_cuda_,
      member_->nccl_ctxs_.get());
X
Xin Pan 已提交
270
#else
X
Xin Pan 已提交
271 272
  temp_owned_graph = build_strategy.Apply(
      std::move(temp_owned_graph), member_->places_, loss_var_name,
X
Xin Pan 已提交
273
      member_->local_scopes_, member_->nranks_, member_->use_cuda_);
X
Xin Pan 已提交
274

Y
Yu Yang 已提交
275
#endif
Y
Yancey1989 已提交
276
  auto max_memory_size = GetEagerDeletionThreshold();
D
dzhwinter 已提交
277 278
  VLOG(10) << "Eager Deletion Threshold "
           << static_cast<float>(max_memory_size) / (1 << 30);
Y
Yancey1989 已提交
279
  if (max_memory_size >= 0) {
X
Xin Pan 已提交
280 281 282 283 284 285
    graph = member_
                ->PrepareGCAndRefCnts(std::move(temp_owned_graph),
                                      static_cast<size_t>(max_memory_size))
                .release();
  } else {
    graph = temp_owned_graph.release();
Y
Yancey1989 已提交
286 287
  }

288 289
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
290
  std::vector<details::VariableInfo> var_infos;
Y
Yancey1989 已提交
291 292 293 294 295 296
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
297 298
    }
  }
Y
Yancey1989 已提交
299

W
Wu Yi 已提交
300 301
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
302
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
303 304 305 306
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
307
          << ir::GraphNum(*graph)
C
chengduo 已提交
308 309 310 311 312
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
313 314
  }

Y
Yancey1989 已提交
315
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
316
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
317 318
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
Y
Yancey1989 已提交
319
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
X
Xin Pan 已提交
320
        exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
321 322 323 324
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
X
Xin Pan 已提交
325 326 327 328 329 330 331
  } else {
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_, graph));
Y
Yancey1989 已提交
332
    }
C
chengduoZH 已提交
333
  }
Y
yuyang18 已提交
334 335

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
336
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
337
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
338 339
}

Y
Yancey1989 已提交
340
void ParallelExecutor::BCastParamsToDevices(
341
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
342
  // the initializing bcast, all vars would be bcast from device(0).
343
  for (auto &var : vars) {
X
Xin Pan 已提交
344
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
345
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
346 347 348 349
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
350
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
351
      VLOG(3) << "one in var not inited, return!";
352 353
      continue;
    }
354 355
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
356
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
357
      std::vector<void *> buffers;
C
chengduo 已提交
358
      buffers.reserve(member_->places_.size());
359 360 361 362 363
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
364

X
Xin Pan 已提交
365
        if (i == 0) {
366 367
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
368
          auto local_scope = member_->local_scopes_[i];
369
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
370
          t->Resize(dims);
371
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
372
        }
373
        buffers.push_back(buffer);
374
      }
375

376 377 378 379 380 381
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
382 383
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
384
        }
385
        member_->nccl_ctxs_->WaitAll();
386
      }
C
chengduoZH 已提交
387 388 389
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
390 391
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
392
      for (size_t i = 1; i < member_->places_.size(); ++i) {
393 394
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
395 396 397 398

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
399 400 401 402 403 404
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
405
      }
Y
Stash  
Yu Yang 已提交
406 407
    }
  }
Y
Yu Yang 已提交
408
}
Y
Yu Yang 已提交
409

Y
Yu Yang 已提交
410 411
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
412 413 414
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
415 416
  }
#endif
Y
Yu Yang 已提交
417

X
Xin Pan 已提交
418
  platform::RecordBlock b(0);
S
sneaxiy 已提交
419 420
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
421
  }
S
sneaxiy 已提交
422 423 424
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
425
}
Y
Yu Yang 已提交
426

Y
Yu Yang 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
446 447 448 449 450
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
451 452
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
453
      auto t =
Y
Yu Yang 已提交
454
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
455 456
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
457 458 459 460
    }
  }
}

X
Xin Pan 已提交
461 462 463 464 465 466 467
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

X
Xin Pan 已提交
468 469 470
bool ParallelExecutor::EnableParallelGraphExecution(
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
471
  if (!FLAGS_enable_parallel_graph) return false;
472

Y
Yancey1989 已提交
473
  bool enable_parallel_graph = true;
474

X
Xin Pan 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
488 489 490
    }
  }

Y
Yancey1989 已提交
491
  if (!member_->use_all_reduce_ || !member_->use_cuda_)
492

Y
Yancey1989 已提交
493 494 495
    if (build_strategy.enable_sequential_execution_ ||
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
      enable_parallel_graph = false;
Y
Yancey1989 已提交
496
  return enable_parallel_graph;
497 498
}

Y
Yu Yang 已提交
499
}  // namespace framework
Y
Yang Yang 已提交
500
}  // namespace paddle
S
sneaxiy 已提交
501

S
sneaxiy 已提交
502
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
503
USE_PASS(eager_deletion_pass);