math.py 80.5 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20
from paddle.common_ops_import import *
21 22
from paddle.tensor import cast
import paddle
23
from ..fluid import layers
24
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
25 26
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
27
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
28 29 30

# TODO: define math functions
# yapf: disable
31 32 33 34 35
from ..fluid.layers import abs    #DEFINE_ALIAS
from ..fluid.layers import acos    #DEFINE_ALIAS
from ..fluid.layers import asin    #DEFINE_ALIAS
from ..fluid.layers import ceil    #DEFINE_ALIAS
from ..fluid.layers import cos    #DEFINE_ALIAS
J
joejiong 已提交
36
from ..fluid.layers import tan    #DEFINE_ALIAS
37 38
from ..fluid.layers import sinh    #DEFINE_ALIAS
from ..fluid.layers import cosh    #DEFINE_ALIAS
39 40 41 42 43 44 45
# from ..fluid.layers import elementwise_add    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_div    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_floordiv    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mod    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_mul    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_pow    #DEFINE_ALIAS
# from ..fluid.layers import elementwise_sub    #DEFINE_ALIAS
46 47 48 49
from ..fluid.layers import exp    #DEFINE_ALIAS
from ..fluid.layers import floor    #DEFINE_ALIAS
from ..fluid.layers import log    #DEFINE_ALIAS
from ..fluid.layers import reciprocal    #DEFINE_ALIAS
50 51 52 53
# from ..fluid.layers import reduce_max    #DEFINE_ALIAS
# from ..fluid.layers import reduce_min    #DEFINE_ALIAS
# from ..fluid.layers import reduce_prod    #DEFINE_ALIAS
# from ..fluid.layers import reduce_sum    #DEFINE_ALIAS
54 55 56 57 58 59 60
from ..fluid.layers import round    #DEFINE_ALIAS
from ..fluid.layers import rsqrt    #DEFINE_ALIAS
from ..fluid.layers import scale    #DEFINE_ALIAS
from ..fluid.layers import square    #DEFINE_ALIAS
from ..fluid.layers import stanh    #DEFINE_ALIAS
from ..fluid.layers import atan    #DEFINE_ALIAS
from ..fluid.layers import erf    #DEFINE_ALIAS
61 62
from ..fluid.layers import sqrt    #DEFINE_ALIAS
from ..fluid.layers import sin    #DEFINE_ALIAS
63

64
from ..fluid.layers import multiplex    #DEFINE_ALIAS
G
guofei 已提交
65
from ..fluid import layers
66

67

68
__all__ = [
69 70
        'abs',
        'acos',
S
syyxsxx 已提交
71 72
        'all',
        'any',
73 74 75 76
        'asin',
        'atan',
        'ceil',
        'cos',
77
        'cosh',
78 79 80
        'cumsum',
        'exp',
        'floor',
81
        'increment',
82
        'log',
J
joejiong 已提交
83
        'log2',
J
joejiong 已提交
84
        'log10',
85
        'logsumexp',
86
        'mul',
87
        'multiplex',
88
        'pow',
89
        'prod',
90 91 92 93 94 95
        'reciprocal',
        'round',
        'rsqrt',
        'scale',
        'sign',
        'sin',
96
        'sinh',
97 98 99 100 101
        'sqrt',
        'square',
        'stanh',
        'sum',
        'tanh',
S
Steffy-zxf 已提交
102
        'add_n',
103
        'max',
104
        'maximum',
105
        'min',
106
        'minimum',
107
        'mm',
108 109 110 111 112
        'divide',
        'floor_divide',
        'remainder',
        'mod',
        'floor_mod',
113
        'multiply',
114
        'add',
115
        'subtract',
116 117
        'atan',
        'logsumexp',
118
        'inverse',
119 120 121
        'log1p',
        'erf',
        'addmm',
Y
Yang Zhang 已提交
122
        'clip',
L
Li Fuchen 已提交
123
        'trace',
J
Jack Zhou 已提交
124 125 126
        'kron',
        'isfinite',
        'isinf',
L
Leo Chen 已提交
127
        'isnan',
128 129
        'broadcast_shape',
        'conj'
130 131 132
]
# yapf: enable.

133 134 135 136 137 138 139 140 141 142 143 144 145
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

146
def pow(x, y, name=None):
147
    """
148
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
149

150 151
    .. math::
        out = x^{y} 
152

153 154
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
155 156


157 158
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
159
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
160 161
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
162
    Returns:
163
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
164 165 166

    Examples:

167
        ..  code-block:: python
168 169 170

            import paddle

171 172 173 174 175 176 177 178 179 180 181 182
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

183
            # example 2: y is a Tensor
184
            y = paddle.to_tensor([2], dtype='float32')
185
            res = paddle.pow(x, y)
186 187 188
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
189 190

    """
191
    # in dynamic graph mode
W
WuHaobo 已提交
192
    if in_dygraph_mode():
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        if isinstance(y, (int, float)):
            return core.ops.pow(x, 'factor', y)
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
213
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
214 215 216
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
217 218 219



220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

240 241
    out = helper.kwargs.get('out', None)

242 243 244 245 246 247 248 249 250 251 252 253
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'],
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
254 255 256 257 258 259

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
260 261 262 263 264 265 266 267 268 269 270

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
271
def add(x, y, name=None):
272
    """
273
    Examples:
274 275 276 277

    ..  code-block:: python

        import paddle
278 279
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
280
        z = paddle.add(x, y)
281
        print(z)  # [3., 8., 6. ]
282 283 284 285 286 287

    """
    op_type = 'elementwise_add'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
Y
Yang Zhang 已提交
288
            x, y, axis=axis, op_name=op_type)
289 290 291 292

    return _elementwise_op(LayerHelper(op_type, **locals()))


293 294
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
295
    Substract two tensors element-wise. The equation is:
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


354
def divide(x, y, name=None):
355
    """
356
    Divide two tensors element-wise. The equation is:
357

358 359
    .. math::
        out = x / y
360

361 362
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
363

364 365 366 367
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
368

369
    Returns:
370
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
371

372
    Examples:
373

374
        ..  code-block:: python
375

376
            import paddle
377

378 379
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
380
            z = paddle.divide(x, y)
381
            print(z)  # [2., 0.6, 2.]
382

383 384 385 386 387 388 389
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
390

391
    return _elementwise_op(LayerHelper(op_type, **locals()))
392 393


394 395 396
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
397

398 399
    .. math::
        out = x // y
400

401 402
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
403

404 405 406 407
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
408

409 410
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
411

412
    Examples:
413

414
        ..  code-block:: python
415

416
            import paddle
417

418 419
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
420
            z = paddle.floor_divide(x, y)
421
            print(z)  # [2, 0, 2, 2]
422

423 424 425 426 427 428
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
429

430
    return _elementwise_op(LayerHelper(op_type, **locals()))
431 432


433
def remainder(x, y, name=None):
434
    r"""
435 436 437
    Mod two tensors element-wise. The equation is:

    .. math::
438

439 440 441
        out = x \% y

    **Note**:
442
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
443 444

    Args:
W
WangXi 已提交
445 446
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
447 448 449
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
450
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
451 452 453 454 455 456 457

    Examples:

        ..  code-block:: python

            import paddle

458 459
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
460
            z = paddle.remainder(x, y)
W
WangXi 已提交
461
            print(z)  # [0, 3, 2, 1]
462 463 464

    """
    op_type = 'elementwise_mod'
465 466 467
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
468
            x, y, axis=axis, op_name=op_type)
469 470 471 472

    return _elementwise_op(LayerHelper(op_type, **locals()))


473 474 475 476
mod = remainder  #DEFINE_ALIAS
floor_mod = remainder  #DEFINE_ALIAS


477
def multiply(x, y, name=None):
478
    """
479
    multiply two tensors element-wise. The equation is:
480

481 482
    .. math::
        out = x * y
483

484 485
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
486

487 488 489 490
    Args:
        x (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, its data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
491

492
    Returns:
493
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
494

495 496 497 498 499 500
    Examples:

        ..  code-block:: python

            import paddle

501 502
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
503
            res = paddle.multiply(x, y)
504
            print(res) # [[5, 12], [21, 32]]
505

506
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
507 508 509
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
510 511 512 513

    """
    op_type = 'elementwise_mul'
    act = None
514
    axis = -1
515

516 517 518 519
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

520 521 522 523 524
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

525 526
    return _elementwise_op(LayerHelper(op_type, **locals()))

527
def maximum(x, y, name=None):
528
    """
W
Wei Shengyu 已提交
529
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
530

531 532
    .. math::
        out = max(x, y)
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
577 578
    """
    op_type = 'elementwise_max'
579
    axis = -1
580 581 582 583 584 585
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

586
def minimum(x, y, name=None):
587
    """
W
Wei Shengyu 已提交
588
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
589

590 591
    .. math::
        out = min(x, y)
592

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
636 637
    """
    op_type = 'elementwise_min'
638
    axis = -1
639 640 641 642 643
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
644

645 646
for func in [
        add,
647
        multiply
648
]:
649
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
650 651
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
652 653 654 655 656 657 658
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
659 660
        op_proto,
        additional_args_lines=additional_args_lines,
661
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
662
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
663
        }) + """\n""" + str(func.__doc__)
664

Y
Yang Zhang 已提交
665

666
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
667 668 669 670
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
671 672 673
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
674
            Tensor with a single element, otherwise must be in the
675 676 677 678 679 680 681
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
682
            value is False.
683
        name (str, optional): The default value is None. Normally there is no need for
684 685 686
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
687 688
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
        it's data type is the same as `x`.
689 690

    Raises:
691 692
        ValueError: If the data type of `x` is float64, :attr:`dtype` can not be float32 or int32.
        ValueError: If the data type of `x` is int64, :attr:`dtype` can not be int32.
693
        TypeError: The type of :attr:`axis` must be int, list or tuple.
694

695 696 697 698
    Examples:
        .. code-block:: python

            import paddle
699

700
            # x is a Tensor with following elements:
701 702 703
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
704 705
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
706
            out1 = paddle.sum(x)  # [3.5]
707 708 709
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
710

711
            # y is a Tensor with shape [2, 2, 2] and elements as below:
712 713 714
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
715 716
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
717 718
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
719
    """
720 721 722 723 724 725 726 727 728 729 730
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

731
    attrs = {
732 733 734
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
735 736 737 738
    }
    dtype_flag = False
    if dtype is not None:
        if dtype in ['float64', 'int64']:
739 740
            if (convert_dtype(x.dtype) == "float32" and dtype == "float64") or \
               (convert_dtype(x.dtype) == "int32" and dtype == "int64"):
741
                attrs.update({
742
                    'in_dtype': x.dtype,
743 744 745 746 747
                    'out_dtype': convert_np_dtype_to_dtype_(dtype)
                })
                dtype_flag = True

    if in_dygraph_mode():
748
        axis = axis if axis != None and axis != [] else [0]
749
        if dtype_flag:
750 751 752
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
753 754
                                       convert_np_dtype_to_dtype_(dtype))
        else:
755 756
            return core.ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
757
    check_variable_and_dtype(
758
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sum')
759 760 761 762 763 764 765 766 767 768 769

    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'sum')
        x_dtype = convert_dtype(x.dtype)

        if (x_dtype == "float64" and dtype in ["float32", "int32"]) or \
                (x_dtype == "int64" and dtype == "int32"):
            raise ValueError("The input(x)'s dtype is {} but the attr(dtype) of sum is {}, "
                             "which may cause data type overflows. Please reset attr(dtype) of sum."
                             .format(x_dtype, dtype))

770 771
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

772 773 774 775 776
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
777
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
778 779
    helper.append_op(
        type='reduce_sum',
780
        inputs={'X': x},
781 782 783
        outputs={'Out': out},
        attrs=attrs)
    return out
784

785

786
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
787
def add_n(inputs, name=None):
788
    """
S
Steffy-zxf 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
824 825

    Args:
S
Steffy-zxf 已提交
826 827
        inputs (Tensor|list(Tensor)):  A Tensor list. The shape and data type of the list elements should be consistent.
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
828 829 830 831
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
832
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
833 834 835 836 837 838

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
839 840 841 842 843
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
844
    """
S
Steffy-zxf 已提交
845 846 847 848
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
        return core.ops.sum(inputs, 'use_mkldnn', False)
849

S
Steffy-zxf 已提交
850 851
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
852 853 854 855
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
856
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
857 858
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
859
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
860 861


862 863 864 865 866 867 868 869 870 871 872
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


W
WuHaobo 已提交
873
def mm(input, mat2, name=None):
874
    """
S
swtkiwi 已提交
875

876 877 878 879 880 881 882 883 884 885
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

886 887
    This op does not support broadcasting. See paddle.matmul.

888
    Args:
889
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
890
        mat2 (Tensor): The input tensor which is a Tensor.
891 892 893 894
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
895
        Tensor: The product Tensor.
896 897 898 899 900

    Examples:
        .. code-block:: python

            import paddle
901 902 903 904 905 906 907 908
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
909

910 911
    """
    if in_dygraph_mode():
W
WuHaobo 已提交
912
        out = _varbase_creator(dtype=input.dtype)
913 914
        core.ops.matmul(input, mat2, out)
        return out
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
952
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
953 954 955 956
    helper.append_op(
        type='matmul', inputs={'X': input,
                               'Y': mat2}, outputs={'Out': out})
    return out
957

958

Y
yaoxuefeng 已提交
959
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
960 961 962 963 964 965 966 967 968 969 970 971 972
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
973 974 975
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
976
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
977
        alpha (float): Coefficient of $x*y$.
978 979 980
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
981
        Tensor: The output Tensor of addmm op.
982 983 984

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
985
            
986 987
            import paddle

Y
yaoxuefeng 已提交
988 989 990
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
991

Y
yaoxuefeng 已提交
992
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
993

N
Noel 已提交
994
            print(out)
995 996 997
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1018 1019 1020 1021
    if in_dygraph_mode():
        out = core.ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
        return out

1022 1023 1024 1025
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1026
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1027 1028 1029 1030 1031 1032 1033
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1034 1035


1036
def logsumexp(x, axis=None, keepdim=False, name=None):
1037
    r"""
1038
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1039

1040
    .. math::
1041
       logsumexp(x) = \\log\\sum exp(x)
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1061

1062
    Returns:
1063 1064
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1065

1066
    Examples:
1067

1068
    .. code-block:: python
1069

1070 1071
        import paddle

1072
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1073 1074
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1075 1076

    """
1077 1078 1079 1080 1081 1082 1083
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1084

1085
    if in_dygraph_mode():
1086
        return core.ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1087

1088 1089 1090
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1091

1092
    helper = LayerHelper('logsumexp', **locals())
1093
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1094 1095 1096 1097
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1098

S
swtkiwi 已提交
1099

1100 1101
def inverse(x, name=None):
    """
1102 1103 1104 1105 1106
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1107
        x (Tensor): The input tensor. The last two
1108 1109 1110 1111 1112 1113 1114 1115
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1116
        Tensor: A Tensor holds the inverse of x. The shape and data type
1117
                        is the same as x.
1118 1119 1120 1121 1122

    Examples:
        .. code-block:: python

            import paddle
1123 1124

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1125 1126
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1127 1128 1129

    """
    if in_dygraph_mode():
1130
        return core.ops.inverse(x)
1131

1132 1133
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1134
                                 ['float32', 'float64'], 'inverse')
1135
        if len(x.shape) < 2:
1136 1137 1138
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1139 1140
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1141
    helper = LayerHelper('inverse', **locals())
1142
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1143
    helper.append_op(
1144
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1145 1146 1147
    return out


1148
def max(x, axis=None, keepdim=False, name=None):
1149
    """
S
swtkiwi 已提交
1150

1151
    Computes the maximum of tensor elements over the given axis.
1152 1153

    Args:
1154
        x(Tensor): A tensor, the data type is float32,
1155
            float64, int32, int64.
1156
        axis(list|int, optional): The axis along which the maximum is computed.
1157
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1158
            `x` and return a Tensor with a single element,
1159 1160 1161
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1162
            output Tensor. The result tensor will have one fewer dimension
1163
            than the `x` unless :attr:`keepdim` is true, default
1164
            value is False.
1165
        name(str, optional): The default value is None.  Normally there is no need for
1166 1167 1168
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1169
        Tensor, results of maximum on the specified axis of input tensor,
1170
        it's data type is the same as `x`.
1171 1172 1173

    Examples:
        .. code-block:: python
1174

1175
            import paddle
1176

N
Noel 已提交
1177
            # data_x is a Tensor with shape [2, 4]
1178
            # the axis is a int element
1179 1180 1181

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1182
            result1 = paddle.max(x)
N
Noel 已提交
1183
            print(result1)
1184 1185
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1186
            print(result2)
1187 1188
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1189
            print(result3)
1190 1191
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1192
            print(result4)
1193 1194 1195
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1196
            # data_y is a Tensor with shape [2, 2, 2]
1197
            # the axis is list 
1198 1199 1200

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1201
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1202
            print(result5)
1203 1204
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1205
            print(result6)
1206
            #[7. 8.]
1207 1208
    """

1209
    if axis is not None and not isinstance(axis, list):
1210 1211 1212 1213 1214 1215 1216 1217
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1218 1219 1220 1221 1222
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
        return core.ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
                                   'reduce_all', reduce_all)
1223

1224
    helper = LayerHelper('max', **locals())
1225
    check_variable_and_dtype(
1226
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1227

1228
    out = helper.create_variable_for_type_inference(
1229
            dtype=x.dtype)
1230 1231
    helper.append_op(
        type='reduce_max',
1232
        inputs={'X': x},
1233 1234
        outputs={'Out': out},
        attrs={
1235 1236
            'dim': axis,
            'keep_dim': keepdim,
1237 1238 1239 1240
            'reduce_all': reduce_all
        })
    return out

1241
def min(x, axis=None, keepdim=False, name=None):
1242
    """
S
swtkiwi 已提交
1243

1244
    Computes the minimum of tensor elements over the given axis
1245

1246
    Args:
1247 1248
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis(list|int, optional): The axis along which the minimum is computed.
1249
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1250
            `x` and return a Tensor with a single element,
1251 1252 1253
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1254
            output Tensor. The result tensor will have one fewer dimension
1255
            than the `x` unless :attr:`keepdim` is true, default
1256
            value is False.
W
WuHaobo 已提交
1257
        name(str, optional): The default value is None.  Normally there is no need for 
1258
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1259

1260
    Returns:
1261
        Tensor, results of minimum on the specified axis of input tensor,
1262
        it's data type is the same as input's Tensor.
1263

1264 1265 1266
    Examples:
        .. code-block:: python

1267
            import paddle
1268

1269
            # x is a tensor with shape [2, 4]
1270
            # the axis is a int element
1271 1272
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1273
            result1 = paddle.min(x)
N
Noel 已提交
1274
            print(result1)
1275 1276
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1277
            print(result2)
1278 1279
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1280
            print(result3)
1281 1282
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1283
            print(result4)
1284 1285 1286
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1287
            # y is a Tensor with shape [2, 2, 2]
1288
            # the axis is list 
1289 1290
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1291
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1292
            print(result5)
1293 1294
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1295
            print(result6)
1296 1297
            #[1. 2.]
    """
1298

1299
    if axis is not None and not isinstance(axis, list):
1300 1301 1302 1303 1304 1305 1306
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1307 1308
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1309
    if in_dygraph_mode():
1310
        return core.ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1311
                                   'reduce_all', reduce_all)
1312 1313 1314 1315 1316 1317

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1318
            dtype=x.dtype)
1319 1320
    helper.append_op(
        type='reduce_min',
1321
        inputs={'X': x},
1322 1323
        outputs={'Out': out},
        attrs={
1324 1325
            'dim': axis,
            'keep_dim': keepdim,
1326 1327 1328 1329 1330
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1331
def log1p(x, name=None):
1332
    r"""
1333
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1334

1335 1336
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1337

1338
    Args:
S
Steffy-zxf 已提交
1339
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1340 1341 1342
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1343
        Tensor, the natural log of the input Tensor computed element-wise.
1344

1345 1346
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1347

1348
            import paddle
S
Steffy-zxf 已提交
1349 1350 1351 1352

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1353 1354 1355 1356 1357 1358 1359 1360 1361
    """

    if in_dygraph_mode():
        return core.ops.log1p(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1362
    out = helper.create_variable_for_type_inference(dtype)
1363 1364
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1365

J
joejiong 已提交
1366
def log2(x, name=None):
1367
    r"""
J
joejiong 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log2(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1414

J
joejiong 已提交
1415 1416

def log10(x, name=None):
1417
    r"""
J
joejiong 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
        return core.ops.log10(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1466
def clip(x, min=None, max=None, name=None):
1467
    """
Y
Yang Zhang 已提交
1468
    This operator clip all elements in input into the range [ min, max ] and return
1469 1470 1471 1472
    a resulting tensor as the following equation:

    .. math::

1473
        Out = MIN(MAX(x, min), max)
1474 1475

    Args:
Y
Yang Zhang 已提交
1476 1477
        x (Tensor): An N-D Tensor with data type float32 or float64.
        min (float32|Tensor): The lower bound with type ``float32`` or a ``Tensor``
1478
            with shape [1] and type ``int32``, ``float32``, ``float64``.
Y
Yang Zhang 已提交
1479
        max (float32|Tensor): The upper bound with type ``float32`` or a ``Tensor``
1480 1481 1482 1483 1484 1485
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1486
        Tensor: A Tensor with the same data type and data shape as input.
1487 1488 1489 1490 1491

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1492

1493
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1494 1495
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1496
            print(out1)
Y
Yang Zhang 已提交
1497 1498
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1499
            print(out2)
Y
Yang Zhang 已提交
1500 1501
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1502 1503
    """

Y
Yang Zhang 已提交
1504 1505
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
1506

W
WuHaobo 已提交
1507
    if in_dygraph_mode():
1508 1509 1510 1511
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
Y
Yang Zhang 已提交
1512 1513
        min = fmin if min is None else min
        max = fmax if max is None else max
Y
Yang Zhang 已提交
1514
        return core.ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1515

1516
    if min is not None:
Y
Yang Zhang 已提交
1517
        check_type(min, 'min', (float, int, Variable), 'clip')
1518 1519
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1520
                        'clip', '(When the type of min in clip is Variable.)')
1521
    if max is not None:
Y
Yang Zhang 已提交
1522
        check_type(max, 'max', (float, int, Variable), 'clip')
1523 1524
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1525
                        'clip', '(When the type of max in clip is Variable.)')
1526

Y
Yang Zhang 已提交
1527
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'clip')
Y
Yang Zhang 已提交
1528 1529

    inputs = {'X': x}
Y
Yang Zhang 已提交
1530
    attrs = {'min': fmin, 'max': fmax}
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1544
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1545
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1546
        dtype=helper.input_dtype('x'))
1547 1548 1549 1550
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1551

W
WuHaobo 已提交
1552

1553
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1554
    """
1555
    **trace**
S
swtkiwi 已提交
1556

1557
    This OP computes the sum along diagonals of the input tensor x.
1558 1559

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1560

1561
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1562
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1563
    of the input tensor x.
L
Li Fuchen 已提交
1564

1565
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1566 1567 1568 1569

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1570
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1571

L
Li Fuchen 已提交
1572
    Args:
1573
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1574 1575 1576
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1577 1578 1579
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1580
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1581 1582 1583 1584 1585

    Examples:
        .. code-block:: python

            import paddle
1586

1587 1588 1589
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1590 1591 1592
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1593
    """
1594 1595
    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1596 1597

    def __check_input(input, offset, dim1, dim2):
1598
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1599 1600 1601
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1602
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1603
        assert len(input_shape) >= 2,                     \
1604 1605
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1606 1607
                len(input_shape)

1608 1609
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1610

1611 1612 1613
        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1614

1615 1616 1617
        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1618 1619


1620 1621 1622
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1623

1624 1625 1626
    if in_dygraph_mode():
        return core.ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

L
Li Fuchen 已提交
1627
    if not in_dygraph_mode():
1628
        __check_input(input, offset, axis1, axis2)
L
Li Fuchen 已提交
1629 1630
    helper = LayerHelper('trace', **locals())

1631
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1632 1633 1634

    helper.append_op(
        type='trace',
1635
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1636
        attrs={'offset': offset,
1637 1638
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1639 1640 1641
        outputs={'Out': [out]})
    return out

F
Feiyu Chan 已提交
1642
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1643
def kron(x, y, name=None):
S
swtkiwi 已提交
1644 1645 1646
    """

${comment}
F
Feiyu Chan 已提交
1647 1648

    Args:
N
Noel 已提交
1649
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1650
            float64, int32 or int64.
N
Noel 已提交
1651
        y (Tensor): the second operand of kron op, data type: float16,
1652
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1653
            with x.
1654 1655
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1656 1657 1658
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1659
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1660 1661 1662

    Examples:
        .. code-block:: python
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1675 1676 1677 1678 1679 1680 1681 1682
    """
    if in_dygraph_mode():
        return core.ops.kron(x, y)

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1683
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1684 1685
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1686 1687 1688 1689


def cumsum(x, axis=None, dtype=None, name=None):
    """
1690 1691 1692 1693
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1694 1695

    Args:
1696
        x (Tensor): The input tensor needed to be cumsumed.
1697 1698 1699 1700 1701
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1702
        Tensor, the result of cumsum operator. 
1703 1704 1705 1706 1707

    Examples:
        .. code-block:: python
            
            import paddle
1708 1709 1710
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
            return core.ops.cumsum(x, 'flatten', flatten)
        else:
            return core.ops.cumsum(x, 'axis', axis, 'flatten', flatten)

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
1750

J
Jack Zhou 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1767

1768
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1769
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
1770
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
    """
    if in_dygraph_mode():
        return core.ops.isfinite_v2(x)
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
1796
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1797
            out = paddle.tensor.isinf(x)
N
Noel 已提交
1798
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
    """
    if in_dygraph_mode():
        return core.ops.isinf_v2(x)
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
1824
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
1825
            out = paddle.tensor.isnan(x)
N
Noel 已提交
1826
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    """
    if in_dygraph_mode():
        return core.ops.isnan_v2(x)
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
1837 1838 1839 1840 1841
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
1842
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
1852
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
1862
    
G
guofei 已提交
1863 1864 1865 1866 1867 1868
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
1869 1870
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
1887 1888
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

1921
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
        return core.ops.sign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
1938
    r"""
W
WangXi 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

1957
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
1958
            out = paddle.tanh(x)
N
Noel 已提交
1959
            print(out)
W
WangXi 已提交
1960 1961 1962 1963 1964 1965
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
        return core.ops.tanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
1966
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
1967 1968 1969 1970
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
        return core.ops.increment(x, 'step', value)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2017
            Tensor with a single element, otherwise must be in the
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2040
            # x is a bool Tensor with following elements:
2041 2042
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2043
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2044
            print(x)
S
syyxsxx 已提交
2045
            x = paddle.cast(x, 'bool')
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2060 2061
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2111
            Tensor with a single element, otherwise must be in the
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2134
            # x is a bool Tensor with following elements:
2135 2136
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2137
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2138
            print(x)
S
syyxsxx 已提交
2139
            x = paddle.cast(x, 'bool')
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.any(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [True, False], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, False]
            print(out3)
            
            # keep_dim=True, result should be [[True], [False]], out.shape should be (2,1)
S
syyxsxx 已提交
2154 2155
            out4 = paddle.any(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[True], [False]]
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    dtype_flag = False


    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
        return core.ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
                                       'reduce_all', reduce_all_flag)
    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
        return core.ops.conj(x)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out