device_context.h 28.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

W
Wilber 已提交
21 22 23
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/device_context.h"

Y
Yu Yang 已提交
24
#include "paddle/fluid/memory/malloc.h"
25
#ifdef PADDLE_WITH_CUDA
26
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
27 28
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
29
#include "paddle/fluid/platform/dynload/cusolver.h"
30
#include "paddle/fluid/platform/dynload/cusparse.h"
31
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
32
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
33
#endif
34
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
35
#endif
D
dzhwinter 已提交
36

37
#ifdef PADDLE_WITH_HIP
38
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
39 40 41 42 43
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
44
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
45 46
#endif

47 48 49 50
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
51
#ifdef PADDLE_WITH_MKLDNN
52
#include "dnnl.hpp"
53
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
54 55
#endif

56
#include <map>
W
wanghuancoder 已提交
57

58
#include "glog/logging.h"
Y
Yi Wang 已提交
59 60
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
61
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
62
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
63
#endif
64
#ifdef PADDLE_WITH_ASCEND_CL
65 66
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
67
#endif
J
jianghaicheng 已提交
68 69 70
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/device.h"
#endif
Q
qijun 已提交
71
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
72

W
wanghuancoder 已提交
73 74 75 76 77
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

78
#ifdef PADDLE_WITH_XPU
79 80
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
81 82
#endif

83 84
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
85
#include "paddle/fluid/platform/device/npu/npu_info.h"
86 87
#endif

Q
QI JUN 已提交
88 89 90
namespace paddle {
namespace platform {

91
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
92 93 94 95
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
96
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
97 98 99 100
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
101 102
#endif  // PADDLE_WITH_CUDA

103 104 105 106
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
107
  NPU = 3,
J
jianghaicheng 已提交
108
  IPU = 4,
F
fwenguang 已提交
109 110 111
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
112 113
};

114 115
DeviceType Place2DeviceType(const platform::Place& place);

116 117 118
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
119
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
120
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
121
constexpr DeviceType kMLU = DeviceType::MLU;
122

W
Wilber 已提交
123
using DeviceContext = pten::DeviceContext;
Q
QI JUN 已提交
124

W
Wilber 已提交
125 126 127 128
// using CPUDeviceContext = pten::CPUContext;
// TODO(wilber): The place constructor is used in many places, it is more
// difficult to use CPUDeviceContext = pten::CPUContext directly.
class CPUDeviceContext : public pten::CPUContext {
Q
qijun 已提交
129
 public:
130
  CPUDeviceContext();
Q
qijun 已提交
131
  explicit CPUDeviceContext(CPUPlace place);
Q
QI JUN 已提交
132 133
};

Y
Yang Yu 已提交
134 135 136 137 138 139 140 141
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;
  int DeviceId() const { return device_.getId(); }

 private:
  IPUPlace place_;
  platform::ipu::Device device_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
163
#endif
J
jianghaicheng 已提交
164

F
fwenguang 已提交
165 166 167 168 169
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
170 171
#endif

172
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
173
namespace xpu = baidu::xpu::api;
174 175 176 177 178 179
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
180
  XPUVersion xpu_version() const { return xpu_version_; }
181 182 183 184 185 186
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

187
#ifdef PADDLE_WITH_XPU_BKCL
188
  /*! \brief  Return bkcl context. */
189 190 191 192 193 194
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

195 196
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
197
  XPUVersion xpu_version_;
198
  xpu::Context* context_;
199 200 201
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
202 203 204 205 206 207 208 209 210 211 212 213 214

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

215 216 217 218 219 220 221 222
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
223

224 225 226 227 228 229
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

230 231 232 233 234 235 236
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

252 253 254
 private:
  NPUPlace place_;
  aclrtContext context_;
255 256 257 258

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

295 296 297
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
298
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
299
class EigenCudaStreamDevice;
S
sneaxiy 已提交
300

301 302 303 304 305
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
306 307
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

323 324 325 326 327 328
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
329 330
  void SetStream(gpuStream_t stream);

331
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
332

333 334 335
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
336
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
337
#endif
338

339
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
340 341 342
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
343
#endif
G
Guo Sheng 已提交
344

345 346 347 348 349 350 351 352
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

Z
zhangkaihuo 已提交
353 354 355 356 357 358
#ifndef PADDLE_WITH_HIP
  const std::unique_ptr<CusparseHandleHolder>& CusparseHandle() const {
    return cusparse_handle_;
  }
#endif

359 360 361
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
362 363 364 365 366
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
367 368
  }

Z
zhangkaihuo 已提交
369 370 371 372 373 374 375 376
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
  template <typename Callback>
  inline void CusparseCall(Callback&& callback) const {
    cusparse_handle_->Call(std::forward<Callback>(callback));
  }
#endif

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

394 395 396 397 398
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
399 400 401 402 403 404 405
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
406 407 408 409 410
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
411 412
    }
  }
413
#endif
414

Z
zhangkaihuo 已提交
415 416 417 418 419 420
#ifndef PADDLE_WITH_HIP
  void InitCuSparseContext() {
    cusparse_handle_.reset(new CusparseHandleHolder(RawStream()));
  }
#endif

421 422
  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
423 424
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
425
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
426 427
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
428 429
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
430 431 432 433
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
434 435
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
436
            << ", but MIOPEN version in your machine is "
437
            << local_miopen_version / 100 << "." << local_miopen_version % 100
438 439 440 441
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
442 443
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
444 445
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
446 447 448 449 450 451 452 453 454 455 456 457 458
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
459 460
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
461
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
462
#endif
463 464 465 466 467
    } else {
      cudnn_handle_ = nullptr;
    }
  }

468
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
469
  void InitCuSolverContext() {
470 471
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
472 473
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
474
#endif
G
Guo Sheng 已提交
475

476 477
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
478
#ifdef PADDLE_WITH_HIP
479
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
480
#else
481
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
482
#endif
483 484 485 486 487 488 489
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
490
    cublas_tf32_tensor_core_handle_.reset();
491 492
  }

Z
zhangkaihuo 已提交
493 494 495 496
#ifndef PADDLE_WITH_HIP
  void DestoryCuSparseContext() { cusparse_handle_.reset(); }
#endif

497
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
498 499
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
500
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
501 502 503
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
504
#endif
G
Guo Sheng 已提交
505

506 507 508 509
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
510 511 512
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
513
  cudnnHandle_t cudnn_handle_;
514
#endif
515 516
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
517
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
518
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
519
  cusolverDnHandle_t cusolver_dn_handle_;
Z
zhangkaihuo 已提交
520
  std::unique_ptr<CusparseHandleHolder> cusparse_handle_;
521
#endif
522 523 524
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

525
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
526
 public:
D
dzhwinter 已提交
527
  explicit CUDADeviceContext(CUDAPlace place);
528
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
529

530
  /*! \brief  Wait for all operations completion in the stream. */
531
  void Wait() const override;
Q
QI JUN 已提交
532

533
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
534
  Place GetPlace() const override;
535

K
Kexin Zhao 已提交
536
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
537 538
  int GetComputeCapability() const;

539 540 541
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

542 543 544 545 546 547
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

548 549 550
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

551 552 553
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

554 555 556
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
557
    return context()->CublasCall(callback);
558 559
  }

Z
zhangkaihuo 已提交
560 561 562 563 564 565 566 567
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
  template <typename Callback>
  inline void CusparseCall(Callback&& callback) const {
    return context()->CusparseCall(callback);
  }
#endif

568 569 570 571 572 573 574
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
575
    return context()->TensorCoreCublasCallIfAvailable(callback);
576
  }
S
sneaxiy 已提交
577

578 579 580 581
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
582
  cudnnHandle_t cudnn_handle() const;
583
#endif
584

585 586 587 588
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
589
  cublasHandle_t cublas_handle() const;
Z
zhangkaihuo 已提交
590
  cusparseHandle_t cusparse_handle() const;
591
#endif
592

S
sneaxiy 已提交
593 594 595 596 597 598 599 600 601
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

602
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
603
  cusolverDnHandle_t cusolver_dn_handle() const;
604
#endif
G
Guo Sheng 已提交
605

Q
init  
qijun 已提交
606
  /*! \brief  Return cuda stream in the device context. */
607
  gpuStream_t stream() const;
Q
QI JUN 已提交
608

609
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
610 611 612 613 614
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
615
#endif
Q
qingqing01 已提交
616

Y
Yu Yang 已提交
617
  template <typename Callback>
618
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
619
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
620 621
  }

S
sneaxiy 已提交
622 623
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
624 625 626 627 628
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
629 630
  }

631
  void ResetDefaultContext(const stream::Priority& priority) {
632 633 634
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

635
  void ResetThreadContext(const stream::Priority& priority) {
636 637 638 639 640 641 642 643 644 645
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
646

W
Wilber 已提交
647 648 649 650 651
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

Q
QI JUN 已提交
652
 private:
D
dzhwinter 已提交
653
  CUDAPlace place_;
654
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
655

656 657 658 659 660 661
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
662

663 664
  mutable std::mutex cudnn_handle_mtx_;

665
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
666 667 668 669 670 671
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
672
#endif
Q
qingqing01 已提交
673

C
chengduo 已提交
674 675 676 677 678
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
679
  int max_threads_per_block_;
680
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
681

682
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
683
};
Q
qijun 已提交
684

685 686
class CudnnWorkspaceHandle {
 public:
687 688
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
689 690 691 692 693 694 695 696

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
697 698 699 700
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
701 702 703 704 705 706 707 708 709 710 711 712 713
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

714
  void ReallocWorkspace(size_t required_workspace_bytes);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
731
  std::mutex* mtx_;
732 733
};

Y
Yang Yu 已提交
734 735
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
736
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
737 738
};

C
chengduoZH 已提交
739
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
740 741 742 743 744 745
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
746

C
chengduoZH 已提交
747 748 749 750 751 752 753 754 755 756 757
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
758
#endif
Q
qijun 已提交
759

T
tensor-tang 已提交
760
#ifdef PADDLE_WITH_MKLDNN
761 762 763 764 765 766

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
767
    bool said_once = false;
768 769 770 771 772 773 774 775 776 777 778
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
779
    // MKL-DNN stream used for execution of primitives (per-thread)
780 781
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
782 783
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
784
    void* exec_ptr_ = nullptr;
785 786

    Body();
787
    ~Body();
788 789 790 791 792 793
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
794
    void log_lib_version(void);
795 796
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
797 798 799 800
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
801 802
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
818

T
tensor-tang 已提交
819 820
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
821 822 823 824 825 826 827 828 829 830
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
831
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
832 833 834
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
835
  using ShapeBlob = umap_key_string_t<KeyBlob>;
836 837
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

838 839 840 841
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
842
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
843 844 845
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
846

T
tensor-tang 已提交
847 848 849
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
850
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
851

852
  // Register object to currently used executor's map
853 854
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
855

856
  // Remove all entries from the blob map
857
  void ResetBlobMap(void* ptr);
858 859 860

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
861

862 863 864
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

865 866
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
867

868
  // Calculate number of oneDNN objects cached
869
  unsigned int GetCachedObjectsNumber(void) const;
870

871 872
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
873

874 875 876 877
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
878
 private:
879
  std::shared_ptr<BlobMap> p_blobmap_;
880 881
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
882
  std::shared_ptr<ExecShape> p_exec_items_;
883
  std::shared_ptr<std::mutex> p_mutex_;
884
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
885 886 887
};
#endif

D
dzhwinter 已提交
888 889 890 891 892
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
893
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
894 895 896
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
897 898 899 900
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
901
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
902 903 904 905 906 907
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

908 909
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
910
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
911
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
912

Y
Yang Yu 已提交
913 914 915 916 917 918 919
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

920 921
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
922 923
 private:
  static DeviceContextPool* pool;
924 925
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
926 927 928
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
929 930
}  // namespace platform
}  // namespace paddle