device_context.h 27.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#include "paddle/fluid/platform/dynload/cusparse.h"
28
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
29
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
30
#endif
31
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
32
#endif
D
dzhwinter 已提交
33

34
#ifdef PADDLE_WITH_HIP
35
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
36 37 38 39 40
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
42 43
#endif

44 45 46 47
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
48
#ifdef PADDLE_WITH_MKLDNN
49
#include "dnnl.hpp"
50
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
51 52
#endif

53
#include <map>
W
wanghuancoder 已提交
54

55
#include "glog/logging.h"
Y
Yi Wang 已提交
56 57
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
58
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
59
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
60
#endif
61
#ifdef PADDLE_WITH_ASCEND_CL
62 63
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
64
#endif
J
jianghaicheng 已提交
65 66 67
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/device.h"
#endif
Q
qijun 已提交
68
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
69

W
wanghuancoder 已提交
70 71 72 73 74
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

75
#ifdef PADDLE_WITH_XPU
76 77
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
78 79
#endif

80 81
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
82
#include "paddle/fluid/platform/device/npu/npu_info.h"
83 84
#endif

Q
QI JUN 已提交
85 86 87
namespace paddle {
namespace platform {

88
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
89 90 91 92
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
93
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
94 95 96 97
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
98 99
#endif  // PADDLE_WITH_CUDA

100 101 102 103
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
104
  NPU = 3,
J
jianghaicheng 已提交
105 106
  IPU = 4,
  MAX_DEVICE_TYPES = 5,
107 108
};

109 110
DeviceType Place2DeviceType(const platform::Place& place);

111 112 113
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
114
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
115
constexpr DeviceType kIPU = DeviceType::IPU;
116

Q
QI JUN 已提交
117 118
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
119
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
120
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
121

122
  virtual void Wait() const {}
Q
QI JUN 已提交
123 124
};

Q
qijun 已提交
125 126
class CPUDeviceContext : public DeviceContext {
 public:
127
  CPUDeviceContext();
Q
qijun 已提交
128
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
129

130
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
131

L
liaogang 已提交
132
  Place GetPlace() const override;
Y
Yu Yang 已提交
133

Q
qijun 已提交
134
 private:
D
dzhwinter 已提交
135
  CPUPlace place_;
Q
qijun 已提交
136
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
137 138
};

Y
Yang Yu 已提交
139 140 141 142 143 144 145 146
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;
  int DeviceId() const { return device_.getId(); }

 private:
  IPUPlace place_;
  platform::ipu::Device device_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};

#endif

171
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
172
namespace xpu = baidu::xpu::api;
173 174 175 176 177 178
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
179
  XPUVersion xpu_version() const { return xpu_version_; }
180 181 182 183 184 185
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

186
#ifdef PADDLE_WITH_XPU_BKCL
187
  /*! \brief  Return bkcl context. */
188 189 190 191 192 193
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

194 195
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
196
  XPUVersion xpu_version_;
197
  xpu::Context* context_;
198 199 200
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
201 202 203 204 205 206 207 208 209 210 211 212 213

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

214 215 216 217 218 219 220 221
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
222

223 224 225 226 227 228
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

229 230 231 232 233 234 235
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

251 252 253
 private:
  NPUPlace place_;
  aclrtContext context_;
254 255 256 257

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

294 295 296
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
297
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
298
class EigenCudaStreamDevice;
S
sneaxiy 已提交
299

300 301 302 303 304
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
305 306
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

322 323 324 325 326 327
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

328
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
329

330 331 332
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
333
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
334
#endif
335

336
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
337 338 339
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
340
#endif
G
Guo Sheng 已提交
341

342 343 344 345 346 347 348 349 350 351 352
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
353 354 355 356 357
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

377 378 379 380 381
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
382 383 384 385 386 387 388
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
389 390 391 392 393
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
394 395
    }
  }
396
#endif
397 398 399

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
400 401
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
402
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
403 404
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
405 406
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
407 408 409 410
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
411 412
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
413
            << ", but MIOPEN version in your machine is "
414
            << local_miopen_version / 100 << "." << local_miopen_version % 100
415 416 417 418
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
419 420
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
421 422
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
423 424 425 426 427 428 429 430 431 432 433 434 435
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
436 437
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
438
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
439
#endif
440 441 442 443 444
    } else {
      cudnn_handle_ = nullptr;
    }
  }

445
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
446
  void InitCuSolverContext() {
447 448
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
449 450
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
451
#endif
G
Guo Sheng 已提交
452

453 454
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
455
#ifdef PADDLE_WITH_HIP
456
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
457
#else
458
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
459
#endif
460 461 462 463 464 465 466
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
467
    cublas_tf32_tensor_core_handle_.reset();
468 469
  }

470
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
471 472
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
473
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
474 475 476
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
477
#endif
G
Guo Sheng 已提交
478

479 480 481 482
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
483 484 485
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
486
  cudnnHandle_t cudnn_handle_;
487
#endif
488 489
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
490
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
491
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
492
  cusolverDnHandle_t cusolver_dn_handle_;
493
#endif
494 495 496
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

497
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
498
 public:
D
dzhwinter 已提交
499
  explicit CUDADeviceContext(CUDAPlace place);
500
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
501

502
  /*! \brief  Wait for all operations completion in the stream. */
503
  void Wait() const override;
Q
QI JUN 已提交
504

505
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
506
  Place GetPlace() const override;
507

K
Kexin Zhao 已提交
508
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
509 510
  int GetComputeCapability() const;

511 512 513
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

514 515 516 517 518 519
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

520 521 522
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

523 524 525
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

526 527 528
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
529
    return context()->CublasCall(callback);
530 531 532 533 534 535 536 537 538
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
539
    return context()->TensorCoreCublasCallIfAvailable(callback);
540
  }
S
sneaxiy 已提交
541

542 543 544 545
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
546
  cudnnHandle_t cudnn_handle() const;
547
#endif
548

549 550 551 552
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
553
  cublasHandle_t cublas_handle() const;
554
#endif
555

S
sneaxiy 已提交
556 557 558 559 560 561 562 563 564
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

565
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
566
  cusolverDnHandle_t cusolver_dn_handle() const;
567
#endif
G
Guo Sheng 已提交
568

Q
init  
qijun 已提交
569
  /*! \brief  Return cuda stream in the device context. */
570
  gpuStream_t stream() const;
Q
QI JUN 已提交
571

572
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
573 574 575 576 577
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
578
#endif
Q
qingqing01 已提交
579

Y
Yu Yang 已提交
580
  template <typename Callback>
581
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
582
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
583 584
  }

S
sneaxiy 已提交
585 586
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
587 588 589 590 591
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
592 593
  }

594
  void ResetDefaultContext(const stream::Priority& priority) {
595 596 597
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

598
  void ResetThreadContext(const stream::Priority& priority) {
599 600 601 602 603 604 605 606 607 608
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
609

Q
QI JUN 已提交
610
 private:
D
dzhwinter 已提交
611
  CUDAPlace place_;
612
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
613

614 615 616 617 618 619
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
620

621 622
  mutable std::mutex cudnn_handle_mtx_;

623
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
624 625 626 627 628 629
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
630
#endif
Q
qingqing01 已提交
631

C
chengduo 已提交
632 633 634 635 636
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
637
  int max_threads_per_block_;
638
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
639

640
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
641
};
Q
qijun 已提交
642

643 644
class CudnnWorkspaceHandle {
 public:
645 646
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
647 648 649 650 651 652 653 654

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
655 656 657 658
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
659 660 661 662 663 664 665 666 667 668 669 670 671
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

672
  void ReallocWorkspace(size_t required_workspace_bytes);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
689
  std::mutex* mtx_;
690 691
};

Y
Yang Yu 已提交
692 693
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
694
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
695 696
};

C
chengduoZH 已提交
697
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
698 699 700 701 702 703
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
704

C
chengduoZH 已提交
705 706 707 708 709 710 711 712 713 714 715
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
716
#endif
Q
qijun 已提交
717

T
tensor-tang 已提交
718
#ifdef PADDLE_WITH_MKLDNN
719 720 721 722 723 724

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
725
    bool said_once = false;
726 727 728 729 730 731 732 733 734 735 736
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
737
    // MKL-DNN stream used for execution of primitives (per-thread)
738 739
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
740 741
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
742
    void* exec_ptr_ = nullptr;
743 744

    Body();
745
    ~Body();
746 747 748 749 750 751
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
752
    void log_lib_version(void);
753 754
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
755 756 757 758
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
759 760
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
776

T
tensor-tang 已提交
777 778
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
779 780 781 782 783 784 785 786 787 788
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
789
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
790 791 792
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
793
  using ShapeBlob = umap_key_string_t<KeyBlob>;
794 795
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

796 797 798 799
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
800
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
801 802 803
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
804

T
tensor-tang 已提交
805 806 807
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
808
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
809

810
  // Register object to currently used executor's map
811 812
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
813

814
  // Remove all entries from the blob map
815
  void ResetBlobMap(void* ptr);
816 817 818

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
819

820 821 822
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

823 824
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
825

826
  // Calculate number of oneDNN objects cached
827
  unsigned int GetCachedObjectsNumber(void) const;
828

829 830
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
831

832 833 834 835
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
836
 private:
837
  std::shared_ptr<BlobMap> p_blobmap_;
838 839
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
840
  std::shared_ptr<ExecShape> p_exec_items_;
841
  std::shared_ptr<std::mutex> p_mutex_;
842
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
843 844 845
};
#endif

D
dzhwinter 已提交
846 847 848 849 850
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
851
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
852 853 854
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
855 856 857 858
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
859
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
860 861 862 863 864 865
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

866 867
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
868
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
869
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
870

Y
Yang Yu 已提交
871 872 873 874 875 876 877
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

878 879
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
880 881
 private:
  static DeviceContextPool* pool;
882 883
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
884 885 886
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
887 888
}  // namespace platform
}  // namespace paddle