softmax_op.cc 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuwei1031 已提交
15
#include <memory>
16
#include <string>
L
liuwei1031 已提交
17
#include <unordered_map>
18

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29 30
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

31 32 33
namespace paddle {
namespace operators {

D
dongzhihong 已提交
34
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
35 36 37
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

38 39 40 41
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
42
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
43 44
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
45
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
46

47
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
48
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
49
      library_ = framework::LibraryType::kCUDNN;
50 51
    }
#endif
52 53
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
54
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
55
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
56
      layout_ = framework::DataLayout::kMKLDNN;
57 58
    }
#endif
K
Kexin Zhao 已提交
59 60

    if (input_data_type == framework::proto::VarType::FP16) {
61 62 63 64
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_xpu_place(ctx.GetPlace()) ||
65 66
              platform::is_mlu_place(ctx.GetPlace()) ||
              platform::is_custom_place(ctx.GetPlace()),
67 68
          true,
          platform::errors::InvalidArgument(
69
              "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
K
Kexin Zhao 已提交
70 71
    }

72 73
    return framework::OpKernelType(
        input_data_type, ctx.GetPlace(), layout_, library_);
74
  }
75
};
76

D
dongzhihong 已提交
77
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
78
 public:
Y
Yu Yang 已提交
79
  void Make() override {
80
    AddInput("X",
F
fengjiayi 已提交
81
             "The input tensor of softmax, "
D
dengkaipeng 已提交
82
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
83
    AddOutput("Out", "The normalized values with the same shape as X.");
84
    AddAttr<int>("axis",
D
dengkaipeng 已提交
85
                 "The dimension index of Input(x) to perform softmax,"
86 87
                 "default -1 for last dimension")
        .SetDefault(-1);
88 89 90 91 92 93 94
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
95 96 97 98 99
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false)
        .AsExtra();
C
caoying03 已提交
100
    AddComment(R"DOC(
101 102
Softmax Operator.

103
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
104
has the same shape as the input.
C
caoying03 已提交
105

D
dengkaipeng 已提交
106
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
107
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
108
second dimension(row length) is as same as the dimension :attr:`axis` of the input
109 110 111
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
112
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
113
K-dimensional vector of real values in the range [0, 1] that add up to 1.
114 115 116 117 118
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
119

F
fengjiayi 已提交
120
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
121
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
122 123

)DOC");
124 125 126
  }
};

C
chengduo 已提交
127 128
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
129
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
130
      const override {
131 132
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
133 134 135
  }
};

D
dongzhihong 已提交
136
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
137 138 139
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

140 141 142 143
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
144
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
145 146
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
147 148
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
149
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
150
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
151
      library_ = framework::LibraryType::kCUDNN;
152 153
    }
#endif
J
Jacek Czaja 已提交
154 155
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
156
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
157 158 159 160 161
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
162
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
163
            platform::is_npu_place(ctx.GetPlace()) ||
164
            platform::is_xpu_place(ctx.GetPlace()) ||
165 166
            platform::is_mlu_place(ctx.GetPlace()) ||
            platform::is_custom_place(ctx.GetPlace())))
167
        PADDLE_THROW(platform::errors::InvalidArgument(
168
            "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
J
Jacek Czaja 已提交
169 170
    }

171 172
    return framework::OpKernelType(
        input_data_type, ctx.GetPlace(), layout_, library_);
173
  }
D
dongzhihong 已提交
174 175
};

H
hong 已提交
176 177
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
178
 public:
H
hong 已提交
179
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
180 181

 protected:
182
  void Apply(GradOpPtr<T> op) const override {
183 184
    op->SetType("softmax_grad");

H
hong 已提交
185 186
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
187

H
hong 已提交
188
    op->SetAttrMap(this->Attrs());
189

H
hong 已提交
190
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
191 192
  }
};
D
dzhwinter 已提交
193

194 195
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

196 197 198
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
199
namespace ops = paddle::operators;
D
dongzhihong 已提交
200

201 202
DECLARE_INFER_SHAPE_FUNCTOR(softmax,
                            SoftmaxInferShapeFunctor,
203
                            PD_INFER_META(phi::SoftmaxInferMeta));
204 205 206
REGISTER_OPERATOR(softmax,
                  ops::SoftmaxOp,
                  ops::SoftmaxOpMaker,
H
hong 已提交
207 208 209
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
210 211 212 213
                  ops::SoftmaxInplaceInferer,
                  SoftmaxInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(softmax_grad,
                            SoftmaxGradInferShapeFunctor,
214
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
215 216
REGISTER_OPERATOR(softmax_grad,
                  ops::SoftmaxOpGrad,
C
Chen Weihang 已提交
217
                  SoftmaxGradInferShapeFunctor);