softmax_op.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuwei1031 已提交
15
#include <memory>
16
#include <string>
L
liuwei1031 已提交
17
#include <unordered_map>
18

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29 30
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

31 32 33
namespace paddle {
namespace operators {

D
dongzhihong 已提交
34
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
35 36 37
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

38 39 40 41
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
42
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
43 44
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
45
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
46

47
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
48
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
49
      library_ = framework::LibraryType::kCUDNN;
50 51
    }
#endif
52 53
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
54
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
55
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
56
      layout_ = framework::DataLayout::kMKLDNN;
57 58
    }
#endif
K
Kexin Zhao 已提交
59 60

    if (input_data_type == framework::proto::VarType::FP16) {
61 62 63 64
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_xpu_place(ctx.GetPlace()) ||
65 66
              platform::is_mlu_place(ctx.GetPlace()) ||
              platform::is_custom_place(ctx.GetPlace()),
67 68
          true,
          platform::errors::InvalidArgument(
69
              "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
K
Kexin Zhao 已提交
70 71
    }

72 73
    return framework::OpKernelType(
        input_data_type, ctx.GetPlace(), layout_, library_);
74
  }
75
};
76

D
dongzhihong 已提交
77
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
78
 public:
Y
Yu Yang 已提交
79
  void Make() override {
80
    AddInput("X",
F
fengjiayi 已提交
81
             "The input tensor of softmax, "
D
dengkaipeng 已提交
82
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
83
    AddOutput("Out", "The normalized values with the same shape as X.");
84
    AddAttr<int>("axis",
D
dengkaipeng 已提交
85
                 "The dimension index of Input(x) to perform softmax,"
86 87
                 "default -1 for last dimension")
        .SetDefault(-1);
88 89 90 91 92 93 94
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
C
caoying03 已提交
95
    AddComment(R"DOC(
96 97
Softmax Operator.

98
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
99
has the same shape as the input.
C
caoying03 已提交
100

D
dengkaipeng 已提交
101
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
102
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
103
second dimension(row length) is as same as the dimension :attr:`axis` of the input
104 105 106
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
107
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
108
K-dimensional vector of real values in the range [0, 1] that add up to 1.
109 110 111 112 113
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
114

F
fengjiayi 已提交
115
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
116
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
117 118

)DOC");
119 120 121
  }
};

C
chengduo 已提交
122 123
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
124
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
125
      const override {
126 127
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
128 129 130
  }
};

D
dongzhihong 已提交
131
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
132 133 134
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

135 136 137 138
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
139
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
140 141
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
142 143
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
144
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
145
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
146
      library_ = framework::LibraryType::kCUDNN;
147 148
    }
#endif
J
Jacek Czaja 已提交
149 150
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
151
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
152 153 154 155 156
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
157
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
158
            platform::is_npu_place(ctx.GetPlace()) ||
159
            platform::is_xpu_place(ctx.GetPlace()) ||
160 161
            platform::is_mlu_place(ctx.GetPlace()) ||
            platform::is_custom_place(ctx.GetPlace())))
162
        PADDLE_THROW(platform::errors::InvalidArgument(
163
            "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
J
Jacek Czaja 已提交
164 165
    }

166 167
    return framework::OpKernelType(
        input_data_type, ctx.GetPlace(), layout_, library_);
168
  }
D
dongzhihong 已提交
169 170
};

H
hong 已提交
171 172
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
173
 public:
H
hong 已提交
174
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
175 176

 protected:
177
  void Apply(GradOpPtr<T> op) const override {
178 179
    op->SetType("softmax_grad");

H
hong 已提交
180 181
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
182

H
hong 已提交
183
    op->SetAttrMap(this->Attrs());
184

H
hong 已提交
185
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
186 187
  }
};
D
dzhwinter 已提交
188

189 190
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

191 192 193
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
194
namespace ops = paddle::operators;
D
dongzhihong 已提交
195

196 197
DECLARE_INFER_SHAPE_FUNCTOR(softmax,
                            SoftmaxInferShapeFunctor,
198
                            PD_INFER_META(phi::SoftmaxInferMeta));
199 200 201
REGISTER_OPERATOR(softmax,
                  ops::SoftmaxOp,
                  ops::SoftmaxOpMaker,
H
hong 已提交
202 203 204
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
205 206 207 208
                  ops::SoftmaxInplaceInferer,
                  SoftmaxInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(softmax_grad,
                            SoftmaxGradInferShapeFunctor,
209
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
210 211
REGISTER_OPERATOR(softmax_grad,
                  ops::SoftmaxOpGrad,
C
Chen Weihang 已提交
212
                  SoftmaxGradInferShapeFunctor);