percpu.c 60.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * linux/mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11 12 13 14 15 16 17
 * chunk is consisted of boot-time determined number of units and the
 * first chunk is used for static percpu variables in the kernel image
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
 * When a chunk is filled up, another chunk is allocated.  ie. in
 * vmalloc area
18 19 20 21 22 23 24 25
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 27 28 29
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
30
 *
31 32
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
33 34 35 36 37 38 39 40 41 42 43
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
44 45
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
46 47 48 49
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50 51
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
52
 *
53 54
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
55 56 57 58
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
59
#include <linux/err.h>
60
#include <linux/list.h>
61
#include <linux/log2.h>
62 63 64 65 66 67
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
68
#include <linux/spinlock.h>
69
#include <linux/vmalloc.h>
70
#include <linux/workqueue.h>
71 72

#include <asm/cacheflush.h>
73
#include <asm/sections.h>
74 75 76 77 78
#include <asm/tlbflush.h>

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

79 80 81 82 83 84 85 86 87 88 89 90
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
		 + (unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
		 - (unsigned long)__per_cpu_start)
#endif

91 92 93 94
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
95
	void			*base_addr;	/* base address of this chunk */
96 97 98
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
99
	struct vm_struct	**vms;		/* mapped vmalloc regions */
100
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
101
	unsigned long		populated[];	/* populated bitmap */
102 103
};

104 105
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
106
static int pcpu_nr_units __read_mostly;
107
static int pcpu_atom_size __read_mostly;
108 109
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
110

111 112 113 114
/* cpus with the lowest and highest unit numbers */
static unsigned int pcpu_first_unit_cpu __read_mostly;
static unsigned int pcpu_last_unit_cpu __read_mostly;

115
/* the address of the first chunk which starts with the kernel static area */
116
void *pcpu_base_addr __read_mostly;
117 118
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
119 120
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
121

122 123 124 125 126
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

127 128 129 130 131 132 133 134 135 136 137 138 139 140
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
141 142 143
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

144
/*
145 146 147
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
T
Tejun Heo 已提交
148 149 150
 * protects allocation/reclaim paths, chunks, populated bitmap and
 * vmalloc mapping.  The latter is a spinlock and protects the index
 * data structures - chunk slots, chunks and area maps in chunks.
151 152 153 154 155 156 157 158 159 160 161 162 163
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
 * allocations are done using GFP_KERNEL with pcpu_lock released.
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
164
 */
165 166
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
167

168
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
169

170 171 172 173
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

174
static int __pcpu_size_to_slot(int size)
175
{
T
Tejun Heo 已提交
176
	int highbit = fls(size);	/* size is in bytes */
177 178 179
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

180 181 182 183 184 185 186
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

187 188 189 190 191 192 193 194 195 196
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

static int pcpu_page_idx(unsigned int cpu, int page_idx)
{
197
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
198 199 200 201 202
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
T
Tejun Heo 已提交
203
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
204
		(page_idx << PAGE_SHIFT);
205 206
}

T
Tejun Heo 已提交
207 208
static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
				    unsigned int cpu, int page_idx)
209
{
T
Tejun Heo 已提交
210 211
	/* must not be used on pre-mapped chunk */
	WARN_ON(chunk->immutable);
212

T
Tejun Heo 已提交
213
	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

T
Tejun Heo 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
 * page regions betwen @start and @end in @chunk.  @rs and @re should
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

256
/**
257 258
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
259
 *
260 261 262
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
263
 *
264 265 266
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
267
 * RETURNS:
268
 * Pointer to the allocated area on success, NULL on failure.
269
 */
270
static void *pcpu_mem_alloc(size_t size)
271
{
272 273 274 275 276 277 278 279 280
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
281

282 283 284 285 286 287 288 289 290
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
291
	if (size <= PAGE_SIZE)
292
		kfree(ptr);
293
	else
294
		vfree(ptr);
295 296 297 298 299 300 301 302 303
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
304 305
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
306 307 308
 *
 * CONTEXT:
 * pcpu_lock.
309 310 311 312 313
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

314
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
315 316 317 318 319 320 321 322
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

/**
323 324
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
325
 *
326 327 328 329 330
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
T
Tejun Heo 已提交
331
	void *first_start = pcpu_first_chunk->base_addr;
332

333
	/* is it in the first chunk? */
334
	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
335 336
		/* is it in the reserved area? */
		if (addr < first_start + pcpu_reserved_chunk_limit)
337
			return pcpu_reserved_chunk;
338
		return pcpu_first_chunk;
339 340
	}

341 342 343 344 345 346 347
	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
348
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
349
	return pcpu_get_page_chunk(vmalloc_to_page(addr));
350 351
}

352 353 354 355 356 357 358 359
/**
 * pcpu_extend_area_map - extend area map for allocation
 * @chunk: target chunk
 *
 * Extend area map of @chunk so that it can accomodate an allocation.
 * A single allocation can split an area into three areas, so this
 * function makes sure that @chunk->map has at least two extra slots.
 *
360 361 362 363
 * CONTEXT:
 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
 * if area map is extended.
 *
364 365 366 367 368 369 370 371 372 373 374 375 376
 * RETURNS:
 * 0 if noop, 1 if successfully extended, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
{
	int new_alloc;
	int *new;
	size_t size;

	/* has enough? */
	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

377 378
	spin_unlock_irq(&pcpu_lock);

379 380 381 382 383
	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
384 385
	if (!new) {
		spin_lock_irq(&pcpu_lock);
386
		return -ENOMEM;
387 388 389 390 391 392 393 394 395
	}

	/*
	 * Acquire pcpu_lock and switch to new area map.  Only free
	 * could have happened inbetween, so map_used couldn't have
	 * grown.
	 */
	spin_lock_irq(&pcpu_lock);
	BUG_ON(new_alloc < chunk->map_used + 2);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

	size = chunk->map_alloc * sizeof(chunk->map[0]);
	memcpy(new, chunk->map, size);

	/*
	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
	 * one of the first chunks and still using static map.
	 */
	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
		pcpu_mem_free(chunk->map, size);

	chunk->map_alloc = new_alloc;
	chunk->map = new;
	return 0;
}

412 413 414 415
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
416 417
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
418 419 420 421 422 423 424 425 426
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
427
 * @chunk->map must have enough free slots to accomodate the split.
428 429 430
 *
 * CONTEXT:
 * pcpu_lock.
431
 */
432 433
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
434 435
{
	int nr_extra = !!head + !!tail;
436

437
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
438

439
	/* insert new subblocks */
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
457
 * @size: wanted size in bytes
458 459 460 461 462 463
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
464 465
 * @chunk->map must have at least two free slots.
 *
466 467 468
 * CONTEXT:
 * pcpu_lock.
 *
469
 * RETURNS:
470 471
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
519
			pcpu_split_block(chunk, i, head, tail);
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

546 547
	/* tell the upper layer that this chunk has no matching area */
	return -1;
548 549 550 551 552 553 554 555 556 557
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
558 559 560
 *
 * CONTEXT:
 * pcpu_lock.
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

/**
T
Tejun Heo 已提交
597
 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
598
 * @chunk: chunk of interest
T
Tejun Heo 已提交
599 600
 * @bitmapp: output parameter for bitmap
 * @may_alloc: may allocate the array
601
 *
T
Tejun Heo 已提交
602 603 604 605 606 607 608 609 610 611 612 613
 * Returns pointer to array of pointers to struct page and bitmap,
 * both of which can be indexed with pcpu_page_idx().  The returned
 * array is cleared to zero and *@bitmapp is copied from
 * @chunk->populated.  Note that there is only one array and bitmap
 * and access exclusion is the caller's responsibility.
 *
 * CONTEXT:
 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
 * Otherwise, don't care.
 *
 * RETURNS:
 * Pointer to temp pages array on success, NULL on failure.
614
 */
T
Tejun Heo 已提交
615 616 617
static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
					       unsigned long **bitmapp,
					       bool may_alloc)
618
{
T
Tejun Heo 已提交
619 620
	static struct page **pages;
	static unsigned long *bitmap;
621
	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
T
Tejun Heo 已提交
622 623 624 625 626 627 628 629 630 631 632
	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
			     sizeof(unsigned long);

	if (!pages || !bitmap) {
		if (may_alloc && !pages)
			pages = pcpu_mem_alloc(pages_size);
		if (may_alloc && !bitmap)
			bitmap = pcpu_mem_alloc(bitmap_size);
		if (!pages || !bitmap)
			return NULL;
	}
633

T
Tejun Heo 已提交
634 635
	memset(pages, 0, pages_size);
	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
636

T
Tejun Heo 已提交
637 638 639
	*bitmapp = bitmap;
	return pages;
}
640

T
Tejun Heo 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
/**
 * pcpu_free_pages - free pages which were allocated for @chunk
 * @chunk: chunk pages were allocated for
 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be freed
 * @page_end: page index of the last page to be freed + 1
 *
 * Free pages [@page_start and @page_end) in @pages for all units.
 * The pages were allocated for @chunk.
 */
static void pcpu_free_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
{
	unsigned int cpu;
	int i;

	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page = pages[pcpu_page_idx(cpu, i)];

			if (page)
				__free_page(page);
		}
	}
667 668 669
}

/**
T
Tejun Heo 已提交
670 671 672 673 674 675 676 677 678 679
 * pcpu_alloc_pages - allocates pages for @chunk
 * @chunk: target chunk
 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be allocated
 * @page_end: page index of the last page to be allocated + 1
 *
 * Allocate pages [@page_start,@page_end) into @pages for all units.
 * The allocation is for @chunk.  Percpu core doesn't care about the
 * content of @pages and will pass it verbatim to pcpu_map_pages().
680
 */
T
Tejun Heo 已提交
681 682 683
static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
684
{
T
Tejun Heo 已提交
685
	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
686 687 688
	unsigned int cpu;
	int i;

T
Tejun Heo 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702
	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];

			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
			if (!*pagep) {
				pcpu_free_pages(chunk, pages, populated,
						page_start, page_end);
				return -ENOMEM;
			}
		}
	}
	return 0;
}
703

T
Tejun Heo 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
/**
 * pcpu_pre_unmap_flush - flush cache prior to unmapping
 * @chunk: chunk the regions to be flushed belongs to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages in [@page_start,@page_end) of @chunk are about to be
 * unmapped.  Flush cache.  As each flushing trial can be very
 * expensive, issue flush on the whole region at once rather than
 * doing it for each cpu.  This could be an overkill but is more
 * scalable.
 */
static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
719 720 721
	flush_cache_vunmap(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
T
Tejun Heo 已提交
722 723 724 725 726 727
}

static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
{
	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
}
728

T
Tejun Heo 已提交
729 730
/**
 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
731
 * @chunk: chunk of interest
T
Tejun Heo 已提交
732 733
 * @pages: pages array which can be used to pass information to free
 * @populated: populated bitmap
734 735 736 737
 * @page_start: page index of the first page to unmap
 * @page_end: page index of the last page to unmap + 1
 *
 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
T
Tejun Heo 已提交
738 739 740 741
 * Corresponding elements in @pages were cleared by the caller and can
 * be used to carry information to pcpu_free_pages() which will be
 * called after all unmaps are finished.  The caller should call
 * proper pre/post flush functions.
742
 */
T
Tejun Heo 已提交
743 744 745
static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
			     struct page **pages, unsigned long *populated,
			     int page_start, int page_end)
746 747
{
	unsigned int cpu;
T
Tejun Heo 已提交
748
	int i;
749

T
Tejun Heo 已提交
750 751 752
	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page;
753

T
Tejun Heo 已提交
754 755 756
			page = pcpu_chunk_page(chunk, cpu, i);
			WARN_ON(!page);
			pages[pcpu_page_idx(cpu, i)] = page;
757
		}
T
Tejun Heo 已提交
758 759
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
				   page_end - page_start);
760 761
	}

T
Tejun Heo 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	for (i = page_start; i < page_end; i++)
		__clear_bit(i, populated);
}

/**
 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 * TLB for the regions.  This can be skipped if the area is to be
 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
				      int page_start, int page_end)
{
782 783 784
	flush_tlb_kernel_range(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
785 786
}

787 788 789 790 791
static int __pcpu_map_pages(unsigned long addr, struct page **pages,
			    int nr_pages)
{
	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
					PAGE_KERNEL, pages);
792 793 794
}

/**
T
Tejun Heo 已提交
795
 * pcpu_map_pages - map pages into a pcpu_chunk
796
 * @chunk: chunk of interest
T
Tejun Heo 已提交
797 798
 * @pages: pages array containing pages to be mapped
 * @populated: populated bitmap
799 800 801
 * @page_start: page index of the first page to map
 * @page_end: page index of the last page to map + 1
 *
T
Tejun Heo 已提交
802 803 804 805 806 807 808
 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 * caller is responsible for calling pcpu_post_map_flush() after all
 * mappings are complete.
 *
 * This function is responsible for setting corresponding bits in
 * @chunk->populated bitmap and whatever is necessary for reverse
 * lookup (addr -> chunk).
809
 */
T
Tejun Heo 已提交
810 811 812
static int pcpu_map_pages(struct pcpu_chunk *chunk,
			  struct page **pages, unsigned long *populated,
			  int page_start, int page_end)
813
{
T
Tejun Heo 已提交
814 815
	unsigned int cpu, tcpu;
	int i, err;
816

817
	for_each_possible_cpu(cpu) {
818
		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
T
Tejun Heo 已提交
819
				       &pages[pcpu_page_idx(cpu, page_start)],
820
				       page_end - page_start);
821
		if (err < 0)
T
Tejun Heo 已提交
822
			goto err;
823 824
	}

T
Tejun Heo 已提交
825 826 827 828 829 830
	/* mapping successful, link chunk and mark populated */
	for (i = page_start; i < page_end; i++) {
		for_each_possible_cpu(cpu)
			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
					    chunk);
		__set_bit(i, populated);
831 832 833
	}

	return 0;
T
Tejun Heo 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

err:
	for_each_possible_cpu(tcpu) {
		if (tcpu == cpu)
			break;
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
				   page_end - page_start);
	}
	return err;
}

/**
 * pcpu_post_map_flush - flush cache after mapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 * cache.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
				int page_start, int page_end)
{
860 861 862
	flush_cache_vmap(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
863 864
}

865 866 867 868
/**
 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 * @chunk: chunk to depopulate
 * @off: offset to the area to depopulate
T
Tejun Heo 已提交
869
 * @size: size of the area to depopulate in bytes
870 871 872 873 874
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 * from @chunk.  If @flush is true, vcache is flushed before unmapping
 * and tlb after.
875 876 877
 *
 * CONTEXT:
 * pcpu_alloc_mutex.
878
 */
T
Tejun Heo 已提交
879
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
880 881 882
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
883 884 885 886 887 888 889 890 891 892
	struct page **pages;
	unsigned long *populated;
	int rs, re;

	/* quick path, check whether it's empty already */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		if (rs == page_start && re == page_end)
			return;
		break;
	}
893

T
Tejun Heo 已提交
894 895
	/* immutable chunks can't be depopulated */
	WARN_ON(chunk->immutable);
896

T
Tejun Heo 已提交
897 898 899 900 901 902 903
	/*
	 * If control reaches here, there must have been at least one
	 * successful population attempt so the temp pages array must
	 * be available now.
	 */
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
	BUG_ON(!pages);
904

T
Tejun Heo 已提交
905 906
	/* unmap and free */
	pcpu_pre_unmap_flush(chunk, page_start, page_end);
907

T
Tejun Heo 已提交
908 909
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
910

T
Tejun Heo 已提交
911 912 913 914
	/* no need to flush tlb, vmalloc will handle it lazily */

	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
915

T
Tejun Heo 已提交
916 917
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
918 919 920 921 922 923
}

/**
 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 * @chunk: chunk of interest
 * @off: offset to the area to populate
T
Tejun Heo 已提交
924
 * @size: size of the area to populate in bytes
925 926 927
 *
 * For each cpu, populate and map pages [@page_start,@page_end) into
 * @chunk.  The area is cleared on return.
928 929 930
 *
 * CONTEXT:
 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
931 932 933 934 935
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
936 937 938
	int free_end = page_start, unmap_end = page_start;
	struct page **pages;
	unsigned long *populated;
939
	unsigned int cpu;
T
Tejun Heo 已提交
940
	int rs, re, rc;
941

T
Tejun Heo 已提交
942 943 944 945 946 947
	/* quick path, check whether all pages are already there */
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
		if (rs == page_start && re == page_end)
			goto clear;
		break;
	}
948

T
Tejun Heo 已提交
949 950
	/* need to allocate and map pages, this chunk can't be immutable */
	WARN_ON(chunk->immutable);
951

T
Tejun Heo 已提交
952 953 954
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
	if (!pages)
		return -ENOMEM;
955

T
Tejun Heo 已提交
956 957 958 959 960 961
	/* alloc and map */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_free;
		free_end = re;
962 963
	}

T
Tejun Heo 已提交
964 965 966 967 968 969 970
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_unmap;
		unmap_end = re;
	}
	pcpu_post_map_flush(chunk, page_start, page_end);
971

T
Tejun Heo 已提交
972 973 974
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
clear:
975
	for_each_possible_cpu(cpu)
976
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
977
	return 0;
T
Tejun Heo 已提交
978 979 980 981 982 983 984 985 986 987

err_unmap:
	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
err_free:
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
	return rc;
988 989 990 991 992 993
}

static void free_pcpu_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
994 995
	if (chunk->vms)
		pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
996
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	kfree(chunk);
}

static struct pcpu_chunk *alloc_pcpu_chunk(void)
{
	struct pcpu_chunk *chunk;

	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
	if (!chunk)
		return NULL;

1008
	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1009 1010 1011
	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

1012 1013 1014 1015
	chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
				       pcpu_nr_groups, pcpu_atom_size,
				       GFP_KERNEL);
	if (!chunk->vms) {
1016 1017 1018 1019 1020 1021 1022
		free_pcpu_chunk(chunk);
		return NULL;
	}

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;
1023
	chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1024 1025 1026 1027 1028

	return chunk;
}

/**
1029
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
1030
 * @size: size of area to allocate in bytes
1031
 * @align: alignment of area (max PAGE_SIZE)
1032
 * @reserved: allocate from the reserved chunk if available
1033
 *
1034 1035 1036 1037
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
1038 1039 1040 1041
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1042
static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1043
{
1044
	static int warn_limit = 10;
1045
	struct pcpu_chunk *chunk;
1046
	const char *err;
1047 1048
	int slot, off;

1049
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1050 1051 1052 1053 1054
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

1055 1056
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1057

1058 1059 1060
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
1061
		if (size > chunk->contig_hint ||
1062 1063
		    pcpu_extend_area_map(chunk) < 0) {
			err = "failed to extend area map of reserved chunk";
1064
			goto fail_unlock;
1065
		}
1066 1067 1068
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
1069
		err = "alloc from reserved chunk failed";
1070
		goto fail_unlock;
1071 1072
	}

1073
restart:
1074
	/* search through normal chunks */
1075 1076 1077 1078
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
1079 1080 1081 1082 1083 1084 1085

			switch (pcpu_extend_area_map(chunk)) {
			case 0:
				break;
			case 1:
				goto restart;	/* pcpu_lock dropped, restart */
			default:
1086
				err = "failed to extend area map";
1087 1088 1089
				goto fail_unlock;
			}

1090 1091 1092 1093 1094 1095 1096
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
1097 1098
	spin_unlock_irq(&pcpu_lock);

1099
	chunk = alloc_pcpu_chunk();
1100 1101
	if (!chunk) {
		err = "failed to allocate new chunk";
1102
		goto fail_unlock_mutex;
1103
	}
1104 1105

	spin_lock_irq(&pcpu_lock);
1106
	pcpu_chunk_relocate(chunk, -1);
1107
	goto restart;
1108 1109

area_found:
1110 1111
	spin_unlock_irq(&pcpu_lock);

1112 1113
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
1114
		spin_lock_irq(&pcpu_lock);
1115
		pcpu_free_area(chunk, off);
1116
		err = "failed to populate";
1117
		goto fail_unlock;
1118 1119
	}

1120 1121
	mutex_unlock(&pcpu_alloc_mutex);

T
Tejun Heo 已提交
1122 1123
	/* return address relative to base address */
	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1124 1125 1126 1127 1128

fail_unlock:
	spin_unlock_irq(&pcpu_lock);
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
1129 1130 1131 1132 1133 1134 1135
	if (warn_limit) {
		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
			   "%s\n", size, align, err);
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
1136
	return NULL;
1137
}
1138 1139 1140 1141 1142 1143 1144 1145 1146

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
1147 1148 1149
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1150 1151 1152 1153 1154 1155 1156
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, false);
}
1157 1158
EXPORT_SYMBOL_GPL(__alloc_percpu);

1159 1160 1161 1162 1163 1164 1165 1166 1167
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
1168 1169 1170
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1171 1172 1173 1174 1175 1176 1177 1178
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_reserved_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, true);
}

1179 1180 1181 1182 1183
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
1184 1185 1186
 *
 * CONTEXT:
 * workqueue context.
1187 1188
 */
static void pcpu_reclaim(struct work_struct *work)
1189
{
1190 1191 1192 1193
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

1194 1195
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

1207
	spin_unlock_irq(&pcpu_lock);
1208 1209

	list_for_each_entry_safe(chunk, next, &todo, list) {
T
Tejun Heo 已提交
1210
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1211 1212
		free_pcpu_chunk(chunk);
	}
T
Tejun Heo 已提交
1213 1214

	mutex_unlock(&pcpu_alloc_mutex);
1215 1216 1217 1218 1219 1220
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1221 1222 1223 1224
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1225 1226 1227 1228 1229
 */
void free_percpu(void *ptr)
{
	void *addr = __pcpu_ptr_to_addr(ptr);
	struct pcpu_chunk *chunk;
1230
	unsigned long flags;
1231 1232 1233 1234 1235
	int off;

	if (!ptr)
		return;

1236
	spin_lock_irqsave(&pcpu_lock, flags);
1237 1238

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1239
	off = addr - chunk->base_addr;
1240 1241 1242

	pcpu_free_area(chunk, off);

1243
	/* if there are more than one fully free chunks, wake up grim reaper */
1244 1245 1246
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1247
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1248
			if (pos != chunk) {
1249
				schedule_work(&pcpu_reclaim_work);
1250 1251 1252 1253
				break;
			}
	}

1254
	spin_unlock_irqrestore(&pcpu_lock, flags);
1255 1256 1257
}
EXPORT_SYMBOL_GPL(free_percpu);

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
static inline size_t pcpu_calc_fc_sizes(size_t static_size,
					size_t reserved_size,
					ssize_t *dyn_sizep)
{
	size_t size_sum;

	size_sum = PFN_ALIGN(static_size + reserved_size +
			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
	if (*dyn_sizep != 0)
		*dyn_sizep = size_sum - static_size - reserved_size;

	return size_sum;
}

1272
/**
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
	free_bootmem(__pa(ai), ai->__ai_size);
}

/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1329
 * @reserved_size: the size of reserved percpu area in bytes
1330
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1331 1332
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
1333
 *
1334 1335 1336
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
1337
 *
1338 1339 1340 1341 1342
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
1343 1344
 *
 * RETURNS:
1345 1346
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
1347
 */
1348 1349 1350 1351
struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, ssize_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1352 1353 1354 1355
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
1356
	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1357 1358
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1359
	int last_allocs, group, unit;
1360
	unsigned int cpu, tcpu;
1361 1362
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;
1363

1364 1365 1366 1367
	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_map));

1368 1369
	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
1370
	 * alloc_size is multiple of atom_size and is the smallest
1371 1372 1373
	 * which can accomodate 4k aligned segments which are equal to
	 * or larger than min_unit_size.
	 */
1374
	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1375 1376
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

1377
	alloc_size = roundup(min_unit_size, atom_size);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
1390
			if (group_map[tcpu] == group && cpu_distance_fn &&
1391 1392 1393
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
1394
				nr_groups = max(nr_groups, group + 1);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
		group_cnt_max = max(group_cnt_max, group_cnt[group]);
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

1415
		for (group = 0; group < nr_groups; group++) {
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 25%.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;
1467 1468 1469

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
1470 1471 1472
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
1473
	}
1474
	BUG_ON(unit != nr_units);
1475

1476
	return ai;
1477 1478
}

1479 1480 1481 1482 1483 1484 1485 1486 1487
/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1488
{
1489
	int group_width = 1, cpu_width = 1, width;
1490
	char empty_str[] = "--------";
1491 1492 1493 1494 1495 1496 1497
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1498

1499
	v = num_possible_cpus();
1500
	while (v /= 10)
1501 1502
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1503

1504 1505 1506
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1507

1508 1509 1510
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1511

1512 1513 1514 1515 1516 1517 1518 1519
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1520
				printk("\n");
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
				printk("%spcpu-alloc: ", lvl);
			}
			printk("[%0*d] ", group_width, group);

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
					printk("%0*d ", cpu_width,
					       gi->cpu_map[unit]);
				else
					printk("%s ", empty_str);
1531 1532 1533 1534 1535
		}
	}
	printk("\n");
}

1536
/**
1537
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1538
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1539
 * @base_addr: mapped address
1540 1541 1542
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1543
 * setup path.
1544
 *
1545 1546 1547 1548 1549 1550
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1551 1552 1553 1554 1555 1556 1557
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1558 1559 1560
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1561
 *
1562 1563 1564
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1565
 *
1566 1567
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1568
 *
1569 1570 1571 1572 1573 1574 1575 1576 1577
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1578
 *
1579 1580
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1581
 *
1582 1583 1584 1585 1586 1587 1588
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1589
 * RETURNS:
T
Tejun Heo 已提交
1590
 * 0 on success, -errno on failure.
1591
 */
T
Tejun Heo 已提交
1592 1593
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1594
{
1595
	static char cpus_buf[4096] __initdata;
1596
	static int smap[2], dmap[2];
1597 1598
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1599
	struct pcpu_chunk *schunk, *dchunk = NULL;
1600 1601
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1602
	unsigned long *unit_off;
1603
	unsigned int cpu;
1604 1605
	int *unit_map;
	int group, unit, i;
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1618
	/* sanity checks */
1619 1620
	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1621 1622 1623 1624 1625 1626
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
	PCPU_SETUP_BUG_ON(!ai->static_size);
	PCPU_SETUP_BUG_ON(!base_addr);
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1627

1628 1629 1630
	/* process group information and build config tables accordingly */
	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1631
	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
T
Tejun Heo 已提交
1632
	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1633

1634
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1635
		unit_map[cpu] = UINT_MAX;
1636
	pcpu_first_unit_cpu = NR_CPUS;
1637

1638 1639
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1640

1641 1642 1643
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1644 1645 1646 1647
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1648

1649 1650 1651
			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1652

1653
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1654 1655
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

1656 1657 1658
			if (pcpu_first_unit_cpu == NR_CPUS)
				pcpu_first_unit_cpu = cpu;
		}
1659
	}
1660 1661 1662 1663
	pcpu_last_unit_cpu = cpu;
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1664 1665 1666 1667 1668
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
	pcpu_dump_alloc_info(KERN_INFO, ai);
1669

1670 1671 1672
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1673
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1674
	pcpu_unit_offsets = unit_off;
1675 1676

	/* determine basic parameters */
1677
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1678
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1679
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1680 1681
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1682

1683 1684 1685 1686 1687
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1688 1689 1690 1691
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1692 1693 1694 1695 1696 1697 1698
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1699 1700
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
T
Tejun Heo 已提交
1701
	schunk->base_addr = base_addr;
1702 1703
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1704
	schunk->immutable = true;
T
Tejun Heo 已提交
1705
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1706

1707 1708
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1709
		pcpu_reserved_chunk = schunk;
1710
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1711 1712 1713 1714
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1715
	schunk->contig_hint = schunk->free_size;
1716

1717
	schunk->map[schunk->map_used++] = -ai->static_size;
1718 1719 1720
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1721 1722
	/* init dynamic chunk if necessary */
	if (dyn_size) {
T
Tejun Heo 已提交
1723
		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1724
		INIT_LIST_HEAD(&dchunk->list);
T
Tejun Heo 已提交
1725
		dchunk->base_addr = base_addr;
1726 1727
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1728
		dchunk->immutable = true;
T
Tejun Heo 已提交
1729
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1730 1731 1732 1733 1734 1735

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1736
	/* link the first chunk in */
1737 1738
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1739 1740

	/* we're done */
T
Tejun Heo 已提交
1741
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1742
	return 0;
1743
}
1744

1745 1746 1747 1748 1749
const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1750

1751
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
static int __init percpu_alloc_setup(char *str)
{
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1767

1768
	return 0;
1769
}
1770
early_param("percpu_alloc", percpu_alloc_setup);
1771

1772 1773
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1774 1775 1776 1777
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1778 1779 1780 1781
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
 * @free_fn: funtion to free percpu page
1782 1783 1784 1785 1786
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1797 1798
 *
 * When @dyn_size is positive, dynamic area might be larger than
1799 1800 1801
 * specified to fill page alignment.  When @dyn_size is auto,
 * @dyn_size is just big enough to fill page alignment after static
 * and reserved areas.
1802 1803
 *
 * If the needed size is smaller than the minimum or specified unit
1804
 * size, the leftover is returned using @free_fn.
1805 1806
 *
 * RETURNS:
T
Tejun Heo 已提交
1807
 * 0 on success, -errno on failure.
1808
 */
1809 1810 1811 1812 1813
int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1814
{
1815 1816
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1817
	struct pcpu_alloc_info *ai;
1818
	size_t size_sum, areas_size, max_distance;
1819
	int group, i, rc;
1820

1821 1822
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1823 1824
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1825

1826
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1827
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1828

1829 1830
	areas = alloc_bootmem_nopanic(areas_size);
	if (!areas) {
T
Tejun Heo 已提交
1831
		rc = -ENOMEM;
1832
		goto out_free;
1833
	}
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
		areas[group] = ptr;
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		base = min(ptr, base);

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
1865
	}
1866

1867
	/* base address is now known, determine group base offsets */
1868 1869
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
1870
		ai->groups[group].base_offset = areas[group] - base;
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		max_distance = max(max_distance, ai->groups[group].base_offset);
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
		pr_warning("PERCPU: max_distance=0x%lx too large for vmalloc "
			   "space 0x%lx\n",
			   max_distance, VMALLOC_END - VMALLOC_START);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
1886

T
Tejun Heo 已提交
1887
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1888 1889
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
1890

T
Tejun Heo 已提交
1891
	rc = pcpu_setup_first_chunk(ai, base);
1892 1893 1894 1895 1896 1897 1898
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
		free_fn(areas[group],
			ai->groups[group].nr_units * ai->unit_size);
out_free:
1899
	pcpu_free_alloc_info(ai);
1900 1901
	if (areas)
		free_bootmem(__pa(areas), areas_size);
T
Tejun Heo 已提交
1902
	return rc;
1903
}
1904 1905
#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1906

1907
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1908
/**
1909
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1910 1911 1912 1913 1914
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
1915 1916
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1917 1918 1919 1920 1921
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
1922
 * 0 on success, -errno on failure.
1923
 */
T
Tejun Heo 已提交
1924 1925 1926 1927
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1928
{
1929
	static struct vm_struct vm;
1930
	struct pcpu_alloc_info *ai;
1931
	char psize_str[16];
T
Tejun Heo 已提交
1932
	int unit_pages;
1933
	size_t pages_size;
T
Tejun Heo 已提交
1934
	struct page **pages;
T
Tejun Heo 已提交
1935
	int unit, i, j, rc;
1936

1937 1938
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

1939 1940 1941 1942 1943 1944 1945
	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
1946 1947

	/* unaligned allocations can't be freed, round up to page size */
1948 1949
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
T
Tejun Heo 已提交
1950
	pages = alloc_bootmem(pages_size);
1951

1952
	/* allocate pages */
1953
	j = 0;
1954
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
1955
		for (i = 0; i < unit_pages; i++) {
1956
			unsigned int cpu = ai->groups[0].cpu_map[unit];
1957 1958
			void *ptr;

1959
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1960
			if (!ptr) {
1961 1962
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
1963 1964
				goto enomem;
			}
T
Tejun Heo 已提交
1965
			pages[j++] = virt_to_page(ptr);
1966 1967
		}

1968 1969
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
1970
	vm.size = num_possible_cpus() * ai->unit_size;
1971 1972
	vm_area_register_early(&vm, PAGE_SIZE);

1973
	for (unit = 0; unit < num_possible_cpus(); unit++) {
1974
		unsigned long unit_addr =
1975
			(unsigned long)vm.addr + unit * ai->unit_size;
1976

T
Tejun Heo 已提交
1977
		for (i = 0; i < unit_pages; i++)
1978 1979 1980
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
1981 1982 1983 1984
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
1985

1986 1987 1988 1989 1990 1991 1992 1993 1994
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
1995
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1996 1997 1998
	}

	/* we're ready, commit */
1999
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2000 2001
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2002

T
Tejun Heo 已提交
2003
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2004 2005 2006 2007
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2008
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2009
	rc = -ENOMEM;
2010
out_free_ar:
T
Tejun Heo 已提交
2011
	free_bootmem(__pa(pages), pages_size);
2012
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2013
	return rc;
2014
}
2015
#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
/*
 * Generic percpu area setup.
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2033 2034 2035 2036 2037
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
}
2038

2039 2040 2041 2042 2043
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}

2044 2045 2046 2047
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2048
	int rc;
2049 2050 2051 2052 2053

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2054
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2055 2056
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2057
	if (rc < 0)
2058 2059 2060 2061
		panic("Failed to initialized percpu areas.");

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2062
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2063
}
2064
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */