percpu.c 51.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * linux/mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
 * chunk is consisted of num_possible_cpus() units and the first chunk
 * is used for static percpu variables in the kernel image (special
 * boot time alloc/init handling necessary as these areas need to be
 * brought up before allocation services are running).  Unit grows as
 * necessary and all units grow or shrink in unison.  When a chunk is
 * filled up, another chunk is allocated.  ie. in vmalloc area
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
 * c1:u1, c1:u2 and c1:u3.  Percpu access can be done by configuring
26
 * percpu base registers pcpu_unit_size apart.
27 28 29 30 31 32 33 34 35 36 37 38 39 40
 *
 * There are usually many small percpu allocations many of them as
 * small as 4 bytes.  The allocator organizes chunks into lists
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
41 42
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
43 44 45
 *
 * To use this allocator, arch code should do the followings.
 *
46
 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
47 48
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57 58 59 60 61 62 63 64
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
65
#include <linux/spinlock.h>
66
#include <linux/vmalloc.h>
67
#include <linux/workqueue.h>
68 69

#include <asm/cacheflush.h>
70
#include <asm/sections.h>
71 72 73 74 75
#include <asm/tlbflush.h>

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

76 77 78 79 80 81 82 83 84 85 86 87
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
		 + (unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
		 - (unsigned long)__per_cpu_start)
#endif

88 89 90 91 92 93 94 95
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
	struct vm_struct	*vm;		/* mapped vmalloc region */
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
96
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
97
	unsigned long		populated[];	/* populated bitmap */
98 99
};

100 101 102 103 104
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
static int pcpu_chunk_size __read_mostly;
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
105 106

/* the address of the first chunk which starts with the kernel static area */
107
void *pcpu_base_addr __read_mostly;
108 109
EXPORT_SYMBOL_GPL(pcpu_base_addr);

110 111 112 113 114 115 116 117 118 119 120 121 122 123
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
124 125 126
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

127
/*
128 129 130
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
T
Tejun Heo 已提交
131 132 133
 * protects allocation/reclaim paths, chunks, populated bitmap and
 * vmalloc mapping.  The latter is a spinlock and protects the index
 * data structures - chunk slots, chunks and area maps in chunks.
134 135 136 137 138 139 140 141 142 143 144 145 146
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
 * allocations are done using GFP_KERNEL with pcpu_lock released.
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
147
 */
148 149
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
150

151
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
152

153 154 155 156
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

157
static int __pcpu_size_to_slot(int size)
158
{
T
Tejun Heo 已提交
159
	int highbit = fls(size);	/* size is in bytes */
160 161 162
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

163 164 165 166 167 168 169
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

170 171 172 173 174 175 176 177 178 179
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

static int pcpu_page_idx(unsigned int cpu, int page_idx)
{
180
	return cpu * pcpu_unit_pages + page_idx;
181 182 183 184 185 186 187 188 189
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
	return (unsigned long)chunk->vm->addr +
		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
}

T
Tejun Heo 已提交
190 191
static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
				    unsigned int cpu, int page_idx)
192
{
T
Tejun Heo 已提交
193 194
	/* must not be used on pre-mapped chunk */
	WARN_ON(chunk->immutable);
195

T
Tejun Heo 已提交
196
	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
197 198
}

199 200 201 202 203 204 205 206 207 208 209 210
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

T
Tejun Heo 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
 * page regions betwen @start and @end in @chunk.  @rs and @re should
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

239
/**
240 241
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
242
 *
243 244 245
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
246
 *
247 248 249
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
250
 * RETURNS:
251
 * Pointer to the allocated area on success, NULL on failure.
252
 */
253
static void *pcpu_mem_alloc(size_t size)
254
{
255 256 257 258 259 260 261 262 263
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
264

265 266 267 268 269 270 271 272 273
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
274
	if (size <= PAGE_SIZE)
275
		kfree(ptr);
276
	else
277
		vfree(ptr);
278 279 280 281 282 283 284 285 286
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
287 288
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
289 290 291
 *
 * CONTEXT:
 * pcpu_lock.
292 293 294 295 296
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

297
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
298 299 300 301 302 303 304 305
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

/**
306 307
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
308
 *
309 310 311 312 313
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
314
	void *first_start = pcpu_first_chunk->vm->addr;
315

316
	/* is it in the first chunk? */
317
	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
318 319
		/* is it in the reserved area? */
		if (addr < first_start + pcpu_reserved_chunk_limit)
320
			return pcpu_reserved_chunk;
321
		return pcpu_first_chunk;
322 323
	}

324
	return pcpu_get_page_chunk(vmalloc_to_page(addr));
325 326
}

327 328 329 330 331 332 333 334
/**
 * pcpu_extend_area_map - extend area map for allocation
 * @chunk: target chunk
 *
 * Extend area map of @chunk so that it can accomodate an allocation.
 * A single allocation can split an area into three areas, so this
 * function makes sure that @chunk->map has at least two extra slots.
 *
335 336 337 338
 * CONTEXT:
 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
 * if area map is extended.
 *
339 340 341 342 343 344 345 346 347 348 349 350 351
 * RETURNS:
 * 0 if noop, 1 if successfully extended, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
{
	int new_alloc;
	int *new;
	size_t size;

	/* has enough? */
	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

352 353
	spin_unlock_irq(&pcpu_lock);

354 355 356 357 358
	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
359 360
	if (!new) {
		spin_lock_irq(&pcpu_lock);
361
		return -ENOMEM;
362 363 364 365 366 367 368 369 370
	}

	/*
	 * Acquire pcpu_lock and switch to new area map.  Only free
	 * could have happened inbetween, so map_used couldn't have
	 * grown.
	 */
	spin_lock_irq(&pcpu_lock);
	BUG_ON(new_alloc < chunk->map_used + 2);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

	size = chunk->map_alloc * sizeof(chunk->map[0]);
	memcpy(new, chunk->map, size);

	/*
	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
	 * one of the first chunks and still using static map.
	 */
	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
		pcpu_mem_free(chunk->map, size);

	chunk->map_alloc = new_alloc;
	chunk->map = new;
	return 0;
}

387 388 389 390
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
391 392
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
393 394 395 396 397 398 399 400 401
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
402
 * @chunk->map must have enough free slots to accomodate the split.
403 404 405
 *
 * CONTEXT:
 * pcpu_lock.
406
 */
407 408
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
409 410
{
	int nr_extra = !!head + !!tail;
411

412
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
413

414
	/* insert new subblocks */
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
432
 * @size: wanted size in bytes
433 434 435 436 437 438
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
439 440
 * @chunk->map must have at least two free slots.
 *
441 442 443
 * CONTEXT:
 * pcpu_lock.
 *
444
 * RETURNS:
445 446
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
494
			pcpu_split_block(chunk, i, head, tail);
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

521 522
	/* tell the upper layer that this chunk has no matching area */
	return -1;
523 524 525 526 527 528 529 530 531 532
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
533 534 535
 *
 * CONTEXT:
 * pcpu_lock.
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

/**
T
Tejun Heo 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
 * @chunk: chunk of interest
 * @bitmapp: output parameter for bitmap
 * @may_alloc: may allocate the array
 *
 * Returns pointer to array of pointers to struct page and bitmap,
 * both of which can be indexed with pcpu_page_idx().  The returned
 * array is cleared to zero and *@bitmapp is copied from
 * @chunk->populated.  Note that there is only one array and bitmap
 * and access exclusion is the caller's responsibility.
 *
 * CONTEXT:
 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
 * Otherwise, don't care.
 *
 * RETURNS:
 * Pointer to temp pages array on success, NULL on failure.
 */
static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
					       unsigned long **bitmapp,
					       bool may_alloc)
{
	static struct page **pages;
	static unsigned long *bitmap;
	size_t pages_size = num_possible_cpus() * pcpu_unit_pages *
			    sizeof(pages[0]);
	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
			     sizeof(unsigned long);

	if (!pages || !bitmap) {
		if (may_alloc && !pages)
			pages = pcpu_mem_alloc(pages_size);
		if (may_alloc && !bitmap)
			bitmap = pcpu_mem_alloc(bitmap_size);
		if (!pages || !bitmap)
			return NULL;
	}

	memset(pages, 0, pages_size);
	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);

	*bitmapp = bitmap;
	return pages;
}

/**
 * pcpu_free_pages - free pages which were allocated for @chunk
 * @chunk: chunk pages were allocated for
 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be freed
 * @page_end: page index of the last page to be freed + 1
 *
 * Free pages [@page_start and @page_end) in @pages for all units.
 * The pages were allocated for @chunk.
 */
static void pcpu_free_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
{
	unsigned int cpu;
	int i;

	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page = pages[pcpu_page_idx(cpu, i)];

			if (page)
				__free_page(page);
		}
	}
}

/**
 * pcpu_alloc_pages - allocates pages for @chunk
 * @chunk: target chunk
 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be allocated
 * @page_end: page index of the last page to be allocated + 1
 *
 * Allocate pages [@page_start,@page_end) into @pages for all units.
 * The allocation is for @chunk.  Percpu core doesn't care about the
 * content of @pages and will pass it verbatim to pcpu_map_pages().
 */
static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
{
	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
	unsigned int cpu;
	int i;

	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];

			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
			if (!*pagep) {
				pcpu_free_pages(chunk, pages, populated,
						page_start, page_end);
				return -ENOMEM;
			}
		}
	}
	return 0;
}

/**
 * pcpu_pre_unmap_flush - flush cache prior to unmapping
 * @chunk: chunk the regions to be flushed belongs to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages in [@page_start,@page_end) of @chunk are about to be
 * unmapped.  Flush cache.  As each flushing trial can be very
 * expensive, issue flush on the whole region at once rather than
 * doing it for each cpu.  This could be an overkill but is more
 * scalable.
 */
static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
	unsigned int last = num_possible_cpus() - 1;

	flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
			   pcpu_chunk_addr(chunk, last, page_end));
}

static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
{
	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
}

/**
 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
708
 * @chunk: chunk of interest
T
Tejun Heo 已提交
709 710
 * @pages: pages array which can be used to pass information to free
 * @populated: populated bitmap
711 712 713 714
 * @page_start: page index of the first page to unmap
 * @page_end: page index of the last page to unmap + 1
 *
 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
T
Tejun Heo 已提交
715 716 717 718
 * Corresponding elements in @pages were cleared by the caller and can
 * be used to carry information to pcpu_free_pages() which will be
 * called after all unmaps are finished.  The caller should call
 * proper pre/post flush functions.
719
 */
T
Tejun Heo 已提交
720 721 722
static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
			     struct page **pages, unsigned long *populated,
			     int page_start, int page_end)
723 724
{
	unsigned int cpu;
T
Tejun Heo 已提交
725
	int i;
726

T
Tejun Heo 已提交
727 728 729
	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page;
730

T
Tejun Heo 已提交
731 732 733 734 735 736 737
			page = pcpu_chunk_page(chunk, cpu, i);
			WARN_ON(!page);
			pages[pcpu_page_idx(cpu, i)] = page;
		}
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
				   page_end - page_start);
	}
738

T
Tejun Heo 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	for (i = page_start; i < page_end; i++)
		__clear_bit(i, populated);
}

/**
 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 * TLB for the regions.  This can be skipped if the area is to be
 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
				      int page_start, int page_end)
{
	unsigned int last = num_possible_cpus() - 1;

	flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
			       pcpu_chunk_addr(chunk, last, page_end));
763 764
}

765 766 767 768 769 770 771 772
static int __pcpu_map_pages(unsigned long addr, struct page **pages,
			    int nr_pages)
{
	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
					PAGE_KERNEL, pages);
}

/**
T
Tejun Heo 已提交
773
 * pcpu_map_pages - map pages into a pcpu_chunk
774
 * @chunk: chunk of interest
T
Tejun Heo 已提交
775 776
 * @pages: pages array containing pages to be mapped
 * @populated: populated bitmap
777 778 779
 * @page_start: page index of the first page to map
 * @page_end: page index of the last page to map + 1
 *
T
Tejun Heo 已提交
780 781 782 783 784 785 786
 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 * caller is responsible for calling pcpu_post_map_flush() after all
 * mappings are complete.
 *
 * This function is responsible for setting corresponding bits in
 * @chunk->populated bitmap and whatever is necessary for reverse
 * lookup (addr -> chunk).
787
 */
T
Tejun Heo 已提交
788 789 790
static int pcpu_map_pages(struct pcpu_chunk *chunk,
			  struct page **pages, unsigned long *populated,
			  int page_start, int page_end)
791
{
T
Tejun Heo 已提交
792 793
	unsigned int cpu, tcpu;
	int i, err;
794 795 796

	for_each_possible_cpu(cpu) {
		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
T
Tejun Heo 已提交
797
				       &pages[pcpu_page_idx(cpu, page_start)],
798 799
				       page_end - page_start);
		if (err < 0)
T
Tejun Heo 已提交
800
			goto err;
801 802
	}

T
Tejun Heo 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	/* mapping successful, link chunk and mark populated */
	for (i = page_start; i < page_end; i++) {
		for_each_possible_cpu(cpu)
			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
					    chunk);
		__set_bit(i, populated);
	}

	return 0;

err:
	for_each_possible_cpu(tcpu) {
		if (tcpu == cpu)
			break;
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
				   page_end - page_start);
	}
	return err;
}

/**
 * pcpu_post_map_flush - flush cache after mapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 * cache.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
				int page_start, int page_end)
{
	unsigned int last = num_possible_cpus() - 1;

840 841 842 843 844
	/* flush at once, please read comments in pcpu_unmap() */
	flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
			 pcpu_chunk_addr(chunk, last, page_end));
}

845 846 847 848
/**
 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 * @chunk: chunk to depopulate
 * @off: offset to the area to depopulate
T
Tejun Heo 已提交
849
 * @size: size of the area to depopulate in bytes
850 851 852 853 854
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 * from @chunk.  If @flush is true, vcache is flushed before unmapping
 * and tlb after.
855 856 857
 *
 * CONTEXT:
 * pcpu_alloc_mutex.
858
 */
T
Tejun Heo 已提交
859
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
860 861 862
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
863 864 865 866 867 868 869 870 871 872
	struct page **pages;
	unsigned long *populated;
	int rs, re;

	/* quick path, check whether it's empty already */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		if (rs == page_start && re == page_end)
			return;
		break;
	}
873

T
Tejun Heo 已提交
874 875
	/* immutable chunks can't be depopulated */
	WARN_ON(chunk->immutable);
876

T
Tejun Heo 已提交
877 878 879 880 881 882 883
	/*
	 * If control reaches here, there must have been at least one
	 * successful population attempt so the temp pages array must
	 * be available now.
	 */
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
	BUG_ON(!pages);
884

T
Tejun Heo 已提交
885 886
	/* unmap and free */
	pcpu_pre_unmap_flush(chunk, page_start, page_end);
887

T
Tejun Heo 已提交
888 889
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
890

T
Tejun Heo 已提交
891 892 893 894
	/* no need to flush tlb, vmalloc will handle it lazily */

	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
895

T
Tejun Heo 已提交
896 897
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
898 899 900 901 902 903
}

/**
 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 * @chunk: chunk of interest
 * @off: offset to the area to populate
T
Tejun Heo 已提交
904
 * @size: size of the area to populate in bytes
905 906 907
 *
 * For each cpu, populate and map pages [@page_start,@page_end) into
 * @chunk.  The area is cleared on return.
908 909 910
 *
 * CONTEXT:
 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
911 912 913 914 915
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
916 917 918
	int free_end = page_start, unmap_end = page_start;
	struct page **pages;
	unsigned long *populated;
919
	unsigned int cpu;
T
Tejun Heo 已提交
920
	int rs, re, rc;
921

T
Tejun Heo 已提交
922 923 924 925 926 927
	/* quick path, check whether all pages are already there */
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
		if (rs == page_start && re == page_end)
			goto clear;
		break;
	}
928

T
Tejun Heo 已提交
929 930
	/* need to allocate and map pages, this chunk can't be immutable */
	WARN_ON(chunk->immutable);
931

T
Tejun Heo 已提交
932 933 934
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
	if (!pages)
		return -ENOMEM;
935

T
Tejun Heo 已提交
936 937 938 939 940 941
	/* alloc and map */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_free;
		free_end = re;
942 943
	}

T
Tejun Heo 已提交
944 945 946 947 948 949 950
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_unmap;
		unmap_end = re;
	}
	pcpu_post_map_flush(chunk, page_start, page_end);
951

T
Tejun Heo 已提交
952 953 954
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
clear:
955
	for_each_possible_cpu(cpu)
956
		memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
957 958
		       size);
	return 0;
T
Tejun Heo 已提交
959 960 961 962 963 964 965 966 967 968

err_unmap:
	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
err_free:
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
	return rc;
969 970 971 972 973 974 975 976
}

static void free_pcpu_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	if (chunk->vm)
		free_vm_area(chunk->vm);
977
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
978 979 980 981 982 983 984 985 986 987 988
	kfree(chunk);
}

static struct pcpu_chunk *alloc_pcpu_chunk(void)
{
	struct pcpu_chunk *chunk;

	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
	if (!chunk)
		return NULL;

989
	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

	chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
	if (!chunk->vm) {
		free_pcpu_chunk(chunk);
		return NULL;
	}

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

/**
1007
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
1008
 * @size: size of area to allocate in bytes
1009
 * @align: alignment of area (max PAGE_SIZE)
1010
 * @reserved: allocate from the reserved chunk if available
1011
 *
1012 1013 1014 1015
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
1016 1017 1018 1019
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1020
static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1021 1022 1023 1024
{
	struct pcpu_chunk *chunk;
	int slot, off;

1025
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1026 1027 1028 1029 1030
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

1031 1032
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1033

1034 1035 1036
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
1037 1038
		if (size > chunk->contig_hint ||
		    pcpu_extend_area_map(chunk) < 0)
1039
			goto fail_unlock;
1040 1041 1042
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
1043
		goto fail_unlock;
1044 1045
	}

1046
restart:
1047
	/* search through normal chunks */
1048 1049 1050 1051
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

			switch (pcpu_extend_area_map(chunk)) {
			case 0:
				break;
			case 1:
				goto restart;	/* pcpu_lock dropped, restart */
			default:
				goto fail_unlock;
			}

1062 1063 1064 1065 1066 1067 1068
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
1069 1070
	spin_unlock_irq(&pcpu_lock);

1071 1072
	chunk = alloc_pcpu_chunk();
	if (!chunk)
1073 1074 1075
		goto fail_unlock_mutex;

	spin_lock_irq(&pcpu_lock);
1076
	pcpu_chunk_relocate(chunk, -1);
1077
	goto restart;
1078 1079

area_found:
1080 1081
	spin_unlock_irq(&pcpu_lock);

1082 1083
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
1084
		spin_lock_irq(&pcpu_lock);
1085
		pcpu_free_area(chunk, off);
1086
		goto fail_unlock;
1087 1088
	}

1089 1090 1091 1092 1093 1094 1095 1096 1097
	mutex_unlock(&pcpu_alloc_mutex);

	return __addr_to_pcpu_ptr(chunk->vm->addr + off);

fail_unlock:
	spin_unlock_irq(&pcpu_lock);
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
	return NULL;
1098
}
1099 1100 1101 1102 1103 1104 1105 1106 1107

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
1108 1109 1110
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1111 1112 1113 1114 1115 1116 1117
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, false);
}
1118 1119
EXPORT_SYMBOL_GPL(__alloc_percpu);

1120 1121 1122 1123 1124 1125 1126 1127 1128
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
1129 1130 1131
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1132 1133 1134 1135 1136 1137 1138 1139
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_reserved_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, true);
}

1140 1141 1142 1143 1144
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
1145 1146 1147
 *
 * CONTEXT:
 * workqueue context.
1148 1149
 */
static void pcpu_reclaim(struct work_struct *work)
1150
{
1151 1152 1153 1154
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

1155 1156
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

1168 1169
	spin_unlock_irq(&pcpu_lock);
	mutex_unlock(&pcpu_alloc_mutex);
1170 1171

	list_for_each_entry_safe(chunk, next, &todo, list) {
T
Tejun Heo 已提交
1172
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1173 1174
		free_pcpu_chunk(chunk);
	}
1175 1176 1177 1178 1179 1180
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1181 1182 1183 1184
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1185 1186 1187 1188 1189
 */
void free_percpu(void *ptr)
{
	void *addr = __pcpu_ptr_to_addr(ptr);
	struct pcpu_chunk *chunk;
1190
	unsigned long flags;
1191 1192 1193 1194 1195
	int off;

	if (!ptr)
		return;

1196
	spin_lock_irqsave(&pcpu_lock, flags);
1197 1198 1199 1200 1201 1202

	chunk = pcpu_chunk_addr_search(addr);
	off = addr - chunk->vm->addr;

	pcpu_free_area(chunk, off);

1203
	/* if there are more than one fully free chunks, wake up grim reaper */
1204 1205 1206
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1207
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1208
			if (pos != chunk) {
1209
				schedule_work(&pcpu_reclaim_work);
1210 1211 1212 1213
				break;
			}
	}

1214
	spin_unlock_irqrestore(&pcpu_lock, flags);
1215 1216 1217 1218
}
EXPORT_SYMBOL_GPL(free_percpu);

/**
1219 1220
 * pcpu_setup_first_chunk - initialize the first percpu chunk
 * @static_size: the size of static percpu area in bytes
1221
 * @reserved_size: the size of reserved percpu area in bytes, 0 for none
1222
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1223 1224
 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
 * @base_addr: mapped address
1225 1226 1227
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1228
 * setup path.
1229
 *
1230 1231 1232 1233 1234 1235 1236 1237
 * @reserved_size, if non-zero, specifies the amount of bytes to
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1238 1239 1240 1241 1242
 * @dyn_size, if non-negative, determines the number of bytes
 * available for dynamic allocation in the first chunk.  Specifying
 * non-negative value makes percpu leave alone the area beyond
 * @static_size + @reserved_size + @dyn_size.
 *
1243 1244 1245
 * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
 * equal to or larger than @static_size + @reserved_size + if
 * non-negative, @dyn_size.
1246
 *
1247 1248
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1249
 *
1250 1251 1252 1253 1254 1255 1256
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1257 1258 1259 1260
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access.
 */
T
Tejun Heo 已提交
1261
size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
1262 1263
				     ssize_t dyn_size, size_t unit_size,
				     void *base_addr)
1264
{
1265
	static struct vm_struct first_vm;
1266
	static int smap[2], dmap[2];
1267 1268
	size_t size_sum = static_size + reserved_size +
			  (dyn_size >= 0 ? dyn_size : 0);
1269
	struct pcpu_chunk *schunk, *dchunk = NULL;
T
Tejun Heo 已提交
1270
	int i;
1271

1272
	/* santiy checks */
1273 1274
	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1275
	BUG_ON(!static_size);
1276 1277 1278 1279
	BUG_ON(!base_addr);
	BUG_ON(unit_size < size_sum);
	BUG_ON(unit_size & ~PAGE_MASK);
	BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1280

1281
	pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1282
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1283
	pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
T
Tejun Heo 已提交
1284 1285
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1286

1287
	if (dyn_size < 0)
1288
		dyn_size = pcpu_unit_size - static_size - reserved_size;
1289

1290 1291 1292 1293
	first_vm.flags = VM_ALLOC;
	first_vm.size = pcpu_chunk_size;
	first_vm.addr = base_addr;

1294 1295 1296 1297 1298
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1299 1300 1301 1302
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1303 1304 1305 1306 1307 1308 1309
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1310 1311 1312
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
	schunk->vm = &first_vm;
1313 1314
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1315
	schunk->immutable = true;
T
Tejun Heo 已提交
1316
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1317 1318 1319

	if (reserved_size) {
		schunk->free_size = reserved_size;
1320 1321
		pcpu_reserved_chunk = schunk;
		pcpu_reserved_chunk_limit = static_size + reserved_size;
1322 1323 1324 1325
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1326
	schunk->contig_hint = schunk->free_size;
1327

1328 1329 1330 1331
	schunk->map[schunk->map_used++] = -static_size;
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1332 1333
	/* init dynamic chunk if necessary */
	if (dyn_size) {
T
Tejun Heo 已提交
1334
		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1335 1336 1337 1338
		INIT_LIST_HEAD(&dchunk->list);
		dchunk->vm = &first_vm;
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1339
		dchunk->immutable = true;
T
Tejun Heo 已提交
1340
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1341 1342 1343 1344 1345 1346

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1347
	/* link the first chunk in */
1348 1349
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1350 1351

	/* we're done */
1352
	pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
1353 1354
	return pcpu_unit_size;
}
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
static size_t pcpu_calc_fc_sizes(size_t static_size, size_t reserved_size,
				 ssize_t *dyn_sizep)
{
	size_t size_sum;

	size_sum = PFN_ALIGN(static_size + reserved_size +
			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
	if (*dyn_sizep != 0)
		*dyn_sizep = size_sum - static_size - reserved_size;

	return size_sum;
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
 * as a contiguous area using bootmem allocator and used as-is without
 * being mapped into vmalloc area.  This enables the first chunk to
 * piggy back on the linear physical mapping which often uses larger
 * page size.
 *
 * When @dyn_size is positive, dynamic area might be larger than
1385 1386 1387
 * specified to fill page alignment.  When @dyn_size is auto,
 * @dyn_size is just big enough to fill page alignment after static
 * and reserved areas.
1388 1389 1390 1391 1392 1393 1394 1395 1396
 *
 * If the needed size is smaller than the minimum or specified unit
 * size, the leftover is returned to the bootmem allocator.
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1397
				      ssize_t dyn_size)
1398
{
T
Tejun Heo 已提交
1399 1400
	size_t size_sum, unit_size, chunk_size;
	void *base;
1401 1402 1403
	unsigned int cpu;

	/* determine parameters and allocate */
T
Tejun Heo 已提交
1404
	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1405

T
Tejun Heo 已提交
1406 1407
	unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
	chunk_size = unit_size * num_possible_cpus();
1408

T
Tejun Heo 已提交
1409 1410 1411
	base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
				       __pa(MAX_DMA_ADDRESS));
	if (!base) {
1412 1413
		pr_warning("PERCPU: failed to allocate %zu bytes for "
			   "embedding\n", chunk_size);
1414
		return -ENOMEM;
1415
	}
1416 1417 1418

	/* return the leftover and copy */
	for_each_possible_cpu(cpu) {
T
Tejun Heo 已提交
1419
		void *ptr = base + cpu * unit_size;
1420

T
Tejun Heo 已提交
1421
		free_bootmem(__pa(ptr + size_sum), unit_size - size_sum);
1422 1423 1424 1425 1426
		memcpy(ptr, __per_cpu_load, static_size);
	}

	/* we're ready, commit */
	pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
T
Tejun Heo 已提交
1427
		size_sum >> PAGE_SHIFT, base, static_size);
1428

T
Tejun Heo 已提交
1429 1430
	return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
				      unit_size, base);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}

/**
 * pcpu_4k_first_chunk - map the first chunk using PAGE_SIZE pages
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
ssize_t __init pcpu_4k_first_chunk(size_t static_size, size_t reserved_size,
				   pcpu_fc_alloc_fn_t alloc_fn,
				   pcpu_fc_free_fn_t free_fn,
				   pcpu_fc_populate_pte_fn_t populate_pte_fn)
{
1456
	static struct vm_struct vm;
T
Tejun Heo 已提交
1457
	int unit_pages;
1458
	size_t pages_size;
T
Tejun Heo 已提交
1459
	struct page **pages;
1460 1461 1462 1463
	unsigned int cpu;
	int i, j;
	ssize_t ret;

T
Tejun Heo 已提交
1464 1465
	unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
				  PCPU_MIN_UNIT_SIZE));
1466 1467

	/* unaligned allocations can't be freed, round up to page size */
T
Tejun Heo 已提交
1468 1469 1470
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
	pages = alloc_bootmem(pages_size);
1471

1472
	/* allocate pages */
1473 1474
	j = 0;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
1475
		for (i = 0; i < unit_pages; i++) {
1476 1477 1478 1479 1480 1481 1482 1483
			void *ptr;

			ptr = alloc_fn(cpu, PAGE_SIZE);
			if (!ptr) {
				pr_warning("PERCPU: failed to allocate "
					   "4k page for cpu%u\n", cpu);
				goto enomem;
			}
T
Tejun Heo 已提交
1484
			pages[j++] = virt_to_page(ptr);
1485 1486
		}

1487 1488
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
T
Tejun Heo 已提交
1489
	vm.size = num_possible_cpus() * unit_pages << PAGE_SHIFT;
1490 1491 1492 1493
	vm_area_register_early(&vm, PAGE_SIZE);

	for_each_possible_cpu(cpu) {
		unsigned long unit_addr = (unsigned long)vm.addr +
T
Tejun Heo 已提交
1494
			(cpu * unit_pages << PAGE_SHIFT);
1495

T
Tejun Heo 已提交
1496
		for (i = 0; i < unit_pages; i++)
1497 1498 1499
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
1500 1501
		ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
				       unit_pages);
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		if (ret < 0)
			panic("failed to map percpu area, err=%zd\n", ret);

		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
		memcpy((void *)unit_addr, __per_cpu_load, static_size);
	}

1517
	/* we're ready, commit */
1518
	pr_info("PERCPU: %d 4k pages per cpu, static data %zu bytes\n",
T
Tejun Heo 已提交
1519
		unit_pages, static_size);
1520

T
Tejun Heo 已提交
1521 1522
	ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
				     unit_pages << PAGE_SHIFT, vm.addr);
1523 1524 1525 1526
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
1527
		free_fn(page_address(pages[j]), PAGE_SIZE);
1528 1529
	ret = -ENOMEM;
out_free_ar:
T
Tejun Heo 已提交
1530
	free_bootmem(__pa(pages), pages_size);
1531 1532 1533
	return ret;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/*
 * Large page remapping first chunk setup helper
 */
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pcpul_ent {
	unsigned int	cpu;
	void		*ptr;
};

static size_t pcpul_size;
static size_t pcpul_unit_size;
static struct pcpul_ent *pcpul_map;
static struct vm_struct pcpul_vm;

/**
 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 * @lpage_size: the size of a large page
 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
 * @free_fn: function to free percpu memory, @size <= lpage_size
 * @map_fn: function to map percpu lpage, always called with lpage_size
 *
 * This allocator uses large page as unit.  A large page is allocated
 * for each cpu and each is remapped into vmalloc area using large
 * page mapping.  As large page can be quite large, only part of it is
 * used for the first chunk.  Unused part is returned to the bootmem
 * allocator.
 *
 * So, the large pages are mapped twice - once to the physical mapping
 * and to the vmalloc area for the first percpu chunk.  The double
 * mapping does add one more large TLB entry pressure but still is
 * much better than only using 4k mappings while still being NUMA
 * friendly.
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
				      ssize_t dyn_size, size_t lpage_size,
				      pcpu_fc_alloc_fn_t alloc_fn,
				      pcpu_fc_free_fn_t free_fn,
				      pcpu_fc_map_fn_t map_fn)
{
	size_t size_sum;
	size_t map_size;
	unsigned int cpu;
	int i, j;
	ssize_t ret;

	/*
	 * Currently supports only single page.  Supporting multiple
	 * pages won't be too difficult if it ever becomes necessary.
	 */
	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);

	pcpul_unit_size = lpage_size;
	pcpul_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
	if (pcpul_size > pcpul_unit_size) {
		pr_warning("PERCPU: static data is larger than large page, "
			   "can't use large page\n");
		return -EINVAL;
	}

	/* allocate pointer array and alloc large pages */
	map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0]));
	pcpul_map = alloc_bootmem(map_size);

	for_each_possible_cpu(cpu) {
		void *ptr;

		ptr = alloc_fn(cpu, lpage_size);
		if (!ptr) {
			pr_warning("PERCPU: failed to allocate large page "
				   "for cpu%u\n", cpu);
			goto enomem;
		}

		/*
		 * Only use pcpul_size bytes and give back the rest.
		 *
		 * Ingo: The lpage_size up-rounding bootmem is needed
		 * to make sure the partial lpage is still fully RAM -
		 * it's not well-specified to have a incompatible area
		 * (unmapped RAM, device memory, etc.) in that hole.
		 */
		free_fn(ptr + pcpul_size, lpage_size - pcpul_size);

		pcpul_map[cpu].cpu = cpu;
		pcpul_map[cpu].ptr = ptr;

		memcpy(ptr, __per_cpu_load, static_size);
	}

	/* allocate address and map */
	pcpul_vm.flags = VM_ALLOC;
	pcpul_vm.size = num_possible_cpus() * pcpul_unit_size;
	vm_area_register_early(&pcpul_vm, pcpul_unit_size);

	for_each_possible_cpu(cpu)
		map_fn(pcpul_map[cpu].ptr, pcpul_unit_size,
		       pcpul_vm.addr + cpu * pcpul_unit_size);

	/* we're ready, commit */
	pr_info("PERCPU: Remapped at %p with large pages, static data "
		"%zu bytes\n", pcpul_vm.addr, static_size);

T
Tejun Heo 已提交
1643 1644
	ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
				     pcpul_unit_size, pcpul_vm.addr);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	/* sort pcpul_map array for pcpu_lpage_remapped() */
	for (i = 0; i < num_possible_cpus() - 1; i++)
		for (j = i + 1; j < num_possible_cpus(); j++)
			if (pcpul_map[i].ptr > pcpul_map[j].ptr) {
				struct pcpul_ent tmp = pcpul_map[i];
				pcpul_map[i] = pcpul_map[j];
				pcpul_map[j] = tmp;
			}

	return ret;

enomem:
	for_each_possible_cpu(cpu)
		if (pcpul_map[cpu].ptr)
			free_fn(pcpul_map[cpu].ptr, pcpul_size);
	free_bootmem(__pa(pcpul_map), map_size);
	return -ENOMEM;
}

/**
 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
 * @kaddr: the kernel address in question
 *
 * Determine whether @kaddr falls in the pcpul recycled area.  This is
 * used by pageattr to detect VM aliases and break up the pcpu large
 * page mapping such that the same physical page is not mapped under
 * different attributes.
 *
 * The recycled area is always at the tail of a partially used large
 * page.
 *
 * RETURNS:
 * Address of corresponding remapped pcpu address if match is found;
 * otherwise, NULL.
 */
void *pcpu_lpage_remapped(void *kaddr)
{
	unsigned long unit_mask = pcpul_unit_size - 1;
	void *lpage_addr = (void *)((unsigned long)kaddr & ~unit_mask);
	unsigned long offset = (unsigned long)kaddr & unit_mask;
	int left = 0, right = num_possible_cpus() - 1;
	int pos;

	/* pcpul in use at all? */
	if (!pcpul_map)
		return NULL;

	/* okay, perform binary search */
	while (left <= right) {
		pos = (left + right) / 2;

		if (pcpul_map[pos].ptr < lpage_addr)
			left = pos + 1;
		else if (pcpul_map[pos].ptr > lpage_addr)
			right = pos - 1;
		else {
			/* it shouldn't be in the area for the first chunk */
			WARN_ON(offset < pcpul_size);

			return pcpul_vm.addr +
				pcpul_map[pos].cpu * pcpul_unit_size + offset;
		}
	}

	return NULL;
}
#endif

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/*
 * Generic percpu area setup.
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

void __init setup_per_cpu_areas(void)
{
	size_t static_size = __per_cpu_end - __per_cpu_start;
	ssize_t unit_size;
	unsigned long delta;
	unsigned int cpu;

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
	unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
1742
					   PERCPU_DYNAMIC_RESERVE);
1743 1744 1745 1746 1747 1748 1749 1750
	if (unit_size < 0)
		panic("Failed to initialized percpu areas.");

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
		__per_cpu_offset[cpu] = delta + cpu * unit_size;
}
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */