percpu.c 45.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * linux/mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
 * chunk is consisted of num_possible_cpus() units and the first chunk
 * is used for static percpu variables in the kernel image (special
 * boot time alloc/init handling necessary as these areas need to be
 * brought up before allocation services are running).  Unit grows as
 * necessary and all units grow or shrink in unison.  When a chunk is
 * filled up, another chunk is allocated.  ie. in vmalloc area
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
 * c1:u1, c1:u2 and c1:u3.  Percpu access can be done by configuring
26
 * percpu base registers pcpu_unit_size apart.
27 28 29 30 31 32 33 34 35 36 37 38 39 40
 *
 * There are usually many small percpu allocations many of them as
 * small as 4 bytes.  The allocator organizes chunks into lists
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
41 42
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
43 44 45
 *
 * To use this allocator, arch code should do the followings.
 *
46
 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
47 48
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57 58 59 60 61 62 63 64
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
65
#include <linux/spinlock.h>
66
#include <linux/vmalloc.h>
67
#include <linux/workqueue.h>
68 69

#include <asm/cacheflush.h>
70
#include <asm/sections.h>
71 72 73 74 75
#include <asm/tlbflush.h>

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

76 77 78 79 80 81 82 83 84 85 86 87
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
		 + (unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
		 - (unsigned long)__per_cpu_start)
#endif

88 89 90 91 92 93 94 95
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
	struct vm_struct	*vm;		/* mapped vmalloc region */
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
96
	bool			immutable;	/* no [de]population allowed */
97 98
	struct page		**page;		/* points to page array */
	struct page		*page_ar[];	/* #cpus * UNIT_PAGES */
99 100
};

101 102 103 104 105
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
static int pcpu_chunk_size __read_mostly;
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
106 107

/* the address of the first chunk which starts with the kernel static area */
108
void *pcpu_base_addr __read_mostly;
109 110
EXPORT_SYMBOL_GPL(pcpu_base_addr);

111 112 113 114 115 116 117 118 119 120 121 122 123 124
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
125 126 127
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

128
/*
129 130 131 132 133
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
 * protects allocation/reclaim paths, chunks and chunk->page arrays.
 * The latter is a spinlock and protects the index data structures -
134
 * chunk slots, chunks and area maps in chunks.
135 136 137 138 139 140 141 142 143 144 145 146 147
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
 * allocations are done using GFP_KERNEL with pcpu_lock released.
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
148
 */
149 150
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
151

152
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
153

154 155 156 157
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

158
static int __pcpu_size_to_slot(int size)
159
{
T
Tejun Heo 已提交
160
	int highbit = fls(size);	/* size is in bytes */
161 162 163
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

164 165 166 167 168 169 170
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

171 172 173 174 175 176 177 178 179 180
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

static int pcpu_page_idx(unsigned int cpu, int page_idx)
{
181
	return cpu * pcpu_unit_pages + page_idx;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
}

static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
				      unsigned int cpu, int page_idx)
{
	return &chunk->page[pcpu_page_idx(cpu, page_idx)];
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
	return (unsigned long)chunk->vm->addr +
		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
}

static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
				     int page_idx)
{
	return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
}

203 204 205 206 207 208 209 210 211 212 213 214
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

215
/**
216 217
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
218
 *
219 220 221
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
222
 *
223 224 225
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
226
 * RETURNS:
227
 * Pointer to the allocated area on success, NULL on failure.
228
 */
229
static void *pcpu_mem_alloc(size_t size)
230
{
231 232 233 234 235 236 237 238 239
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
240

241 242 243 244 245 246 247 248 249
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
250
	if (size <= PAGE_SIZE)
251
		kfree(ptr);
252
	else
253
		vfree(ptr);
254 255 256 257 258 259 260 261 262
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
263 264
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
265 266 267
 *
 * CONTEXT:
 * pcpu_lock.
268 269 270 271 272
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

273
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
274 275 276 277 278 279 280 281
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

/**
282 283
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
284
 *
285 286 287 288 289
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
290
	void *first_start = pcpu_first_chunk->vm->addr;
291

292
	/* is it in the first chunk? */
293
	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
294 295
		/* is it in the reserved area? */
		if (addr < first_start + pcpu_reserved_chunk_limit)
296
			return pcpu_reserved_chunk;
297
		return pcpu_first_chunk;
298 299
	}

300
	return pcpu_get_page_chunk(vmalloc_to_page(addr));
301 302
}

303 304 305 306 307 308 309 310
/**
 * pcpu_extend_area_map - extend area map for allocation
 * @chunk: target chunk
 *
 * Extend area map of @chunk so that it can accomodate an allocation.
 * A single allocation can split an area into three areas, so this
 * function makes sure that @chunk->map has at least two extra slots.
 *
311 312 313 314
 * CONTEXT:
 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
 * if area map is extended.
 *
315 316 317 318 319 320 321 322 323 324 325 326 327
 * RETURNS:
 * 0 if noop, 1 if successfully extended, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
{
	int new_alloc;
	int *new;
	size_t size;

	/* has enough? */
	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

328 329
	spin_unlock_irq(&pcpu_lock);

330 331 332 333 334
	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
335 336
	if (!new) {
		spin_lock_irq(&pcpu_lock);
337
		return -ENOMEM;
338 339 340 341 342 343 344 345 346
	}

	/*
	 * Acquire pcpu_lock and switch to new area map.  Only free
	 * could have happened inbetween, so map_used couldn't have
	 * grown.
	 */
	spin_lock_irq(&pcpu_lock);
	BUG_ON(new_alloc < chunk->map_used + 2);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

	size = chunk->map_alloc * sizeof(chunk->map[0]);
	memcpy(new, chunk->map, size);

	/*
	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
	 * one of the first chunks and still using static map.
	 */
	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
		pcpu_mem_free(chunk->map, size);

	chunk->map_alloc = new_alloc;
	chunk->map = new;
	return 0;
}

363 364 365 366
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
367 368
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
369 370 371 372 373 374 375 376 377
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
378
 * @chunk->map must have enough free slots to accomodate the split.
379 380 381
 *
 * CONTEXT:
 * pcpu_lock.
382
 */
383 384
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
385 386
{
	int nr_extra = !!head + !!tail;
387

388
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
389

390
	/* insert new subblocks */
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
408
 * @size: wanted size in bytes
409 410 411 412 413 414
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
415 416
 * @chunk->map must have at least two free slots.
 *
417 418 419
 * CONTEXT:
 * pcpu_lock.
 *
420
 * RETURNS:
421 422
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
470
			pcpu_split_block(chunk, i, head, tail);
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

497 498
	/* tell the upper layer that this chunk has no matching area */
	return -1;
499 500 501 502 503 504 505 506 507 508
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
509 510 511
 *
 * CONTEXT:
 * pcpu_lock.
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

/**
 * pcpu_unmap - unmap pages out of a pcpu_chunk
 * @chunk: chunk of interest
 * @page_start: page index of the first page to unmap
 * @page_end: page index of the last page to unmap + 1
552
 * @flush_tlb: whether to flush tlb or not
553 554 555 556 557 558
 *
 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
 * If @flush is true, vcache is flushed before unmapping and tlb
 * after.
 */
static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
559
		       bool flush_tlb)
560 561 562 563
{
	unsigned int last = num_possible_cpus() - 1;
	unsigned int cpu;

564 565 566
	/* unmap must not be done on immutable chunk */
	WARN_ON(chunk->immutable);

567 568 569 570 571
	/*
	 * Each flushing trial can be very expensive, issue flush on
	 * the whole region at once rather than doing it for each cpu.
	 * This could be an overkill but is more scalable.
	 */
572 573
	flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
			   pcpu_chunk_addr(chunk, last, page_end));
574 575 576 577 578 579 580

	for_each_possible_cpu(cpu)
		unmap_kernel_range_noflush(
				pcpu_chunk_addr(chunk, cpu, page_start),
				(page_end - page_start) << PAGE_SHIFT);

	/* ditto as flush_cache_vunmap() */
581
	if (flush_tlb)
582 583 584 585 586 587 588 589
		flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
				       pcpu_chunk_addr(chunk, last, page_end));
}

/**
 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 * @chunk: chunk to depopulate
 * @off: offset to the area to depopulate
T
Tejun Heo 已提交
590
 * @size: size of the area to depopulate in bytes
591 592 593 594 595
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 * from @chunk.  If @flush is true, vcache is flushed before unmapping
 * and tlb after.
596 597 598
 *
 * CONTEXT:
 * pcpu_alloc_mutex.
599
 */
T
Tejun Heo 已提交
600 601
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
				  bool flush)
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
	int unmap_start = -1;
	int uninitialized_var(unmap_end);
	unsigned int cpu;
	int i;

	for (i = page_start; i < page_end; i++) {
		for_each_possible_cpu(cpu) {
			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);

			if (!*pagep)
				continue;

			__free_page(*pagep);

			/*
			 * If it's partial depopulation, it might get
			 * populated or depopulated again.  Mark the
			 * page gone.
			 */
			*pagep = NULL;

			unmap_start = unmap_start < 0 ? i : unmap_start;
			unmap_end = i + 1;
		}
	}

	if (unmap_start >= 0)
		pcpu_unmap(chunk, unmap_start, unmap_end, flush);
}

635 636 637 638 639 640 641
static int __pcpu_map_pages(unsigned long addr, struct page **pages,
			    int nr_pages)
{
	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
					PAGE_KERNEL, pages);
}

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/**
 * pcpu_map - map pages into a pcpu_chunk
 * @chunk: chunk of interest
 * @page_start: page index of the first page to map
 * @page_end: page index of the last page to map + 1
 *
 * For each cpu, map pages [@page_start,@page_end) into @chunk.
 * vcache is flushed afterwards.
 */
static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
{
	unsigned int last = num_possible_cpus() - 1;
	unsigned int cpu;
	int err;

657 658 659
	/* map must not be done on immutable chunk */
	WARN_ON(chunk->immutable);

660
	for_each_possible_cpu(cpu) {
661 662 663
		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
				       pcpu_chunk_pagep(chunk, cpu, page_start),
				       page_end - page_start);
664 665 666 667 668 669 670 671 672 673 674 675 676 677
		if (err < 0)
			return err;
	}

	/* flush at once, please read comments in pcpu_unmap() */
	flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
			 pcpu_chunk_addr(chunk, last, page_end));
	return 0;
}

/**
 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 * @chunk: chunk of interest
 * @off: offset to the area to populate
T
Tejun Heo 已提交
678
 * @size: size of the area to populate in bytes
679 680 681
 *
 * For each cpu, populate and map pages [@page_start,@page_end) into
 * @chunk.  The area is cleared on return.
682 683 684
 *
 * CONTEXT:
 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
685 686 687 688 689 690 691
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
	const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
	int map_start = -1;
692
	int uninitialized_var(map_end);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	unsigned int cpu;
	int i;

	for (i = page_start; i < page_end; i++) {
		if (pcpu_chunk_page_occupied(chunk, i)) {
			if (map_start >= 0) {
				if (pcpu_map(chunk, map_start, map_end))
					goto err;
				map_start = -1;
			}
			continue;
		}

		map_start = map_start < 0 ? i : map_start;
		map_end = i + 1;

		for_each_possible_cpu(cpu) {
			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);

			*pagep = alloc_pages_node(cpu_to_node(cpu),
						  alloc_mask, 0);
			if (!*pagep)
				goto err;
716
			pcpu_set_page_chunk(*pagep, chunk);
717 718 719 720 721 722 723
		}
	}

	if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
		goto err;

	for_each_possible_cpu(cpu)
724
		memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
		       size);

	return 0;
err:
	/* likely under heavy memory pressure, give memory back */
	pcpu_depopulate_chunk(chunk, off, size, true);
	return -ENOMEM;
}

static void free_pcpu_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	if (chunk->vm)
		free_vm_area(chunk->vm);
740
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
741 742 743 744 745 746 747 748 749 750 751
	kfree(chunk);
}

static struct pcpu_chunk *alloc_pcpu_chunk(void)
{
	struct pcpu_chunk *chunk;

	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
	if (!chunk)
		return NULL;

752
	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
753 754
	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;
755
	chunk->page = chunk->page_ar;
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

	chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
	if (!chunk->vm) {
		free_pcpu_chunk(chunk);
		return NULL;
	}

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

/**
771
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
772
 * @size: size of area to allocate in bytes
773
 * @align: alignment of area (max PAGE_SIZE)
774
 * @reserved: allocate from the reserved chunk if available
775
 *
776 777 778 779
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
780 781 782 783
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
784
static void *pcpu_alloc(size_t size, size_t align, bool reserved)
785 786 787 788
{
	struct pcpu_chunk *chunk;
	int slot, off;

789
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
790 791 792 793 794
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

795 796
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
797

798 799 800
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
801 802
		if (size > chunk->contig_hint ||
		    pcpu_extend_area_map(chunk) < 0)
803
			goto fail_unlock;
804 805 806
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
807
		goto fail_unlock;
808 809
	}

810
restart:
811
	/* search through normal chunks */
812 813 814 815
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
816 817 818 819 820 821 822 823 824 825

			switch (pcpu_extend_area_map(chunk)) {
			case 0:
				break;
			case 1:
				goto restart;	/* pcpu_lock dropped, restart */
			default:
				goto fail_unlock;
			}

826 827 828 829 830 831 832
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
833 834
	spin_unlock_irq(&pcpu_lock);

835 836
	chunk = alloc_pcpu_chunk();
	if (!chunk)
837 838 839
		goto fail_unlock_mutex;

	spin_lock_irq(&pcpu_lock);
840
	pcpu_chunk_relocate(chunk, -1);
841
	goto restart;
842 843

area_found:
844 845
	spin_unlock_irq(&pcpu_lock);

846 847
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
848
		spin_lock_irq(&pcpu_lock);
849
		pcpu_free_area(chunk, off);
850
		goto fail_unlock;
851 852
	}

853 854 855 856 857 858 859 860 861
	mutex_unlock(&pcpu_alloc_mutex);

	return __addr_to_pcpu_ptr(chunk->vm->addr + off);

fail_unlock:
	spin_unlock_irq(&pcpu_lock);
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
	return NULL;
862
}
863 864 865 866 867 868 869 870 871

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
872 873 874
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
875 876 877 878 879 880 881
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, false);
}
882 883
EXPORT_SYMBOL_GPL(__alloc_percpu);

884 885 886 887 888 889 890 891 892
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
893 894 895
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
896 897 898 899 900 901 902 903
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_reserved_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, true);
}

904 905 906 907 908
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
909 910 911
 *
 * CONTEXT:
 * workqueue context.
912 913
 */
static void pcpu_reclaim(struct work_struct *work)
914
{
915 916 917 918
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

919 920
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
921 922 923 924 925 926 927 928 929 930 931

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

932 933
	spin_unlock_irq(&pcpu_lock);
	mutex_unlock(&pcpu_alloc_mutex);
934 935 936 937 938

	list_for_each_entry_safe(chunk, next, &todo, list) {
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
		free_pcpu_chunk(chunk);
	}
939 940 941 942 943 944
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
945 946 947 948
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
949 950 951 952 953
 */
void free_percpu(void *ptr)
{
	void *addr = __pcpu_ptr_to_addr(ptr);
	struct pcpu_chunk *chunk;
954
	unsigned long flags;
955 956 957 958 959
	int off;

	if (!ptr)
		return;

960
	spin_lock_irqsave(&pcpu_lock, flags);
961 962 963 964 965 966

	chunk = pcpu_chunk_addr_search(addr);
	off = addr - chunk->vm->addr;

	pcpu_free_area(chunk, off);

967
	/* if there are more than one fully free chunks, wake up grim reaper */
968 969 970
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

971
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
972
			if (pos != chunk) {
973
				schedule_work(&pcpu_reclaim_work);
974 975 976 977
				break;
			}
	}

978
	spin_unlock_irqrestore(&pcpu_lock, flags);
979 980 981 982
}
EXPORT_SYMBOL_GPL(free_percpu);

/**
983 984 985
 * pcpu_setup_first_chunk - initialize the first percpu chunk
 * @get_page_fn: callback to fetch page pointer
 * @static_size: the size of static percpu area in bytes
986
 * @reserved_size: the size of reserved percpu area in bytes, 0 for none
987
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
988 989
 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
 * @base_addr: mapped address
990 991 992
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
993
 * setup path.
994 995 996 997
 *
 * @get_page_fn() should return pointer to percpu page given cpu
 * number and page number.  It should at least return enough pages to
 * cover the static area.  The returned pages for static area should
998 999 1000 1001
 * have been initialized with valid data.  It can also return pages
 * after the static area.  NULL return indicates end of pages for the
 * cpu.  Note that @get_page_fn() must return the same number of pages
 * for all cpus.
1002
 *
1003 1004 1005 1006 1007 1008 1009 1010
 * @reserved_size, if non-zero, specifies the amount of bytes to
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1011 1012 1013 1014 1015
 * @dyn_size, if non-negative, determines the number of bytes
 * available for dynamic allocation in the first chunk.  Specifying
 * non-negative value makes percpu leave alone the area beyond
 * @static_size + @reserved_size + @dyn_size.
 *
1016 1017 1018
 * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
 * equal to or larger than @static_size + @reserved_size + if
 * non-negative, @dyn_size.
1019
 *
1020 1021
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1022
 *
1023 1024 1025 1026 1027 1028 1029
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1030 1031 1032 1033
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access.
 */
1034
size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
1035
				     size_t static_size, size_t reserved_size,
1036 1037
				     ssize_t dyn_size, size_t unit_size,
				     void *base_addr)
1038
{
1039
	static struct vm_struct first_vm;
1040
	static int smap[2], dmap[2];
1041 1042
	size_t size_sum = static_size + reserved_size +
			  (dyn_size >= 0 ? dyn_size : 0);
1043
	struct pcpu_chunk *schunk, *dchunk = NULL;
1044
	unsigned int cpu;
1045
	int i, nr_pages;
1046

1047
	/* santiy checks */
1048 1049
	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1050
	BUG_ON(!static_size);
1051 1052 1053 1054
	BUG_ON(!base_addr);
	BUG_ON(unit_size < size_sum);
	BUG_ON(unit_size & ~PAGE_MASK);
	BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1055

1056
	pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1057
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1058 1059
	pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
T
Tejun Heo 已提交
1060
		+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
1061

1062
	if (dyn_size < 0)
1063
		dyn_size = pcpu_unit_size - static_size - reserved_size;
1064

1065 1066 1067 1068
	first_vm.flags = VM_ALLOC;
	first_vm.size = pcpu_chunk_size;
	first_vm.addr = base_addr;

1069 1070 1071 1072 1073
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1074 1075 1076 1077
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1078 1079 1080 1081 1082 1083 1084
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1085 1086 1087
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
	schunk->vm = &first_vm;
1088 1089
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1090
	schunk->page = schunk->page_ar;
1091
	schunk->immutable = true;
1092 1093 1094

	if (reserved_size) {
		schunk->free_size = reserved_size;
1095 1096
		pcpu_reserved_chunk = schunk;
		pcpu_reserved_chunk_limit = static_size + reserved_size;
1097 1098 1099 1100
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1101
	schunk->contig_hint = schunk->free_size;
1102

1103 1104 1105 1106
	schunk->map[schunk->map_used++] = -static_size;
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1107 1108 1109 1110 1111 1112 1113 1114
	/* init dynamic chunk if necessary */
	if (dyn_size) {
		dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
		INIT_LIST_HEAD(&dchunk->list);
		dchunk->vm = &first_vm;
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
		dchunk->page = schunk->page_ar;	/* share page map with schunk */
1115
		dchunk->immutable = true;
1116 1117 1118 1119 1120 1121

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1122 1123
	/* assign pages */
	nr_pages = -1;
1124
	for_each_possible_cpu(cpu) {
1125 1126 1127 1128 1129
		for (i = 0; i < pcpu_unit_pages; i++) {
			struct page *page = get_page_fn(cpu, i);

			if (!page)
				break;
1130
			*pcpu_chunk_pagep(schunk, cpu, i) = page;
1131
		}
1132

1133
		BUG_ON(i < PFN_UP(static_size));
1134 1135 1136 1137 1138

		if (nr_pages < 0)
			nr_pages = i;
		else
			BUG_ON(nr_pages != i);
1139 1140
	}

1141
	/* link the first chunk in */
1142 1143
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1144 1145

	/* we're done */
1146
	pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
1147 1148
	return pcpu_unit_size;
}
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static size_t pcpu_calc_fc_sizes(size_t static_size, size_t reserved_size,
				 ssize_t *dyn_sizep)
{
	size_t size_sum;

	size_sum = PFN_ALIGN(static_size + reserved_size +
			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
	if (*dyn_sizep != 0)
		*dyn_sizep = size_sum - static_size - reserved_size;

	return size_sum;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * Embedding first chunk setup helper.
 */
static void *pcpue_ptr __initdata;
static size_t pcpue_size __initdata;
static size_t pcpue_unit_size __initdata;

static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
{
	size_t off = (size_t)pageno << PAGE_SHIFT;

	if (off >= pcpue_size)
		return NULL;

	return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
}

/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
 * as a contiguous area using bootmem allocator and used as-is without
 * being mapped into vmalloc area.  This enables the first chunk to
 * piggy back on the linear physical mapping which often uses larger
 * page size.
 *
 * When @dyn_size is positive, dynamic area might be larger than
1196 1197 1198
 * specified to fill page alignment.  When @dyn_size is auto,
 * @dyn_size is just big enough to fill page alignment after static
 * and reserved areas.
1199 1200 1201 1202 1203 1204 1205 1206 1207
 *
 * If the needed size is smaller than the minimum or specified unit
 * size, the leftover is returned to the bootmem allocator.
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1208
				      ssize_t dyn_size)
1209
{
1210
	size_t chunk_size;
1211 1212 1213
	unsigned int cpu;

	/* determine parameters and allocate */
1214
	pcpue_size = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1215

1216
	pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
1217 1218 1219 1220 1221 1222 1223
	chunk_size = pcpue_unit_size * num_possible_cpus();

	pcpue_ptr = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
					    __pa(MAX_DMA_ADDRESS));
	if (!pcpue_ptr) {
		pr_warning("PERCPU: failed to allocate %zu bytes for "
			   "embedding\n", chunk_size);
1224
		return -ENOMEM;
1225
	}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	/* return the leftover and copy */
	for_each_possible_cpu(cpu) {
		void *ptr = pcpue_ptr + cpu * pcpue_unit_size;

		free_bootmem(__pa(ptr + pcpue_size),
			     pcpue_unit_size - pcpue_size);
		memcpy(ptr, __per_cpu_load, static_size);
	}

	/* we're ready, commit */
	pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
		pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);

	return pcpu_setup_first_chunk(pcpue_get_page, static_size,
				      reserved_size, dyn_size,
1242
				      pcpue_unit_size, pcpue_ptr);
1243
}
1244

1245 1246 1247 1248
/*
 * 4k page first chunk setup helper.
 */
static struct page **pcpu4k_pages __initdata;
1249
static int pcpu4k_unit_pages __initdata;
1250 1251 1252

static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno)
{
1253 1254
	if (pageno < pcpu4k_unit_pages)
		return pcpu4k_pages[cpu * pcpu4k_unit_pages + pageno];
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	return NULL;
}

/**
 * pcpu_4k_first_chunk - map the first chunk using PAGE_SIZE pages
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
ssize_t __init pcpu_4k_first_chunk(size_t static_size, size_t reserved_size,
				   pcpu_fc_alloc_fn_t alloc_fn,
				   pcpu_fc_free_fn_t free_fn,
				   pcpu_fc_populate_pte_fn_t populate_pte_fn)
{
1281
	static struct vm_struct vm;
1282 1283 1284 1285 1286
	size_t pages_size;
	unsigned int cpu;
	int i, j;
	ssize_t ret;

1287 1288
	pcpu4k_unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
					 PCPU_MIN_UNIT_SIZE));
1289 1290

	/* unaligned allocations can't be freed, round up to page size */
1291
	pages_size = PFN_ALIGN(pcpu4k_unit_pages * num_possible_cpus() *
1292 1293 1294
			       sizeof(pcpu4k_pages[0]));
	pcpu4k_pages = alloc_bootmem(pages_size);

1295
	/* allocate pages */
1296 1297
	j = 0;
	for_each_possible_cpu(cpu)
1298
		for (i = 0; i < pcpu4k_unit_pages; i++) {
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
			void *ptr;

			ptr = alloc_fn(cpu, PAGE_SIZE);
			if (!ptr) {
				pr_warning("PERCPU: failed to allocate "
					   "4k page for cpu%u\n", cpu);
				goto enomem;
			}
			pcpu4k_pages[j++] = virt_to_page(ptr);
		}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
	vm.size = num_possible_cpus() * pcpu4k_unit_pages << PAGE_SHIFT;
	vm_area_register_early(&vm, PAGE_SIZE);

	for_each_possible_cpu(cpu) {
		unsigned long unit_addr = (unsigned long)vm.addr +
			(cpu * pcpu4k_unit_pages << PAGE_SHIFT);

		for (i = 0; i < pcpu4k_unit_pages; i++)
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
		ret = __pcpu_map_pages(unit_addr,
				       &pcpu4k_pages[cpu * pcpu4k_unit_pages],
				       pcpu4k_unit_pages);
		if (ret < 0)
			panic("failed to map percpu area, err=%zd\n", ret);

		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
		memcpy((void *)unit_addr, __per_cpu_load, static_size);
	}

1341
	/* we're ready, commit */
1342 1343
	pr_info("PERCPU: %d 4k pages per cpu, static data %zu bytes\n",
		pcpu4k_unit_pages, static_size);
1344 1345 1346

	ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size,
				     reserved_size, -1,
1347
				     pcpu4k_unit_pages << PAGE_SHIFT, vm.addr);
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	goto out_free_ar;

enomem:
	while (--j >= 0)
		free_fn(page_address(pcpu4k_pages[j]), PAGE_SIZE);
	ret = -ENOMEM;
out_free_ar:
	free_bootmem(__pa(pcpu4k_pages), pages_size);
	return ret;
}

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
/*
 * Large page remapping first chunk setup helper
 */
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pcpul_ent {
	unsigned int	cpu;
	void		*ptr;
};

static size_t pcpul_size;
static size_t pcpul_unit_size;
static struct pcpul_ent *pcpul_map;
static struct vm_struct pcpul_vm;

static struct page * __init pcpul_get_page(unsigned int cpu, int pageno)
{
	size_t off = (size_t)pageno << PAGE_SHIFT;

	if (off >= pcpul_size)
		return NULL;

	return virt_to_page(pcpul_map[cpu].ptr + off);
}

/**
 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 * @lpage_size: the size of a large page
 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
 * @free_fn: function to free percpu memory, @size <= lpage_size
 * @map_fn: function to map percpu lpage, always called with lpage_size
 *
 * This allocator uses large page as unit.  A large page is allocated
 * for each cpu and each is remapped into vmalloc area using large
 * page mapping.  As large page can be quite large, only part of it is
 * used for the first chunk.  Unused part is returned to the bootmem
 * allocator.
 *
 * So, the large pages are mapped twice - once to the physical mapping
 * and to the vmalloc area for the first percpu chunk.  The double
 * mapping does add one more large TLB entry pressure but still is
 * much better than only using 4k mappings while still being NUMA
 * friendly.
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
				      ssize_t dyn_size, size_t lpage_size,
				      pcpu_fc_alloc_fn_t alloc_fn,
				      pcpu_fc_free_fn_t free_fn,
				      pcpu_fc_map_fn_t map_fn)
{
	size_t size_sum;
	size_t map_size;
	unsigned int cpu;
	int i, j;
	ssize_t ret;

	/*
	 * Currently supports only single page.  Supporting multiple
	 * pages won't be too difficult if it ever becomes necessary.
	 */
	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);

	pcpul_unit_size = lpage_size;
	pcpul_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
	if (pcpul_size > pcpul_unit_size) {
		pr_warning("PERCPU: static data is larger than large page, "
			   "can't use large page\n");
		return -EINVAL;
	}

	/* allocate pointer array and alloc large pages */
	map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0]));
	pcpul_map = alloc_bootmem(map_size);

	for_each_possible_cpu(cpu) {
		void *ptr;

		ptr = alloc_fn(cpu, lpage_size);
		if (!ptr) {
			pr_warning("PERCPU: failed to allocate large page "
				   "for cpu%u\n", cpu);
			goto enomem;
		}

		/*
		 * Only use pcpul_size bytes and give back the rest.
		 *
		 * Ingo: The lpage_size up-rounding bootmem is needed
		 * to make sure the partial lpage is still fully RAM -
		 * it's not well-specified to have a incompatible area
		 * (unmapped RAM, device memory, etc.) in that hole.
		 */
		free_fn(ptr + pcpul_size, lpage_size - pcpul_size);

		pcpul_map[cpu].cpu = cpu;
		pcpul_map[cpu].ptr = ptr;

		memcpy(ptr, __per_cpu_load, static_size);
	}

	/* allocate address and map */
	pcpul_vm.flags = VM_ALLOC;
	pcpul_vm.size = num_possible_cpus() * pcpul_unit_size;
	vm_area_register_early(&pcpul_vm, pcpul_unit_size);

	for_each_possible_cpu(cpu)
		map_fn(pcpul_map[cpu].ptr, pcpul_unit_size,
		       pcpul_vm.addr + cpu * pcpul_unit_size);

	/* we're ready, commit */
	pr_info("PERCPU: Remapped at %p with large pages, static data "
		"%zu bytes\n", pcpul_vm.addr, static_size);

	ret = pcpu_setup_first_chunk(pcpul_get_page, static_size,
				     reserved_size, dyn_size, pcpul_unit_size,
1480
				     pcpul_vm.addr);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

	/* sort pcpul_map array for pcpu_lpage_remapped() */
	for (i = 0; i < num_possible_cpus() - 1; i++)
		for (j = i + 1; j < num_possible_cpus(); j++)
			if (pcpul_map[i].ptr > pcpul_map[j].ptr) {
				struct pcpul_ent tmp = pcpul_map[i];
				pcpul_map[i] = pcpul_map[j];
				pcpul_map[j] = tmp;
			}

	return ret;

enomem:
	for_each_possible_cpu(cpu)
		if (pcpul_map[cpu].ptr)
			free_fn(pcpul_map[cpu].ptr, pcpul_size);
	free_bootmem(__pa(pcpul_map), map_size);
	return -ENOMEM;
}

/**
 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
 * @kaddr: the kernel address in question
 *
 * Determine whether @kaddr falls in the pcpul recycled area.  This is
 * used by pageattr to detect VM aliases and break up the pcpu large
 * page mapping such that the same physical page is not mapped under
 * different attributes.
 *
 * The recycled area is always at the tail of a partially used large
 * page.
 *
 * RETURNS:
 * Address of corresponding remapped pcpu address if match is found;
 * otherwise, NULL.
 */
void *pcpu_lpage_remapped(void *kaddr)
{
	unsigned long unit_mask = pcpul_unit_size - 1;
	void *lpage_addr = (void *)((unsigned long)kaddr & ~unit_mask);
	unsigned long offset = (unsigned long)kaddr & unit_mask;
	int left = 0, right = num_possible_cpus() - 1;
	int pos;

	/* pcpul in use at all? */
	if (!pcpul_map)
		return NULL;

	/* okay, perform binary search */
	while (left <= right) {
		pos = (left + right) / 2;

		if (pcpul_map[pos].ptr < lpage_addr)
			left = pos + 1;
		else if (pcpul_map[pos].ptr > lpage_addr)
			right = pos - 1;
		else {
			/* it shouldn't be in the area for the first chunk */
			WARN_ON(offset < pcpul_size);

			return pcpul_vm.addr +
				pcpul_map[pos].cpu * pcpul_unit_size + offset;
		}
	}

	return NULL;
}
#endif

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/*
 * Generic percpu area setup.
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

void __init setup_per_cpu_areas(void)
{
	size_t static_size = __per_cpu_end - __per_cpu_start;
	ssize_t unit_size;
	unsigned long delta;
	unsigned int cpu;

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
	unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
1578
					   PERCPU_DYNAMIC_RESERVE);
1579 1580 1581 1582 1583 1584 1585 1586
	if (unit_size < 0)
		panic("Failed to initialized percpu areas.");

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
		__per_cpu_offset[cpu] = delta + cpu * unit_size;
}
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */