percpu.c 59.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * linux/mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11 12 13 14 15 16 17
 * chunk is consisted of boot-time determined number of units and the
 * first chunk is used for static percpu variables in the kernel image
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
 * When a chunk is filled up, another chunk is allocated.  ie. in
 * vmalloc area
18 19 20 21 22 23 24 25
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 27 28 29
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
30
 *
31 32
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
33 34 35 36 37 38 39 40 41 42 43
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
44 45
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
49
 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50 51
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 53
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
54
 *
55 56
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
57 58 59 60 61
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
#include <linux/list.h>
62
#include <linux/log2.h>
63 64 65 66 67 68
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
69
#include <linux/spinlock.h>
70
#include <linux/vmalloc.h>
71
#include <linux/workqueue.h>
72 73

#include <asm/cacheflush.h>
74
#include <asm/sections.h>
75 76 77 78 79
#include <asm/tlbflush.h>

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

80 81 82 83 84 85 86 87 88 89 90 91
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
		 + (unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
		 - (unsigned long)__per_cpu_start)
#endif

92 93 94 95 96 97 98 99
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
	struct vm_struct	*vm;		/* mapped vmalloc region */
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
100
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
101
	unsigned long		populated[];	/* populated bitmap */
102 103
};

104 105
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
106
static int pcpu_nr_units __read_mostly;
107 108 109
static int pcpu_chunk_size __read_mostly;
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
110

111 112 113 114
/* cpus with the lowest and highest unit numbers */
static unsigned int pcpu_first_unit_cpu __read_mostly;
static unsigned int pcpu_last_unit_cpu __read_mostly;

115
/* the address of the first chunk which starts with the kernel static area */
116
void *pcpu_base_addr __read_mostly;
117 118
EXPORT_SYMBOL_GPL(pcpu_base_addr);

119 120 121
/* cpu -> unit map */
const int *pcpu_unit_map __read_mostly;

122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
136 137 138
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

139
/*
140 141 142
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
T
Tejun Heo 已提交
143 144 145
 * protects allocation/reclaim paths, chunks, populated bitmap and
 * vmalloc mapping.  The latter is a spinlock and protects the index
 * data structures - chunk slots, chunks and area maps in chunks.
146 147 148 149 150 151 152 153 154 155 156 157 158
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
 * allocations are done using GFP_KERNEL with pcpu_lock released.
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
159
 */
160 161
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
162

163
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
164

165 166 167 168
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

169
static int __pcpu_size_to_slot(int size)
170
{
T
Tejun Heo 已提交
171
	int highbit = fls(size);	/* size is in bytes */
172 173 174
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

175 176 177 178 179 180 181
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

182 183 184 185 186 187 188 189 190 191
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

static int pcpu_page_idx(unsigned int cpu, int page_idx)
{
192
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
193 194 195 196 197 198 199 200 201
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
	return (unsigned long)chunk->vm->addr +
		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
}

T
Tejun Heo 已提交
202 203
static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
				    unsigned int cpu, int page_idx)
204
{
T
Tejun Heo 已提交
205 206
	/* must not be used on pre-mapped chunk */
	WARN_ON(chunk->immutable);
207

T
Tejun Heo 已提交
208
	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

T
Tejun Heo 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
 * page regions betwen @start and @end in @chunk.  @rs and @re should
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

251
/**
252 253
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
254
 *
255 256 257
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
258
 *
259 260 261
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
262
 * RETURNS:
263
 * Pointer to the allocated area on success, NULL on failure.
264
 */
265
static void *pcpu_mem_alloc(size_t size)
266
{
267 268 269 270 271 272 273 274 275
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
276

277 278 279 280 281 282 283 284 285
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
286
	if (size <= PAGE_SIZE)
287
		kfree(ptr);
288
	else
289
		vfree(ptr);
290 291 292 293 294 295 296 297 298
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
299 300
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
301 302 303
 *
 * CONTEXT:
 * pcpu_lock.
304 305 306 307 308
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

309
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
310 311 312 313 314 315 316 317
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

/**
318 319
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
320
 *
321 322 323 324 325
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
326
	void *first_start = pcpu_first_chunk->vm->addr;
327

328
	/* is it in the first chunk? */
329
	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
330 331
		/* is it in the reserved area? */
		if (addr < first_start + pcpu_reserved_chunk_limit)
332
			return pcpu_reserved_chunk;
333
		return pcpu_first_chunk;
334 335
	}

336 337 338 339 340 341 342 343
	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_map[smp_processor_id()] * pcpu_unit_size;
344
	return pcpu_get_page_chunk(vmalloc_to_page(addr));
345 346
}

347 348 349 350 351 352 353 354
/**
 * pcpu_extend_area_map - extend area map for allocation
 * @chunk: target chunk
 *
 * Extend area map of @chunk so that it can accomodate an allocation.
 * A single allocation can split an area into three areas, so this
 * function makes sure that @chunk->map has at least two extra slots.
 *
355 356 357 358
 * CONTEXT:
 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
 * if area map is extended.
 *
359 360 361 362 363 364 365 366 367 368 369 370 371
 * RETURNS:
 * 0 if noop, 1 if successfully extended, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
{
	int new_alloc;
	int *new;
	size_t size;

	/* has enough? */
	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

372 373
	spin_unlock_irq(&pcpu_lock);

374 375 376 377 378
	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
379 380
	if (!new) {
		spin_lock_irq(&pcpu_lock);
381
		return -ENOMEM;
382 383 384 385 386 387 388 389 390
	}

	/*
	 * Acquire pcpu_lock and switch to new area map.  Only free
	 * could have happened inbetween, so map_used couldn't have
	 * grown.
	 */
	spin_lock_irq(&pcpu_lock);
	BUG_ON(new_alloc < chunk->map_used + 2);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	size = chunk->map_alloc * sizeof(chunk->map[0]);
	memcpy(new, chunk->map, size);

	/*
	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
	 * one of the first chunks and still using static map.
	 */
	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
		pcpu_mem_free(chunk->map, size);

	chunk->map_alloc = new_alloc;
	chunk->map = new;
	return 0;
}

407 408 409 410
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
411 412
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
413 414 415 416 417 418 419 420 421
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
422
 * @chunk->map must have enough free slots to accomodate the split.
423 424 425
 *
 * CONTEXT:
 * pcpu_lock.
426
 */
427 428
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
429 430
{
	int nr_extra = !!head + !!tail;
431

432
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
433

434
	/* insert new subblocks */
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
452
 * @size: wanted size in bytes
453 454 455 456 457 458
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
459 460
 * @chunk->map must have at least two free slots.
 *
461 462 463
 * CONTEXT:
 * pcpu_lock.
 *
464
 * RETURNS:
465 466
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
514
			pcpu_split_block(chunk, i, head, tail);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

541 542
	/* tell the upper layer that this chunk has no matching area */
	return -1;
543 544 545 546 547 548 549 550 551 552
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
553 554 555
 *
 * CONTEXT:
 * pcpu_lock.
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

/**
T
Tejun Heo 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
 * @chunk: chunk of interest
 * @bitmapp: output parameter for bitmap
 * @may_alloc: may allocate the array
 *
 * Returns pointer to array of pointers to struct page and bitmap,
 * both of which can be indexed with pcpu_page_idx().  The returned
 * array is cleared to zero and *@bitmapp is copied from
 * @chunk->populated.  Note that there is only one array and bitmap
 * and access exclusion is the caller's responsibility.
 *
 * CONTEXT:
 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
 * Otherwise, don't care.
 *
 * RETURNS:
 * Pointer to temp pages array on success, NULL on failure.
 */
static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
					       unsigned long **bitmapp,
					       bool may_alloc)
{
	static struct page **pages;
	static unsigned long *bitmap;
616
	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
T
Tejun Heo 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
			     sizeof(unsigned long);

	if (!pages || !bitmap) {
		if (may_alloc && !pages)
			pages = pcpu_mem_alloc(pages_size);
		if (may_alloc && !bitmap)
			bitmap = pcpu_mem_alloc(bitmap_size);
		if (!pages || !bitmap)
			return NULL;
	}

	memset(pages, 0, pages_size);
	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);

	*bitmapp = bitmap;
	return pages;
}

/**
 * pcpu_free_pages - free pages which were allocated for @chunk
 * @chunk: chunk pages were allocated for
 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be freed
 * @page_end: page index of the last page to be freed + 1
 *
 * Free pages [@page_start and @page_end) in @pages for all units.
 * The pages were allocated for @chunk.
 */
static void pcpu_free_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
{
	unsigned int cpu;
	int i;

	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page = pages[pcpu_page_idx(cpu, i)];

			if (page)
				__free_page(page);
		}
	}
}

/**
 * pcpu_alloc_pages - allocates pages for @chunk
 * @chunk: target chunk
 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be allocated
 * @page_end: page index of the last page to be allocated + 1
 *
 * Allocate pages [@page_start,@page_end) into @pages for all units.
 * The allocation is for @chunk.  Percpu core doesn't care about the
 * content of @pages and will pass it verbatim to pcpu_map_pages().
 */
static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
{
	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
	unsigned int cpu;
	int i;

	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];

			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
			if (!*pagep) {
				pcpu_free_pages(chunk, pages, populated,
						page_start, page_end);
				return -ENOMEM;
			}
		}
	}
	return 0;
}

/**
 * pcpu_pre_unmap_flush - flush cache prior to unmapping
 * @chunk: chunk the regions to be flushed belongs to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages in [@page_start,@page_end) of @chunk are about to be
 * unmapped.  Flush cache.  As each flushing trial can be very
 * expensive, issue flush on the whole region at once rather than
 * doing it for each cpu.  This could be an overkill but is more
 * scalable.
 */
static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
714 715 716
	flush_cache_vunmap(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
T
Tejun Heo 已提交
717 718 719 720 721 722 723 724 725
}

static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
{
	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
}

/**
 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
726
 * @chunk: chunk of interest
T
Tejun Heo 已提交
727 728
 * @pages: pages array which can be used to pass information to free
 * @populated: populated bitmap
729 730 731 732
 * @page_start: page index of the first page to unmap
 * @page_end: page index of the last page to unmap + 1
 *
 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
T
Tejun Heo 已提交
733 734 735 736
 * Corresponding elements in @pages were cleared by the caller and can
 * be used to carry information to pcpu_free_pages() which will be
 * called after all unmaps are finished.  The caller should call
 * proper pre/post flush functions.
737
 */
T
Tejun Heo 已提交
738 739 740
static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
			     struct page **pages, unsigned long *populated,
			     int page_start, int page_end)
741 742
{
	unsigned int cpu;
T
Tejun Heo 已提交
743
	int i;
744

T
Tejun Heo 已提交
745 746 747
	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page;
748

T
Tejun Heo 已提交
749 750 751 752 753 754 755
			page = pcpu_chunk_page(chunk, cpu, i);
			WARN_ON(!page);
			pages[pcpu_page_idx(cpu, i)] = page;
		}
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
				   page_end - page_start);
	}
756

T
Tejun Heo 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	for (i = page_start; i < page_end; i++)
		__clear_bit(i, populated);
}

/**
 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 * TLB for the regions.  This can be skipped if the area is to be
 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
				      int page_start, int page_end)
{
777 778 779
	flush_tlb_kernel_range(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
780 781
}

782 783 784 785 786 787 788 789
static int __pcpu_map_pages(unsigned long addr, struct page **pages,
			    int nr_pages)
{
	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
					PAGE_KERNEL, pages);
}

/**
T
Tejun Heo 已提交
790
 * pcpu_map_pages - map pages into a pcpu_chunk
791
 * @chunk: chunk of interest
T
Tejun Heo 已提交
792 793
 * @pages: pages array containing pages to be mapped
 * @populated: populated bitmap
794 795 796
 * @page_start: page index of the first page to map
 * @page_end: page index of the last page to map + 1
 *
T
Tejun Heo 已提交
797 798 799 800 801 802 803
 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 * caller is responsible for calling pcpu_post_map_flush() after all
 * mappings are complete.
 *
 * This function is responsible for setting corresponding bits in
 * @chunk->populated bitmap and whatever is necessary for reverse
 * lookup (addr -> chunk).
804
 */
T
Tejun Heo 已提交
805 806 807
static int pcpu_map_pages(struct pcpu_chunk *chunk,
			  struct page **pages, unsigned long *populated,
			  int page_start, int page_end)
808
{
T
Tejun Heo 已提交
809 810
	unsigned int cpu, tcpu;
	int i, err;
811 812 813

	for_each_possible_cpu(cpu) {
		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
T
Tejun Heo 已提交
814
				       &pages[pcpu_page_idx(cpu, page_start)],
815 816
				       page_end - page_start);
		if (err < 0)
T
Tejun Heo 已提交
817
			goto err;
818 819
	}

T
Tejun Heo 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	/* mapping successful, link chunk and mark populated */
	for (i = page_start; i < page_end; i++) {
		for_each_possible_cpu(cpu)
			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
					    chunk);
		__set_bit(i, populated);
	}

	return 0;

err:
	for_each_possible_cpu(tcpu) {
		if (tcpu == cpu)
			break;
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
				   page_end - page_start);
	}
	return err;
}

/**
 * pcpu_post_map_flush - flush cache after mapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 * cache.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
				int page_start, int page_end)
{
855 856 857
	flush_cache_vmap(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
858 859
}

860 861 862 863
/**
 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 * @chunk: chunk to depopulate
 * @off: offset to the area to depopulate
T
Tejun Heo 已提交
864
 * @size: size of the area to depopulate in bytes
865 866 867 868 869
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 * from @chunk.  If @flush is true, vcache is flushed before unmapping
 * and tlb after.
870 871 872
 *
 * CONTEXT:
 * pcpu_alloc_mutex.
873
 */
T
Tejun Heo 已提交
874
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
875 876 877
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
878 879 880 881 882 883 884 885 886 887
	struct page **pages;
	unsigned long *populated;
	int rs, re;

	/* quick path, check whether it's empty already */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		if (rs == page_start && re == page_end)
			return;
		break;
	}
888

T
Tejun Heo 已提交
889 890
	/* immutable chunks can't be depopulated */
	WARN_ON(chunk->immutable);
891

T
Tejun Heo 已提交
892 893 894 895 896 897 898
	/*
	 * If control reaches here, there must have been at least one
	 * successful population attempt so the temp pages array must
	 * be available now.
	 */
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
	BUG_ON(!pages);
899

T
Tejun Heo 已提交
900 901
	/* unmap and free */
	pcpu_pre_unmap_flush(chunk, page_start, page_end);
902

T
Tejun Heo 已提交
903 904
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
905

T
Tejun Heo 已提交
906 907 908 909
	/* no need to flush tlb, vmalloc will handle it lazily */

	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
910

T
Tejun Heo 已提交
911 912
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
913 914 915 916 917 918
}

/**
 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 * @chunk: chunk of interest
 * @off: offset to the area to populate
T
Tejun Heo 已提交
919
 * @size: size of the area to populate in bytes
920 921 922
 *
 * For each cpu, populate and map pages [@page_start,@page_end) into
 * @chunk.  The area is cleared on return.
923 924 925
 *
 * CONTEXT:
 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
926 927 928 929 930
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
931 932 933
	int free_end = page_start, unmap_end = page_start;
	struct page **pages;
	unsigned long *populated;
934
	unsigned int cpu;
T
Tejun Heo 已提交
935
	int rs, re, rc;
936

T
Tejun Heo 已提交
937 938 939 940 941 942
	/* quick path, check whether all pages are already there */
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
		if (rs == page_start && re == page_end)
			goto clear;
		break;
	}
943

T
Tejun Heo 已提交
944 945
	/* need to allocate and map pages, this chunk can't be immutable */
	WARN_ON(chunk->immutable);
946

T
Tejun Heo 已提交
947 948 949
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
	if (!pages)
		return -ENOMEM;
950

T
Tejun Heo 已提交
951 952 953 954 955 956
	/* alloc and map */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_free;
		free_end = re;
957 958
	}

T
Tejun Heo 已提交
959 960 961 962 963 964 965
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_unmap;
		unmap_end = re;
	}
	pcpu_post_map_flush(chunk, page_start, page_end);
966

T
Tejun Heo 已提交
967 968 969
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
clear:
970
	for_each_possible_cpu(cpu)
971
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
972
	return 0;
T
Tejun Heo 已提交
973 974 975 976 977 978 979 980 981 982

err_unmap:
	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
err_free:
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
	return rc;
983 984 985 986 987 988 989 990
}

static void free_pcpu_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	if (chunk->vm)
		free_vm_area(chunk->vm);
991
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
992 993 994 995 996 997 998 999 1000 1001 1002
	kfree(chunk);
}

static struct pcpu_chunk *alloc_pcpu_chunk(void)
{
	struct pcpu_chunk *chunk;

	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
	if (!chunk)
		return NULL;

1003
	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1004 1005 1006
	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

1007
	chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	if (!chunk->vm) {
		free_pcpu_chunk(chunk);
		return NULL;
	}

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

/**
1021
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
1022
 * @size: size of area to allocate in bytes
1023
 * @align: alignment of area (max PAGE_SIZE)
1024
 * @reserved: allocate from the reserved chunk if available
1025
 *
1026 1027 1028 1029
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
1030 1031 1032 1033
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1034
static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1035 1036 1037 1038
{
	struct pcpu_chunk *chunk;
	int slot, off;

1039
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1040 1041 1042 1043 1044
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

1045 1046
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1047

1048 1049 1050
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
1051 1052
		if (size > chunk->contig_hint ||
		    pcpu_extend_area_map(chunk) < 0)
1053
			goto fail_unlock;
1054 1055 1056
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
1057
		goto fail_unlock;
1058 1059
	}

1060
restart:
1061
	/* search through normal chunks */
1062 1063 1064 1065
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

			switch (pcpu_extend_area_map(chunk)) {
			case 0:
				break;
			case 1:
				goto restart;	/* pcpu_lock dropped, restart */
			default:
				goto fail_unlock;
			}

1076 1077 1078 1079 1080 1081 1082
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
1083 1084
	spin_unlock_irq(&pcpu_lock);

1085 1086
	chunk = alloc_pcpu_chunk();
	if (!chunk)
1087 1088 1089
		goto fail_unlock_mutex;

	spin_lock_irq(&pcpu_lock);
1090
	pcpu_chunk_relocate(chunk, -1);
1091
	goto restart;
1092 1093

area_found:
1094 1095
	spin_unlock_irq(&pcpu_lock);

1096 1097
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
1098
		spin_lock_irq(&pcpu_lock);
1099
		pcpu_free_area(chunk, off);
1100
		goto fail_unlock;
1101 1102
	}

1103 1104
	mutex_unlock(&pcpu_alloc_mutex);

1105
	/* return address relative to unit0 */
1106 1107 1108 1109 1110 1111 1112
	return __addr_to_pcpu_ptr(chunk->vm->addr + off);

fail_unlock:
	spin_unlock_irq(&pcpu_lock);
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
	return NULL;
1113
}
1114 1115 1116 1117 1118 1119 1120 1121 1122

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
1123 1124 1125
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1126 1127 1128 1129 1130 1131 1132
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, false);
}
1133 1134
EXPORT_SYMBOL_GPL(__alloc_percpu);

1135 1136 1137 1138 1139 1140 1141 1142 1143
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
1144 1145 1146
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1147 1148 1149 1150 1151 1152 1153 1154
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_reserved_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, true);
}

1155 1156 1157 1158 1159
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
1160 1161 1162
 *
 * CONTEXT:
 * workqueue context.
1163 1164
 */
static void pcpu_reclaim(struct work_struct *work)
1165
{
1166 1167 1168 1169
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

1170 1171
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

1183
	spin_unlock_irq(&pcpu_lock);
1184 1185

	list_for_each_entry_safe(chunk, next, &todo, list) {
T
Tejun Heo 已提交
1186
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1187 1188
		free_pcpu_chunk(chunk);
	}
T
Tejun Heo 已提交
1189 1190

	mutex_unlock(&pcpu_alloc_mutex);
1191 1192 1193 1194 1195 1196
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1197 1198 1199 1200
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1201 1202 1203 1204 1205
 */
void free_percpu(void *ptr)
{
	void *addr = __pcpu_ptr_to_addr(ptr);
	struct pcpu_chunk *chunk;
1206
	unsigned long flags;
1207 1208 1209 1210 1211
	int off;

	if (!ptr)
		return;

1212
	spin_lock_irqsave(&pcpu_lock, flags);
1213 1214 1215 1216 1217 1218

	chunk = pcpu_chunk_addr_search(addr);
	off = addr - chunk->vm->addr;

	pcpu_free_area(chunk, off);

1219
	/* if there are more than one fully free chunks, wake up grim reaper */
1220 1221 1222
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1223
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1224
			if (pos != chunk) {
1225
				schedule_work(&pcpu_reclaim_work);
1226 1227 1228 1229
				break;
			}
	}

1230
	spin_unlock_irqrestore(&pcpu_lock, flags);
1231 1232 1233 1234
}
EXPORT_SYMBOL_GPL(free_percpu);

/**
1235 1236
 * pcpu_setup_first_chunk - initialize the first percpu chunk
 * @static_size: the size of static percpu area in bytes
1237
 * @reserved_size: the size of reserved percpu area in bytes, 0 for none
1238
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1239 1240
 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
 * @base_addr: mapped address
1241
 * @unit_map: cpu -> unit map, NULL for sequential mapping
1242 1243 1244
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1245
 * setup path.
1246
 *
1247 1248 1249 1250 1251 1252 1253 1254
 * @reserved_size, if non-zero, specifies the amount of bytes to
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1255 1256 1257 1258 1259
 * @dyn_size, if non-negative, determines the number of bytes
 * available for dynamic allocation in the first chunk.  Specifying
 * non-negative value makes percpu leave alone the area beyond
 * @static_size + @reserved_size + @dyn_size.
 *
1260 1261 1262
 * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
 * equal to or larger than @static_size + @reserved_size + if
 * non-negative, @dyn_size.
1263
 *
1264 1265
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1266
 *
1267 1268 1269 1270 1271 1272 1273
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1274 1275 1276 1277
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access.
 */
T
Tejun Heo 已提交
1278
size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
1279
				     ssize_t dyn_size, size_t unit_size,
1280
				     void *base_addr, const int *unit_map)
1281
{
1282
	static struct vm_struct first_vm;
1283
	static int smap[2], dmap[2];
1284 1285
	size_t size_sum = static_size + reserved_size +
			  (dyn_size >= 0 ? dyn_size : 0);
1286
	struct pcpu_chunk *schunk, *dchunk = NULL;
1287
	unsigned int cpu, tcpu;
T
Tejun Heo 已提交
1288
	int i;
1289

1290
	/* sanity checks */
1291 1292
	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1293
	BUG_ON(!static_size);
1294 1295 1296 1297
	BUG_ON(!base_addr);
	BUG_ON(unit_size < size_sum);
	BUG_ON(unit_size & ~PAGE_MASK);
	BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	/* determine number of units and verify and initialize pcpu_unit_map */
	if (unit_map) {
		int first_unit = INT_MAX, last_unit = INT_MIN;

		for_each_possible_cpu(cpu) {
			int unit = unit_map[cpu];

			BUG_ON(unit < 0);
			for_each_possible_cpu(tcpu) {
				if (tcpu == cpu)
					break;
				/* the mapping should be one-to-one */
				BUG_ON(unit_map[tcpu] == unit);
			}

			if (unit < first_unit) {
				pcpu_first_unit_cpu = cpu;
				first_unit = unit;
			}
			if (unit > last_unit) {
				pcpu_last_unit_cpu = cpu;
				last_unit = unit;
			}
		}
		pcpu_nr_units = last_unit + 1;
		pcpu_unit_map = unit_map;
	} else {
		int *identity_map;

		/* #units == #cpus, identity mapped */
1329
		identity_map = alloc_bootmem(nr_cpu_ids *
1330 1331 1332 1333 1334 1335 1336
					     sizeof(identity_map[0]));

		for_each_possible_cpu(cpu)
			identity_map[cpu] = cpu;

		pcpu_first_unit_cpu = 0;
		pcpu_last_unit_cpu = pcpu_nr_units - 1;
1337
		pcpu_nr_units = nr_cpu_ids;
1338 1339 1340 1341
		pcpu_unit_map = identity_map;
	}

	/* determine basic parameters */
1342
	pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1343
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1344
	pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
T
Tejun Heo 已提交
1345 1346
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1347

1348
	if (dyn_size < 0)
1349
		dyn_size = pcpu_unit_size - static_size - reserved_size;
1350

1351 1352 1353 1354
	first_vm.flags = VM_ALLOC;
	first_vm.size = pcpu_chunk_size;
	first_vm.addr = base_addr;

1355 1356 1357 1358 1359
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1360 1361 1362 1363
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1364 1365 1366 1367 1368 1369 1370
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1371 1372 1373
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
	schunk->vm = &first_vm;
1374 1375
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1376
	schunk->immutable = true;
T
Tejun Heo 已提交
1377
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1378 1379 1380

	if (reserved_size) {
		schunk->free_size = reserved_size;
1381 1382
		pcpu_reserved_chunk = schunk;
		pcpu_reserved_chunk_limit = static_size + reserved_size;
1383 1384 1385 1386
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1387
	schunk->contig_hint = schunk->free_size;
1388

1389 1390 1391 1392
	schunk->map[schunk->map_used++] = -static_size;
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1393 1394
	/* init dynamic chunk if necessary */
	if (dyn_size) {
T
Tejun Heo 已提交
1395
		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1396 1397 1398 1399
		INIT_LIST_HEAD(&dchunk->list);
		dchunk->vm = &first_vm;
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1400
		dchunk->immutable = true;
T
Tejun Heo 已提交
1401
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1402 1403 1404 1405 1406 1407

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1408
	/* link the first chunk in */
1409 1410
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1411 1412

	/* we're done */
1413
	pcpu_base_addr = schunk->vm->addr;
1414 1415
	return pcpu_unit_size;
}
1416

1417 1418 1419
static inline size_t pcpu_calc_fc_sizes(size_t static_size,
					size_t reserved_size,
					ssize_t *dyn_sizep)
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
{
	size_t size_sum;

	size_sum = PFN_ALIGN(static_size + reserved_size +
			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
	if (*dyn_sizep != 0)
		*dyn_sizep = size_sum - static_size - reserved_size;

	return size_sum;
}

1431 1432
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
 * as a contiguous area using bootmem allocator and used as-is without
 * being mapped into vmalloc area.  This enables the first chunk to
 * piggy back on the linear physical mapping which often uses larger
 * page size.
 *
 * When @dyn_size is positive, dynamic area might be larger than
1449 1450 1451
 * specified to fill page alignment.  When @dyn_size is auto,
 * @dyn_size is just big enough to fill page alignment after static
 * and reserved areas.
1452 1453 1454 1455 1456 1457 1458 1459 1460
 *
 * If the needed size is smaller than the minimum or specified unit
 * size, the leftover is returned to the bootmem allocator.
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1461
				      ssize_t dyn_size)
1462
{
T
Tejun Heo 已提交
1463 1464
	size_t size_sum, unit_size, chunk_size;
	void *base;
1465 1466 1467
	unsigned int cpu;

	/* determine parameters and allocate */
T
Tejun Heo 已提交
1468
	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1469

T
Tejun Heo 已提交
1470
	unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1471
	chunk_size = unit_size * nr_cpu_ids;
1472

T
Tejun Heo 已提交
1473 1474 1475
	base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
				       __pa(MAX_DMA_ADDRESS));
	if (!base) {
1476 1477
		pr_warning("PERCPU: failed to allocate %zu bytes for "
			   "embedding\n", chunk_size);
1478
		return -ENOMEM;
1479
	}
1480 1481

	/* return the leftover and copy */
1482
	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
T
Tejun Heo 已提交
1483
		void *ptr = base + cpu * unit_size;
1484

1485
		if (cpu_possible(cpu)) {
1486 1487
			free_bootmem(__pa(ptr + size_sum),
				     unit_size - size_sum);
1488 1489
			memcpy(ptr, __per_cpu_load, static_size);
		} else
1490
			free_bootmem(__pa(ptr), unit_size);
1491 1492 1493
	}

	/* we're ready, commit */
T
Tejun Heo 已提交
1494 1495 1496
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
		PFN_DOWN(size_sum), base, static_size, reserved_size, dyn_size,
		unit_size);
1497

T
Tejun Heo 已提交
1498
	return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
1499
				      unit_size, base, NULL);
1500
}
1501 1502
#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1503

1504
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1505
/**
1506
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1507 1508 1509 1510 1511 1512
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
1513 1514
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1515 1516 1517 1518 1519 1520 1521 1522
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
1523 1524 1525 1526
ssize_t __init pcpu_page_first_chunk(size_t static_size, size_t reserved_size,
				     pcpu_fc_alloc_fn_t alloc_fn,
				     pcpu_fc_free_fn_t free_fn,
				     pcpu_fc_populate_pte_fn_t populate_pte_fn)
1527
{
1528
	static struct vm_struct vm;
1529
	char psize_str[16];
T
Tejun Heo 已提交
1530
	int unit_pages;
1531
	size_t pages_size;
T
Tejun Heo 已提交
1532
	struct page **pages;
1533 1534 1535 1536
	unsigned int cpu;
	int i, j;
	ssize_t ret;

1537 1538
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

T
Tejun Heo 已提交
1539 1540
	unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
				  PCPU_MIN_UNIT_SIZE));
1541 1542

	/* unaligned allocations can't be freed, round up to page size */
1543
	pages_size = PFN_ALIGN(unit_pages * nr_cpu_ids * sizeof(pages[0]));
T
Tejun Heo 已提交
1544
	pages = alloc_bootmem(pages_size);
1545

1546
	/* allocate pages */
1547 1548
	j = 0;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
1549
		for (i = 0; i < unit_pages; i++) {
1550 1551 1552 1553
			void *ptr;

			ptr = alloc_fn(cpu, PAGE_SIZE);
			if (!ptr) {
1554 1555
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
1556 1557
				goto enomem;
			}
T
Tejun Heo 已提交
1558
			pages[j++] = virt_to_page(ptr);
1559 1560
		}

1561 1562
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
1563
	vm.size = nr_cpu_ids * unit_pages << PAGE_SHIFT;
1564 1565 1566 1567
	vm_area_register_early(&vm, PAGE_SIZE);

	for_each_possible_cpu(cpu) {
		unsigned long unit_addr = (unsigned long)vm.addr +
T
Tejun Heo 已提交
1568
			(cpu * unit_pages << PAGE_SHIFT);
1569

T
Tejun Heo 已提交
1570
		for (i = 0; i < unit_pages; i++)
1571 1572 1573
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
1574 1575
		ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
				       unit_pages);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		if (ret < 0)
			panic("failed to map percpu area, err=%zd\n", ret);

		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
		memcpy((void *)unit_addr, __per_cpu_load, static_size);
	}

1591
	/* we're ready, commit */
1592 1593
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu\n",
		unit_pages, psize_str, vm.addr, static_size, reserved_size);
1594

T
Tejun Heo 已提交
1595
	ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
1596
				     unit_pages << PAGE_SHIFT, vm.addr, NULL);
1597 1598 1599 1600
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
1601
		free_fn(page_address(pages[j]), PAGE_SIZE);
1602 1603
	ret = -ENOMEM;
out_free_ar:
T
Tejun Heo 已提交
1604
	free_bootmem(__pa(pages), pages_size);
1605 1606
	return ret;
}
1607
#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1608

1609
#ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/**
 * pcpu_lpage_build_unit_map - build unit_map for large page remapping
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_sizep: in/out parameter for dynamic size, -1 for auto
 * @unit_sizep: out parameter for unit size
 * @unit_map: unit_map to be filled
 * @cpu_distance_fn: callback to determine distance between cpus
 *
 * This function builds cpu -> unit map and determine other parameters
 * considering needed percpu size, large page size and distances
 * between CPUs in NUMA.
 *
 * CPUs which are of LOCAL_DISTANCE both ways are grouped together and
 * may share units in the same large page.  The returned configuration
 * is guaranteed to have CPUs on different nodes on different large
 * pages and >=75% usage of allocated virtual address space.
 *
 * RETURNS:
 * On success, fills in @unit_map, sets *@dyn_sizep, *@unit_sizep and
 * returns the number of units to be allocated.  -errno on failure.
 */
int __init pcpu_lpage_build_unit_map(size_t static_size, size_t reserved_size,
				     ssize_t *dyn_sizep, size_t *unit_sizep,
				     size_t lpage_size, int *unit_map,
				     pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	int group_cnt_max = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs;
	unsigned int cpu, tcpu;
	int group, unit;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of lpage_size and is the smallest
	 * which can accomodate 4k aligned segments which are equal to
	 * or larger than min_unit_size.
	 */
	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, dyn_sizep);
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	alloc_size = roundup(min_unit_size, lpage_size);
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
		group_cnt_max = max(group_cnt_max, group_cnt[group]);
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

		for (group = 0; group_cnt[group]; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 25%.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	*unit_sizep = alloc_size / best_upa;

	/* assign units to cpus accordingly */
	unit = 0;
	for (group = 0; group_cnt[group]; group++) {
		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				unit_map[cpu] = unit++;
		unit = roundup(unit, best_upa);
	}

	return unit;	/* unit contains aligned number of units */
}

1726 1727
struct pcpul_ent {
	void		*ptr;
1728
	void		*map_addr;
1729 1730 1731
};

static size_t pcpul_size;
1732 1733
static size_t pcpul_lpage_size;
static int pcpul_nr_lpages;
1734
static struct pcpul_ent *pcpul_map;
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

static bool __init pcpul_unit_to_cpu(int unit, const int *unit_map,
				     unsigned int *cpup)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		if (unit_map[cpu] == unit) {
			if (cpup)
				*cpup = cpu;
			return true;
		}

	return false;
}

static void __init pcpul_lpage_dump_cfg(const char *lvl, size_t static_size,
					size_t reserved_size, size_t dyn_size,
					size_t unit_size, size_t lpage_size,
					const int *unit_map, int nr_units)
{
	int width = 1, v = nr_units;
	char empty_str[] = "--------";
	int upl, lpl;	/* units per lpage, lpage per line */
	unsigned int cpu;
	int lpage, unit;

	while (v /= 10)
		width++;
	empty_str[min_t(int, width, sizeof(empty_str) - 1)] = '\0';

	upl = max_t(int, lpage_size / unit_size, 1);
	lpl = rounddown_pow_of_two(max_t(int, 60 / (upl * (width + 1) + 2), 1));

	printk("%spcpu-lpage: sta/res/dyn=%zu/%zu/%zu unit=%zu lpage=%zu", lvl,
	       static_size, reserved_size, dyn_size, unit_size, lpage_size);

	for (lpage = 0, unit = 0; unit < nr_units; unit++) {
		if (!(unit % upl)) {
			if (!(lpage++ % lpl)) {
				printk("\n");
				printk("%spcpu-lpage: ", lvl);
			} else
				printk("| ");
		}
		if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
			printk("%0*d ", width, cpu);
		else
			printk("%s ", empty_str);
	}
	printk("\n");
}
1787 1788 1789 1790 1791

/**
 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
 * @static_size: the size of static percpu area in bytes
 * @reserved_size: the size of reserved percpu area in bytes
1792 1793
 * @dyn_size: free size for dynamic allocation in bytes
 * @unit_size: unit size in bytes
1794
 * @lpage_size: the size of a large page
1795 1796
 * @unit_map: cpu -> unit mapping
 * @nr_units: the number of units
1797 1798 1799 1800
 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
 * @free_fn: function to free percpu memory, @size <= lpage_size
 * @map_fn: function to map percpu lpage, always called with lpage_size
 *
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
 * This allocator uses large page to build and map the first chunk.
 * Unlike other helpers, the caller should always specify @dyn_size
 * and @unit_size.  These parameters along with @unit_map and
 * @nr_units can be determined using pcpu_lpage_build_unit_map().
 * This two stage initialization is to allow arch code to evaluate the
 * parameters before committing to it.
 *
 * Large pages are allocated as directed by @unit_map and other
 * parameters and mapped to vmalloc space.  Unused holes are returned
 * to the page allocator.  Note that these holes end up being actively
 * mapped twice - once to the physical mapping and to the vmalloc area
 * for the first percpu chunk.  Depending on architecture, this might
 * cause problem when changing page attributes of the returned area.
 * These double mapped areas can be detected using
 * pcpu_lpage_remapped().
1816 1817 1818 1819 1820 1821
 *
 * RETURNS:
 * The determined pcpu_unit_size which can be used to initialize
 * percpu access on success, -errno on failure.
 */
ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
1822 1823 1824
				      size_t dyn_size, size_t unit_size,
				      size_t lpage_size, const int *unit_map,
				      int nr_units,
1825 1826 1827 1828
				      pcpu_fc_alloc_fn_t alloc_fn,
				      pcpu_fc_free_fn_t free_fn,
				      pcpu_fc_map_fn_t map_fn)
{
1829 1830
	static struct vm_struct vm;
	size_t chunk_size = unit_size * nr_units;
1831 1832 1833
	size_t map_size;
	unsigned int cpu;
	ssize_t ret;
1834
	int i, j, unit;
1835

1836 1837
	pcpul_lpage_dump_cfg(KERN_DEBUG, static_size, reserved_size, dyn_size,
			     unit_size, lpage_size, unit_map, nr_units);
1838

1839 1840 1841 1842 1843
	BUG_ON(chunk_size % lpage_size);

	pcpul_size = static_size + reserved_size + dyn_size;
	pcpul_lpage_size = lpage_size;
	pcpul_nr_lpages = chunk_size / lpage_size;
1844 1845

	/* allocate pointer array and alloc large pages */
1846
	map_size = pcpul_nr_lpages * sizeof(pcpul_map[0]);
1847 1848
	pcpul_map = alloc_bootmem(map_size);

1849 1850 1851 1852 1853
	/* allocate all pages */
	for (i = 0; i < pcpul_nr_lpages; i++) {
		size_t offset = i * lpage_size;
		int first_unit = offset / unit_size;
		int last_unit = (offset + lpage_size - 1) / unit_size;
1854 1855
		void *ptr;

1856 1857 1858 1859 1860 1861
		/* find out which cpu is mapped to this unit */
		for (unit = first_unit; unit <= last_unit; unit++)
			if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
				goto found;
		continue;
	found:
1862 1863 1864 1865 1866 1867 1868
		ptr = alloc_fn(cpu, lpage_size);
		if (!ptr) {
			pr_warning("PERCPU: failed to allocate large page "
				   "for cpu%u\n", cpu);
			goto enomem;
		}

1869 1870
		pcpul_map[i].ptr = ptr;
	}
1871

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	/* return unused holes */
	for (unit = 0; unit < nr_units; unit++) {
		size_t start = unit * unit_size;
		size_t end = start + unit_size;
		size_t off, next;

		/* don't free used part of occupied unit */
		if (pcpul_unit_to_cpu(unit, unit_map, NULL))
			start += pcpul_size;

		/* unit can span more than one page, punch the holes */
		for (off = start; off < end; off = next) {
			void *ptr = pcpul_map[off / lpage_size].ptr;
			next = min(roundup(off + 1, lpage_size), end);
			if (ptr)
				free_fn(ptr + off % lpage_size, next - off);
		}
1889 1890
	}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	/* allocate address, map and copy */
	vm.flags = VM_ALLOC;
	vm.size = chunk_size;
	vm_area_register_early(&vm, unit_size);

	for (i = 0; i < pcpul_nr_lpages; i++) {
		if (!pcpul_map[i].ptr)
			continue;
		pcpul_map[i].map_addr = vm.addr + i * lpage_size;
		map_fn(pcpul_map[i].ptr, lpage_size, pcpul_map[i].map_addr);
	}
1902 1903

	for_each_possible_cpu(cpu)
1904 1905
		memcpy(vm.addr + unit_map[cpu] * unit_size, __per_cpu_load,
		       static_size);
1906 1907

	/* we're ready, commit */
T
Tejun Heo 已提交
1908 1909
	pr_info("PERCPU: large pages @%p s%zu r%zu d%zu u%zu\n",
		vm.addr, static_size, reserved_size, dyn_size, unit_size);
1910

T
Tejun Heo 已提交
1911
	ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
				     unit_size, vm.addr, unit_map);

	/*
	 * Sort pcpul_map array for pcpu_lpage_remapped().  Unmapped
	 * lpages are pushed to the end and trimmed.
	 */
	for (i = 0; i < pcpul_nr_lpages - 1; i++)
		for (j = i + 1; j < pcpul_nr_lpages; j++) {
			struct pcpul_ent tmp;

			if (!pcpul_map[j].ptr)
				continue;
			if (pcpul_map[i].ptr &&
			    pcpul_map[i].ptr < pcpul_map[j].ptr)
				continue;

			tmp = pcpul_map[i];
			pcpul_map[i] = pcpul_map[j];
			pcpul_map[j] = tmp;
		}

	while (pcpul_nr_lpages && !pcpul_map[pcpul_nr_lpages - 1].ptr)
		pcpul_nr_lpages--;
1935 1936 1937 1938

	return ret;

enomem:
1939 1940 1941
	for (i = 0; i < pcpul_nr_lpages; i++)
		if (pcpul_map[i].ptr)
			free_fn(pcpul_map[i].ptr, lpage_size);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	free_bootmem(__pa(pcpul_map), map_size);
	return -ENOMEM;
}

/**
 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
 * @kaddr: the kernel address in question
 *
 * Determine whether @kaddr falls in the pcpul recycled area.  This is
 * used by pageattr to detect VM aliases and break up the pcpu large
 * page mapping such that the same physical page is not mapped under
 * different attributes.
 *
 * The recycled area is always at the tail of a partially used large
 * page.
 *
 * RETURNS:
 * Address of corresponding remapped pcpu address if match is found;
 * otherwise, NULL.
 */
void *pcpu_lpage_remapped(void *kaddr)
{
1964 1965 1966 1967
	unsigned long lpage_mask = pcpul_lpage_size - 1;
	void *lpage_addr = (void *)((unsigned long)kaddr & ~lpage_mask);
	unsigned long offset = (unsigned long)kaddr & lpage_mask;
	int left = 0, right = pcpul_nr_lpages - 1;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	int pos;

	/* pcpul in use at all? */
	if (!pcpul_map)
		return NULL;

	/* okay, perform binary search */
	while (left <= right) {
		pos = (left + right) / 2;

		if (pcpul_map[pos].ptr < lpage_addr)
			left = pos + 1;
		else if (pcpul_map[pos].ptr > lpage_addr)
			right = pos - 1;
1982 1983
		else
			return pcpul_map[pos].map_addr + offset;
1984 1985 1986 1987
	}

	return NULL;
}
1988
#endif /* CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK */
1989

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
/*
 * Generic percpu area setup.
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

void __init setup_per_cpu_areas(void)
{
	size_t static_size = __per_cpu_end - __per_cpu_start;
	ssize_t unit_size;
	unsigned long delta;
	unsigned int cpu;

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
	unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
2018
					   PERCPU_DYNAMIC_RESERVE);
2019 2020 2021 2022 2023 2024 2025 2026
	if (unit_size < 0)
		panic("Failed to initialized percpu areas.");

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
		__per_cpu_offset[cpu] = delta + cpu * unit_size;
}
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */