percpu.c 63.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * linux/mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11 12 13 14 15 16 17
 * chunk is consisted of boot-time determined number of units and the
 * first chunk is used for static percpu variables in the kernel image
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
 * When a chunk is filled up, another chunk is allocated.  ie. in
 * vmalloc area
18 19 20 21 22 23 24 25
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 27 28 29
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
30
 *
31 32
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
33 34 35 36 37 38 39 40 41 42 43
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
44 45
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
49
 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50 51
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 53
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
54
 *
55 56
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
57 58 59 60
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
61
#include <linux/err.h>
62
#include <linux/list.h>
63
#include <linux/log2.h>
64 65 66 67 68 69
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
70
#include <linux/spinlock.h>
71
#include <linux/vmalloc.h>
72
#include <linux/workqueue.h>
73 74

#include <asm/cacheflush.h>
75
#include <asm/sections.h>
76 77 78 79 80
#include <asm/tlbflush.h>

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

81 82 83 84 85 86 87 88 89 90 91 92
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
		 + (unsigned long)__per_cpu_start)
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
		 - (unsigned long)__per_cpu_start)
#endif

93 94 95 96
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
97
	void			*base_addr;	/* base address of this chunk */
98 99 100
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
T
Tejun Heo 已提交
101
	struct vm_struct	*vm;		/* mapped vmalloc region */
102
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
103
	unsigned long		populated[];	/* populated bitmap */
104 105
};

106 107
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
108
static int pcpu_nr_units __read_mostly;
109 110 111
static int pcpu_chunk_size __read_mostly;
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
112

113 114 115 116
/* cpus with the lowest and highest unit numbers */
static unsigned int pcpu_first_unit_cpu __read_mostly;
static unsigned int pcpu_last_unit_cpu __read_mostly;

117
/* the address of the first chunk which starts with the kernel static area */
118
void *pcpu_base_addr __read_mostly;
119 120
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
121 122
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
138 139 140
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

141
/*
142 143 144
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
T
Tejun Heo 已提交
145 146 147
 * protects allocation/reclaim paths, chunks, populated bitmap and
 * vmalloc mapping.  The latter is a spinlock and protects the index
 * data structures - chunk slots, chunks and area maps in chunks.
148 149 150 151 152 153 154 155 156 157 158 159 160
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
 * allocations are done using GFP_KERNEL with pcpu_lock released.
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
161
 */
162 163
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
164

165
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
166

167 168 169 170
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

171
static int __pcpu_size_to_slot(int size)
172
{
T
Tejun Heo 已提交
173
	int highbit = fls(size);	/* size is in bytes */
174 175 176
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

177 178 179 180 181 182 183
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

184 185 186 187 188 189 190 191 192 193
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

static int pcpu_page_idx(unsigned int cpu, int page_idx)
{
194
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
195 196 197 198 199
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
T
Tejun Heo 已提交
200
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
201
		(page_idx << PAGE_SHIFT);
202 203
}

T
Tejun Heo 已提交
204 205
static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
				    unsigned int cpu, int page_idx)
206
{
T
Tejun Heo 已提交
207 208
	/* must not be used on pre-mapped chunk */
	WARN_ON(chunk->immutable);
209

T
Tejun Heo 已提交
210
	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
211 212
}

213 214 215 216 217 218 219 220 221 222 223 224
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

T
Tejun Heo 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
 * page regions betwen @start and @end in @chunk.  @rs and @re should
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

253
/**
254 255
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
256
 *
257 258 259
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
260
 *
261 262 263
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
264
 * RETURNS:
265
 * Pointer to the allocated area on success, NULL on failure.
266
 */
267
static void *pcpu_mem_alloc(size_t size)
268
{
269 270 271 272 273 274 275 276 277
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
278

279 280 281 282 283 284 285 286 287
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
288
	if (size <= PAGE_SIZE)
289
		kfree(ptr);
290
	else
291
		vfree(ptr);
292 293 294 295 296 297 298 299 300
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
301 302
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
303 304 305
 *
 * CONTEXT:
 * pcpu_lock.
306 307 308 309 310
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

311
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
312 313 314 315 316 317 318 319
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

/**
320 321
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
322
 *
323 324 325 326 327
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
T
Tejun Heo 已提交
328
	void *first_start = pcpu_first_chunk->base_addr;
329

330
	/* is it in the first chunk? */
331
	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
332 333
		/* is it in the reserved area? */
		if (addr < first_start + pcpu_reserved_chunk_limit)
334
			return pcpu_reserved_chunk;
335
		return pcpu_first_chunk;
336 337
	}

338 339 340 341 342 343 344
	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
T
Tejun Heo 已提交
345
	addr += pcpu_unit_offsets[smp_processor_id()];
346
	return pcpu_get_page_chunk(vmalloc_to_page(addr));
347 348
}

349 350 351 352 353 354 355 356
/**
 * pcpu_extend_area_map - extend area map for allocation
 * @chunk: target chunk
 *
 * Extend area map of @chunk so that it can accomodate an allocation.
 * A single allocation can split an area into three areas, so this
 * function makes sure that @chunk->map has at least two extra slots.
 *
357 358 359 360
 * CONTEXT:
 * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
 * if area map is extended.
 *
361 362 363 364 365 366 367 368 369 370 371 372 373
 * RETURNS:
 * 0 if noop, 1 if successfully extended, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
{
	int new_alloc;
	int *new;
	size_t size;

	/* has enough? */
	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

374 375
	spin_unlock_irq(&pcpu_lock);

376 377 378 379 380
	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
381 382
	if (!new) {
		spin_lock_irq(&pcpu_lock);
383
		return -ENOMEM;
384 385 386 387 388 389 390 391 392
	}

	/*
	 * Acquire pcpu_lock and switch to new area map.  Only free
	 * could have happened inbetween, so map_used couldn't have
	 * grown.
	 */
	spin_lock_irq(&pcpu_lock);
	BUG_ON(new_alloc < chunk->map_used + 2);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

	size = chunk->map_alloc * sizeof(chunk->map[0]);
	memcpy(new, chunk->map, size);

	/*
	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
	 * one of the first chunks and still using static map.
	 */
	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
		pcpu_mem_free(chunk->map, size);

	chunk->map_alloc = new_alloc;
	chunk->map = new;
	return 0;
}

409 410 411 412
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
413 414
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
415 416 417 418 419 420 421 422 423
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
424
 * @chunk->map must have enough free slots to accomodate the split.
425 426 427
 *
 * CONTEXT:
 * pcpu_lock.
428
 */
429 430
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
431 432
{
	int nr_extra = !!head + !!tail;
433

434
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
435

436
	/* insert new subblocks */
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
454
 * @size: wanted size in bytes
455 456 457 458 459 460
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
461 462
 * @chunk->map must have at least two free slots.
 *
463 464 465
 * CONTEXT:
 * pcpu_lock.
 *
466
 * RETURNS:
467 468
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
516
			pcpu_split_block(chunk, i, head, tail);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

543 544
	/* tell the upper layer that this chunk has no matching area */
	return -1;
545 546 547 548 549 550 551 552 553 554
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
555 556 557
 *
 * CONTEXT:
 * pcpu_lock.
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

/**
T
Tejun Heo 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
 * @chunk: chunk of interest
 * @bitmapp: output parameter for bitmap
 * @may_alloc: may allocate the array
 *
 * Returns pointer to array of pointers to struct page and bitmap,
 * both of which can be indexed with pcpu_page_idx().  The returned
 * array is cleared to zero and *@bitmapp is copied from
 * @chunk->populated.  Note that there is only one array and bitmap
 * and access exclusion is the caller's responsibility.
 *
 * CONTEXT:
 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
 * Otherwise, don't care.
 *
 * RETURNS:
 * Pointer to temp pages array on success, NULL on failure.
 */
static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
					       unsigned long **bitmapp,
					       bool may_alloc)
{
	static struct page **pages;
	static unsigned long *bitmap;
618
	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
T
Tejun Heo 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
			     sizeof(unsigned long);

	if (!pages || !bitmap) {
		if (may_alloc && !pages)
			pages = pcpu_mem_alloc(pages_size);
		if (may_alloc && !bitmap)
			bitmap = pcpu_mem_alloc(bitmap_size);
		if (!pages || !bitmap)
			return NULL;
	}

	memset(pages, 0, pages_size);
	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);

	*bitmapp = bitmap;
	return pages;
}

/**
 * pcpu_free_pages - free pages which were allocated for @chunk
 * @chunk: chunk pages were allocated for
 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be freed
 * @page_end: page index of the last page to be freed + 1
 *
 * Free pages [@page_start and @page_end) in @pages for all units.
 * The pages were allocated for @chunk.
 */
static void pcpu_free_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
{
	unsigned int cpu;
	int i;

	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page = pages[pcpu_page_idx(cpu, i)];

			if (page)
				__free_page(page);
		}
	}
}

/**
 * pcpu_alloc_pages - allocates pages for @chunk
 * @chunk: target chunk
 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be allocated
 * @page_end: page index of the last page to be allocated + 1
 *
 * Allocate pages [@page_start,@page_end) into @pages for all units.
 * The allocation is for @chunk.  Percpu core doesn't care about the
 * content of @pages and will pass it verbatim to pcpu_map_pages().
 */
static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
{
	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
	unsigned int cpu;
	int i;

	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];

			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
			if (!*pagep) {
				pcpu_free_pages(chunk, pages, populated,
						page_start, page_end);
				return -ENOMEM;
			}
		}
	}
	return 0;
}

/**
 * pcpu_pre_unmap_flush - flush cache prior to unmapping
 * @chunk: chunk the regions to be flushed belongs to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages in [@page_start,@page_end) of @chunk are about to be
 * unmapped.  Flush cache.  As each flushing trial can be very
 * expensive, issue flush on the whole region at once rather than
 * doing it for each cpu.  This could be an overkill but is more
 * scalable.
 */
static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
716 717 718
	flush_cache_vunmap(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
T
Tejun Heo 已提交
719 720 721 722 723 724 725 726 727
}

static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
{
	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
}

/**
 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
728
 * @chunk: chunk of interest
T
Tejun Heo 已提交
729 730
 * @pages: pages array which can be used to pass information to free
 * @populated: populated bitmap
731 732 733 734
 * @page_start: page index of the first page to unmap
 * @page_end: page index of the last page to unmap + 1
 *
 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
T
Tejun Heo 已提交
735 736 737 738
 * Corresponding elements in @pages were cleared by the caller and can
 * be used to carry information to pcpu_free_pages() which will be
 * called after all unmaps are finished.  The caller should call
 * proper pre/post flush functions.
739
 */
T
Tejun Heo 已提交
740 741 742
static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
			     struct page **pages, unsigned long *populated,
			     int page_start, int page_end)
743 744
{
	unsigned int cpu;
T
Tejun Heo 已提交
745
	int i;
746

T
Tejun Heo 已提交
747 748 749
	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page;
750

T
Tejun Heo 已提交
751 752 753 754 755 756 757
			page = pcpu_chunk_page(chunk, cpu, i);
			WARN_ON(!page);
			pages[pcpu_page_idx(cpu, i)] = page;
		}
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
				   page_end - page_start);
	}
758

T
Tejun Heo 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	for (i = page_start; i < page_end; i++)
		__clear_bit(i, populated);
}

/**
 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 * TLB for the regions.  This can be skipped if the area is to be
 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
				      int page_start, int page_end)
{
779 780 781
	flush_tlb_kernel_range(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
782 783
}

784 785 786 787 788 789 790 791
static int __pcpu_map_pages(unsigned long addr, struct page **pages,
			    int nr_pages)
{
	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
					PAGE_KERNEL, pages);
}

/**
T
Tejun Heo 已提交
792
 * pcpu_map_pages - map pages into a pcpu_chunk
793
 * @chunk: chunk of interest
T
Tejun Heo 已提交
794 795
 * @pages: pages array containing pages to be mapped
 * @populated: populated bitmap
796 797 798
 * @page_start: page index of the first page to map
 * @page_end: page index of the last page to map + 1
 *
T
Tejun Heo 已提交
799 800 801 802 803 804 805
 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 * caller is responsible for calling pcpu_post_map_flush() after all
 * mappings are complete.
 *
 * This function is responsible for setting corresponding bits in
 * @chunk->populated bitmap and whatever is necessary for reverse
 * lookup (addr -> chunk).
806
 */
T
Tejun Heo 已提交
807 808 809
static int pcpu_map_pages(struct pcpu_chunk *chunk,
			  struct page **pages, unsigned long *populated,
			  int page_start, int page_end)
810
{
T
Tejun Heo 已提交
811 812
	unsigned int cpu, tcpu;
	int i, err;
813 814 815

	for_each_possible_cpu(cpu) {
		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
T
Tejun Heo 已提交
816
				       &pages[pcpu_page_idx(cpu, page_start)],
817 818
				       page_end - page_start);
		if (err < 0)
T
Tejun Heo 已提交
819
			goto err;
820 821
	}

T
Tejun Heo 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	/* mapping successful, link chunk and mark populated */
	for (i = page_start; i < page_end; i++) {
		for_each_possible_cpu(cpu)
			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
					    chunk);
		__set_bit(i, populated);
	}

	return 0;

err:
	for_each_possible_cpu(tcpu) {
		if (tcpu == cpu)
			break;
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
				   page_end - page_start);
	}
	return err;
}

/**
 * pcpu_post_map_flush - flush cache after mapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 * cache.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
				int page_start, int page_end)
{
857 858 859
	flush_cache_vmap(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
860 861
}

862 863 864 865
/**
 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 * @chunk: chunk to depopulate
 * @off: offset to the area to depopulate
T
Tejun Heo 已提交
866
 * @size: size of the area to depopulate in bytes
867 868 869 870 871
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 * from @chunk.  If @flush is true, vcache is flushed before unmapping
 * and tlb after.
872 873 874
 *
 * CONTEXT:
 * pcpu_alloc_mutex.
875
 */
T
Tejun Heo 已提交
876
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
877 878 879
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
880 881 882 883 884 885 886 887 888 889
	struct page **pages;
	unsigned long *populated;
	int rs, re;

	/* quick path, check whether it's empty already */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		if (rs == page_start && re == page_end)
			return;
		break;
	}
890

T
Tejun Heo 已提交
891 892
	/* immutable chunks can't be depopulated */
	WARN_ON(chunk->immutable);
893

T
Tejun Heo 已提交
894 895 896 897 898 899 900
	/*
	 * If control reaches here, there must have been at least one
	 * successful population attempt so the temp pages array must
	 * be available now.
	 */
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
	BUG_ON(!pages);
901

T
Tejun Heo 已提交
902 903
	/* unmap and free */
	pcpu_pre_unmap_flush(chunk, page_start, page_end);
904

T
Tejun Heo 已提交
905 906
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
907

T
Tejun Heo 已提交
908 909 910 911
	/* no need to flush tlb, vmalloc will handle it lazily */

	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
912

T
Tejun Heo 已提交
913 914
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
915 916 917 918 919 920
}

/**
 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 * @chunk: chunk of interest
 * @off: offset to the area to populate
T
Tejun Heo 已提交
921
 * @size: size of the area to populate in bytes
922 923 924
 *
 * For each cpu, populate and map pages [@page_start,@page_end) into
 * @chunk.  The area is cleared on return.
925 926 927
 *
 * CONTEXT:
 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
928 929 930 931 932
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
933 934 935
	int free_end = page_start, unmap_end = page_start;
	struct page **pages;
	unsigned long *populated;
936
	unsigned int cpu;
T
Tejun Heo 已提交
937
	int rs, re, rc;
938

T
Tejun Heo 已提交
939 940 941 942 943 944
	/* quick path, check whether all pages are already there */
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
		if (rs == page_start && re == page_end)
			goto clear;
		break;
	}
945

T
Tejun Heo 已提交
946 947
	/* need to allocate and map pages, this chunk can't be immutable */
	WARN_ON(chunk->immutable);
948

T
Tejun Heo 已提交
949 950 951
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
	if (!pages)
		return -ENOMEM;
952

T
Tejun Heo 已提交
953 954 955 956 957 958
	/* alloc and map */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_free;
		free_end = re;
959 960
	}

T
Tejun Heo 已提交
961 962 963 964 965 966 967
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_unmap;
		unmap_end = re;
	}
	pcpu_post_map_flush(chunk, page_start, page_end);
968

T
Tejun Heo 已提交
969 970 971
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
clear:
972
	for_each_possible_cpu(cpu)
973
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
974
	return 0;
T
Tejun Heo 已提交
975 976 977 978 979 980 981 982 983 984

err_unmap:
	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
err_free:
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
	return rc;
985 986 987 988 989 990 991 992
}

static void free_pcpu_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	if (chunk->vm)
		free_vm_area(chunk->vm);
993
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
994 995 996 997 998 999 1000 1001 1002 1003 1004
	kfree(chunk);
}

static struct pcpu_chunk *alloc_pcpu_chunk(void)
{
	struct pcpu_chunk *chunk;

	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
	if (!chunk)
		return NULL;

1005
	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1006 1007 1008
	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

1009
	chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC);
1010 1011 1012 1013 1014 1015 1016 1017
	if (!chunk->vm) {
		free_pcpu_chunk(chunk);
		return NULL;
	}

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;
T
Tejun Heo 已提交
1018
	chunk->base_addr = chunk->vm->addr;
1019 1020 1021 1022 1023

	return chunk;
}

/**
1024
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
1025
 * @size: size of area to allocate in bytes
1026
 * @align: alignment of area (max PAGE_SIZE)
1027
 * @reserved: allocate from the reserved chunk if available
1028
 *
1029 1030 1031 1032
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
1033 1034 1035 1036
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1037
static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1038 1039 1040 1041
{
	struct pcpu_chunk *chunk;
	int slot, off;

1042
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1043 1044 1045 1046 1047
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

1048 1049
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1050

1051 1052 1053
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
1054 1055
		if (size > chunk->contig_hint ||
		    pcpu_extend_area_map(chunk) < 0)
1056
			goto fail_unlock;
1057 1058 1059
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
1060
		goto fail_unlock;
1061 1062
	}

1063
restart:
1064
	/* search through normal chunks */
1065 1066 1067 1068
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

			switch (pcpu_extend_area_map(chunk)) {
			case 0:
				break;
			case 1:
				goto restart;	/* pcpu_lock dropped, restart */
			default:
				goto fail_unlock;
			}

1079 1080 1081 1082 1083 1084 1085
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
1086 1087
	spin_unlock_irq(&pcpu_lock);

1088 1089
	chunk = alloc_pcpu_chunk();
	if (!chunk)
1090 1091 1092
		goto fail_unlock_mutex;

	spin_lock_irq(&pcpu_lock);
1093
	pcpu_chunk_relocate(chunk, -1);
1094
	goto restart;
1095 1096

area_found:
1097 1098
	spin_unlock_irq(&pcpu_lock);

1099 1100
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
1101
		spin_lock_irq(&pcpu_lock);
1102
		pcpu_free_area(chunk, off);
1103
		goto fail_unlock;
1104 1105
	}

1106 1107
	mutex_unlock(&pcpu_alloc_mutex);

T
Tejun Heo 已提交
1108 1109
	/* return address relative to base address */
	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1110 1111 1112 1113 1114 1115

fail_unlock:
	spin_unlock_irq(&pcpu_lock);
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
	return NULL;
1116
}
1117 1118 1119 1120 1121 1122 1123 1124 1125

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
1126 1127 1128
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1129 1130 1131 1132 1133 1134 1135
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, false);
}
1136 1137
EXPORT_SYMBOL_GPL(__alloc_percpu);

1138 1139 1140 1141 1142 1143 1144 1145 1146
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
1147 1148 1149
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1150 1151 1152 1153 1154 1155 1156 1157
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
void *__alloc_reserved_percpu(size_t size, size_t align)
{
	return pcpu_alloc(size, align, true);
}

1158 1159 1160 1161 1162
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
1163 1164 1165
 *
 * CONTEXT:
 * workqueue context.
1166 1167
 */
static void pcpu_reclaim(struct work_struct *work)
1168
{
1169 1170 1171 1172
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

1173 1174
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

1186
	spin_unlock_irq(&pcpu_lock);
1187 1188

	list_for_each_entry_safe(chunk, next, &todo, list) {
T
Tejun Heo 已提交
1189
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1190 1191
		free_pcpu_chunk(chunk);
	}
T
Tejun Heo 已提交
1192 1193

	mutex_unlock(&pcpu_alloc_mutex);
1194 1195 1196 1197 1198 1199
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1200 1201 1202 1203
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1204 1205 1206 1207 1208
 */
void free_percpu(void *ptr)
{
	void *addr = __pcpu_ptr_to_addr(ptr);
	struct pcpu_chunk *chunk;
1209
	unsigned long flags;
1210 1211 1212 1213 1214
	int off;

	if (!ptr)
		return;

1215
	spin_lock_irqsave(&pcpu_lock, flags);
1216 1217

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1218
	off = addr - chunk->base_addr;
1219 1220 1221

	pcpu_free_area(chunk, off);

1222
	/* if there are more than one fully free chunks, wake up grim reaper */
1223 1224 1225
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1226
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1227
			if (pos != chunk) {
1228
				schedule_work(&pcpu_reclaim_work);
1229 1230 1231 1232
				break;
			}
	}

1233
	spin_unlock_irqrestore(&pcpu_lock, flags);
1234 1235 1236
}
EXPORT_SYMBOL_GPL(free_percpu);

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
static inline size_t pcpu_calc_fc_sizes(size_t static_size,
					size_t reserved_size,
					ssize_t *dyn_sizep)
{
	size_t size_sum;

	size_sum = PFN_ALIGN(static_size + reserved_size +
			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
	if (*dyn_sizep != 0)
		*dyn_sizep = size_sum - static_size - reserved_size;

	return size_sum;
}

/**
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
	free_bootmem(__pa(ai), ai->__ai_size);
}

/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1308
 * @reserved_size: the size of reserved percpu area in bytes
1309 1310 1311
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
1312
 *
1313 1314 1315
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
1316
 *
1317 1318 1319 1320 1321
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
1322 1323
 *
 * RETURNS:
1324 1325
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
1326
 */
1327 1328 1329 1330
struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, ssize_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1331 1332 1333 1334
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
1335
	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1336 1337
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1338
	int last_allocs, group, unit;
1339
	unsigned int cpu, tcpu;
1340 1341
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;
1342 1343 1344

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
1345
	 * alloc_size is multiple of atom_size and is the smallest
1346 1347 1348
	 * which can accomodate 4k aligned segments which are equal to
	 * or larger than min_unit_size.
	 */
1349
	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1350 1351
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

1352
	alloc_size = roundup(min_unit_size, atom_size);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
1365
			if (group_map[tcpu] == group && cpu_distance_fn &&
1366 1367 1368
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
1369
				nr_groups = max(nr_groups, group + 1);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
		group_cnt_max = max(group_cnt_max, group_cnt[group]);
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

1390
		for (group = 0; group < nr_groups; group++) {
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 25%.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;
1442 1443 1444

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
1445 1446 1447
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
1448
	}
1449
	BUG_ON(unit != nr_units);
1450

1451
	return ai;
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462
/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1463
{
1464
	int group_width = 1, cpu_width = 1, width;
1465
	char empty_str[] = "--------";
1466 1467 1468 1469 1470 1471 1472
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1473

1474
	v = num_possible_cpus();
1475
	while (v /= 10)
1476 1477
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1478

1479 1480 1481
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1482

1483 1484 1485
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1486

1487 1488 1489 1490 1491 1492 1493 1494
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1495
				printk("\n");
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
				printk("%spcpu-alloc: ", lvl);
			}
			printk("[%0*d] ", group_width, group);

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
					printk("%0*d ", cpu_width,
					       gi->cpu_map[unit]);
				else
					printk("%s ", empty_str);
1506 1507 1508 1509 1510
		}
	}
	printk("\n");
}

1511
/**
1512
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1513
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1514
 * @base_addr: mapped address
1515 1516 1517
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1518
 * setup path.
1519
 *
1520 1521 1522 1523 1524 1525
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1526 1527 1528 1529 1530 1531 1532
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1533 1534 1535
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1536
 *
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
 *
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
 *
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1553
 *
1554 1555
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1556
 *
1557 1558 1559 1560 1561 1562 1563
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1564
 * RETURNS:
T
Tejun Heo 已提交
1565
 * 0 on success, -errno on failure.
1566
 */
T
Tejun Heo 已提交
1567 1568
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1569
{
1570
	static int smap[2], dmap[2];
1571 1572
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1573
	struct pcpu_chunk *schunk, *dchunk = NULL;
T
Tejun Heo 已提交
1574
	unsigned long *unit_off;
1575 1576 1577
	unsigned int cpu;
	int *unit_map;
	int group, unit, i;
1578

1579
	/* sanity checks */
1580 1581
	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1582 1583
	BUG_ON(ai->nr_groups <= 0);
	BUG_ON(!ai->static_size);
1584
	BUG_ON(!base_addr);
1585 1586 1587 1588 1589
	BUG_ON(ai->unit_size < size_sum);
	BUG_ON(ai->unit_size & ~PAGE_MASK);
	BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);

	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1590

T
Tejun Heo 已提交
1591
	/* determine number of units and initialize unit_map and base */
1592
	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
T
Tejun Heo 已提交
1593
	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1594

1595 1596 1597
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
		unit_map[cpu] = NR_CPUS;
	pcpu_first_unit_cpu = NR_CPUS;
1598

1599 1600
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1601

1602 1603 1604 1605
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1606

1607 1608 1609 1610
			BUG_ON(cpu > nr_cpu_ids || !cpu_possible(cpu));
			BUG_ON(unit_map[cpu] != NR_CPUS);

			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1611 1612
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

1613 1614 1615
			if (pcpu_first_unit_cpu == NR_CPUS)
				pcpu_first_unit_cpu = cpu;
		}
1616
	}
1617 1618 1619 1620 1621 1622 1623
	pcpu_last_unit_cpu = cpu;
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
		BUG_ON(unit_map[cpu] == NR_CPUS);

	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1624
	pcpu_unit_offsets = unit_off;
1625 1626

	/* determine basic parameters */
1627
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1628
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1629
	pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
T
Tejun Heo 已提交
1630 1631
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1632

1633 1634 1635 1636 1637
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1638 1639 1640 1641
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1642 1643 1644 1645 1646 1647 1648
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1649 1650
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
T
Tejun Heo 已提交
1651
	schunk->base_addr = base_addr;
1652 1653
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1654
	schunk->immutable = true;
T
Tejun Heo 已提交
1655
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1656

1657 1658
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1659
		pcpu_reserved_chunk = schunk;
1660
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1661 1662 1663 1664
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1665
	schunk->contig_hint = schunk->free_size;
1666

1667
	schunk->map[schunk->map_used++] = -ai->static_size;
1668 1669 1670
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1671 1672
	/* init dynamic chunk if necessary */
	if (dyn_size) {
T
Tejun Heo 已提交
1673
		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1674
		INIT_LIST_HEAD(&dchunk->list);
T
Tejun Heo 已提交
1675
		dchunk->base_addr = base_addr;
1676 1677
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1678
		dchunk->immutable = true;
T
Tejun Heo 已提交
1679
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1680 1681 1682 1683 1684 1685

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1686
	/* link the first chunk in */
1687 1688
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1689 1690

	/* we're done */
T
Tejun Heo 已提交
1691
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1692
	return 0;
1693
}
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
	[PCPU_FC_LPAGE]	= "lpage",
};

enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;

static int __init percpu_alloc_setup(char *str)
{
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
#ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
	else if (!strcmp(str, "lpage"))
		pcpu_chosen_fc = PCPU_FC_LPAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);

	return 0;
}
early_param("percpu_alloc", percpu_alloc_setup);

1727 1728
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
 * as a contiguous area using bootmem allocator and used as-is without
 * being mapped into vmalloc area.  This enables the first chunk to
 * piggy back on the linear physical mapping which often uses larger
 * page size.
 *
 * When @dyn_size is positive, dynamic area might be larger than
1744 1745 1746
 * specified to fill page alignment.  When @dyn_size is auto,
 * @dyn_size is just big enough to fill page alignment after static
 * and reserved areas.
1747 1748 1749 1750 1751
 *
 * If the needed size is smaller than the minimum or specified unit
 * size, the leftover is returned to the bootmem allocator.
 *
 * RETURNS:
T
Tejun Heo 已提交
1752
 * 0 on success, -errno on failure.
1753
 */
T
Tejun Heo 已提交
1754
int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size)
1755
{
1756 1757
	struct pcpu_alloc_info *ai;
	size_t size_sum, chunk_size;
T
Tejun Heo 已提交
1758
	void *base;
1759
	int unit;
T
Tejun Heo 已提交
1760
	int rc;
1761

1762 1763 1764 1765 1766
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, PAGE_SIZE, NULL);
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1767

1768 1769
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
	chunk_size = ai->unit_size * num_possible_cpus();
1770

T
Tejun Heo 已提交
1771 1772 1773
	base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
				       __pa(MAX_DMA_ADDRESS));
	if (!base) {
1774 1775
		pr_warning("PERCPU: failed to allocate %zu bytes for "
			   "embedding\n", chunk_size);
T
Tejun Heo 已提交
1776
		rc = -ENOMEM;
1777
		goto out_free_ai;
1778
	}
1779 1780

	/* return the leftover and copy */
1781 1782 1783 1784 1785
	for (unit = 0; unit < num_possible_cpus(); unit++) {
		void *ptr = base + unit * ai->unit_size;

		free_bootmem(__pa(ptr + size_sum), ai->unit_size - size_sum);
		memcpy(ptr, __per_cpu_load, ai->static_size);
1786 1787 1788
	}

	/* we're ready, commit */
T
Tejun Heo 已提交
1789
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1790 1791
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
1792

T
Tejun Heo 已提交
1793
	rc = pcpu_setup_first_chunk(ai, base);
1794 1795
out_free_ai:
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
1796
	return rc;
1797
}
1798 1799
#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1800

1801
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1802
/**
1803
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1804 1805 1806 1807 1808
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
1809 1810
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1811 1812 1813 1814 1815
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
1816
 * 0 on success, -errno on failure.
1817
 */
T
Tejun Heo 已提交
1818 1819 1820 1821
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1822
{
1823
	static struct vm_struct vm;
1824
	struct pcpu_alloc_info *ai;
1825
	char psize_str[16];
T
Tejun Heo 已提交
1826
	int unit_pages;
1827
	size_t pages_size;
T
Tejun Heo 已提交
1828
	struct page **pages;
T
Tejun Heo 已提交
1829
	int unit, i, j, rc;
1830

1831 1832
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

1833 1834 1835 1836 1837 1838 1839
	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
1840 1841

	/* unaligned allocations can't be freed, round up to page size */
1842 1843
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
T
Tejun Heo 已提交
1844
	pages = alloc_bootmem(pages_size);
1845

1846
	/* allocate pages */
1847
	j = 0;
1848
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
1849
		for (i = 0; i < unit_pages; i++) {
1850
			unsigned int cpu = ai->groups[0].cpu_map[unit];
1851 1852
			void *ptr;

1853
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1854
			if (!ptr) {
1855 1856
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
1857 1858
				goto enomem;
			}
T
Tejun Heo 已提交
1859
			pages[j++] = virt_to_page(ptr);
1860 1861
		}

1862 1863
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
1864
	vm.size = num_possible_cpus() * ai->unit_size;
1865 1866
	vm_area_register_early(&vm, PAGE_SIZE);

1867
	for (unit = 0; unit < num_possible_cpus(); unit++) {
1868
		unsigned long unit_addr =
1869
			(unsigned long)vm.addr + unit * ai->unit_size;
1870

T
Tejun Heo 已提交
1871
		for (i = 0; i < unit_pages; i++)
1872 1873 1874
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
1875 1876 1877 1878
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
1889
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1890 1891
	}

1892
	/* we're ready, commit */
1893
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1894 1895
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
1896

T
Tejun Heo 已提交
1897
	rc = pcpu_setup_first_chunk(ai, vm.addr);
1898 1899 1900 1901
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
1902
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
1903
	rc = -ENOMEM;
1904
out_free_ar:
T
Tejun Heo 已提交
1905
	free_bootmem(__pa(pages), pages_size);
1906
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
1907
	return rc;
1908
}
1909
#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1910

1911
#ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
1912 1913
struct pcpul_ent {
	void		*ptr;
1914
	void		*map_addr;
1915 1916 1917
};

static size_t pcpul_size;
1918 1919
static size_t pcpul_lpage_size;
static int pcpul_nr_lpages;
1920
static struct pcpul_ent *pcpul_map;
1921

1922
static bool __init pcpul_unit_to_cpu(int unit, const struct pcpu_alloc_info *ai,
1923 1924
				     unsigned int *cpup)
{
1925
	int group, cunit;
1926

1927 1928 1929 1930
	for (group = 0, cunit = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];

		if (unit < cunit + gi->nr_units) {
1931
			if (cpup)
1932
				*cpup = gi->cpu_map[unit - cunit];
1933 1934
			return true;
		}
1935 1936
		cunit += gi->nr_units;
	}
1937 1938 1939 1940

	return false;
}

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
static int __init pcpul_cpu_to_unit(int cpu, const struct pcpu_alloc_info *ai)
{
	int group, unit, i;

	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];

		for (i = 0; i < gi->nr_units; i++)
			if (gi->cpu_map[i] == cpu)
				return unit + i;
	}
	BUG();
}

1955 1956
/**
 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
1957
 * @ai: pcpu_alloc_info
1958 1959 1960 1961
 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
 * @free_fn: function to free percpu memory, @size <= lpage_size
 * @map_fn: function to map percpu lpage, always called with lpage_size
 *
1962
 * This allocator uses large page to build and map the first chunk.
1963 1964 1965
 * Unlike other helpers, the caller should provide fully initialized
 * @ai.  This can be done using pcpu_build_alloc_info().  This two
 * stage initialization is to allow arch code to evaluate the
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
 * parameters before committing to it.
 *
 * Large pages are allocated as directed by @unit_map and other
 * parameters and mapped to vmalloc space.  Unused holes are returned
 * to the page allocator.  Note that these holes end up being actively
 * mapped twice - once to the physical mapping and to the vmalloc area
 * for the first percpu chunk.  Depending on architecture, this might
 * cause problem when changing page attributes of the returned area.
 * These double mapped areas can be detected using
 * pcpu_lpage_remapped().
1976 1977
 *
 * RETURNS:
T
Tejun Heo 已提交
1978
 * 0 on success, -errno on failure.
1979
 */
T
Tejun Heo 已提交
1980 1981 1982 1983
int __init pcpu_lpage_first_chunk(const struct pcpu_alloc_info *ai,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn,
				  pcpu_fc_map_fn_t map_fn)
1984
{
1985
	static struct vm_struct vm;
1986 1987
	const size_t lpage_size = ai->atom_size;
	size_t chunk_size, map_size;
1988
	unsigned int cpu;
T
Tejun Heo 已提交
1989
	int i, j, unit, nr_units, rc;
1990

1991 1992 1993
	nr_units = 0;
	for (i = 0; i < ai->nr_groups; i++)
		nr_units += ai->groups[i].nr_units;
1994

1995
	chunk_size = ai->unit_size * nr_units;
1996 1997
	BUG_ON(chunk_size % lpage_size);

1998
	pcpul_size = ai->static_size + ai->reserved_size + ai->dyn_size;
1999 2000
	pcpul_lpage_size = lpage_size;
	pcpul_nr_lpages = chunk_size / lpage_size;
2001 2002

	/* allocate pointer array and alloc large pages */
2003
	map_size = pcpul_nr_lpages * sizeof(pcpul_map[0]);
2004 2005
	pcpul_map = alloc_bootmem(map_size);

2006 2007 2008
	/* allocate all pages */
	for (i = 0; i < pcpul_nr_lpages; i++) {
		size_t offset = i * lpage_size;
2009 2010
		int first_unit = offset / ai->unit_size;
		int last_unit = (offset + lpage_size - 1) / ai->unit_size;
2011 2012
		void *ptr;

2013 2014
		/* find out which cpu is mapped to this unit */
		for (unit = first_unit; unit <= last_unit; unit++)
2015
			if (pcpul_unit_to_cpu(unit, ai, &cpu))
2016 2017 2018
				goto found;
		continue;
	found:
2019
		ptr = alloc_fn(cpu, lpage_size, lpage_size);
2020 2021 2022 2023 2024 2025
		if (!ptr) {
			pr_warning("PERCPU: failed to allocate large page "
				   "for cpu%u\n", cpu);
			goto enomem;
		}

2026 2027
		pcpul_map[i].ptr = ptr;
	}
2028

2029 2030
	/* return unused holes */
	for (unit = 0; unit < nr_units; unit++) {
2031 2032
		size_t start = unit * ai->unit_size;
		size_t end = start + ai->unit_size;
2033 2034 2035
		size_t off, next;

		/* don't free used part of occupied unit */
2036
		if (pcpul_unit_to_cpu(unit, ai, NULL))
2037 2038 2039 2040 2041 2042 2043 2044 2045
			start += pcpul_size;

		/* unit can span more than one page, punch the holes */
		for (off = start; off < end; off = next) {
			void *ptr = pcpul_map[off / lpage_size].ptr;
			next = min(roundup(off + 1, lpage_size), end);
			if (ptr)
				free_fn(ptr + off % lpage_size, next - off);
		}
2046 2047
	}

2048 2049 2050
	/* allocate address, map and copy */
	vm.flags = VM_ALLOC;
	vm.size = chunk_size;
2051
	vm_area_register_early(&vm, ai->unit_size);
2052 2053 2054 2055 2056 2057 2058

	for (i = 0; i < pcpul_nr_lpages; i++) {
		if (!pcpul_map[i].ptr)
			continue;
		pcpul_map[i].map_addr = vm.addr + i * lpage_size;
		map_fn(pcpul_map[i].ptr, lpage_size, pcpul_map[i].map_addr);
	}
2059 2060

	for_each_possible_cpu(cpu)
2061 2062
		memcpy(vm.addr + pcpul_cpu_to_unit(cpu, ai) * ai->unit_size,
		       __per_cpu_load, ai->static_size);
2063 2064

	/* we're ready, commit */
T
Tejun Heo 已提交
2065
	pr_info("PERCPU: large pages @%p s%zu r%zu d%zu u%zu\n",
2066 2067
		vm.addr, ai->static_size, ai->reserved_size, ai->dyn_size,
		ai->unit_size);
2068

T
Tejun Heo 已提交
2069
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

	/*
	 * Sort pcpul_map array for pcpu_lpage_remapped().  Unmapped
	 * lpages are pushed to the end and trimmed.
	 */
	for (i = 0; i < pcpul_nr_lpages - 1; i++)
		for (j = i + 1; j < pcpul_nr_lpages; j++) {
			struct pcpul_ent tmp;

			if (!pcpul_map[j].ptr)
				continue;
			if (pcpul_map[i].ptr &&
			    pcpul_map[i].ptr < pcpul_map[j].ptr)
				continue;

			tmp = pcpul_map[i];
			pcpul_map[i] = pcpul_map[j];
			pcpul_map[j] = tmp;
		}

	while (pcpul_nr_lpages && !pcpul_map[pcpul_nr_lpages - 1].ptr)
		pcpul_nr_lpages--;
2092

T
Tejun Heo 已提交
2093
	return rc;
2094 2095

enomem:
2096 2097 2098
	for (i = 0; i < pcpul_nr_lpages; i++)
		if (pcpul_map[i].ptr)
			free_fn(pcpul_map[i].ptr, lpage_size);
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	free_bootmem(__pa(pcpul_map), map_size);
	return -ENOMEM;
}

/**
 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
 * @kaddr: the kernel address in question
 *
 * Determine whether @kaddr falls in the pcpul recycled area.  This is
 * used by pageattr to detect VM aliases and break up the pcpu large
 * page mapping such that the same physical page is not mapped under
 * different attributes.
 *
 * The recycled area is always at the tail of a partially used large
 * page.
 *
 * RETURNS:
 * Address of corresponding remapped pcpu address if match is found;
 * otherwise, NULL.
 */
void *pcpu_lpage_remapped(void *kaddr)
{
2121 2122 2123 2124
	unsigned long lpage_mask = pcpul_lpage_size - 1;
	void *lpage_addr = (void *)((unsigned long)kaddr & ~lpage_mask);
	unsigned long offset = (unsigned long)kaddr & lpage_mask;
	int left = 0, right = pcpul_nr_lpages - 1;
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	int pos;

	/* pcpul in use at all? */
	if (!pcpul_map)
		return NULL;

	/* okay, perform binary search */
	while (left <= right) {
		pos = (left + right) / 2;

		if (pcpul_map[pos].ptr < lpage_addr)
			left = pos + 1;
		else if (pcpul_map[pos].ptr > lpage_addr)
			right = pos - 1;
2139 2140
		else
			return pcpul_map[pos].map_addr + offset;
2141 2142 2143 2144
	}

	return NULL;
}
2145
#endif /* CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK */
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
/*
 * Generic percpu area setup.
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2167
	int rc;
2168 2169 2170 2171 2172

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2173 2174 2175
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
				    PERCPU_DYNAMIC_RESERVE);
	if (rc < 0)
2176 2177 2178 2179
		panic("Failed to initialized percpu areas.");

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2180
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2181 2182
}
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */