distribute_transpiler.py 74.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
42 43
    default_startup_program, Block, \
    Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127 128 129 130 131 132
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
133
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
134 135 136 137 138 139
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
140 141
    # supported modes: pserver, nccl2
    mode = "pserver"
142
    print_log = False
G
gongweibao 已提交
143 144


Y
gen rst  
yi.wu 已提交
145
class DistributeTranspiler(object):
Y
yi.wu 已提交
146 147 148 149
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
150
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
151

W
Wu Yi 已提交
152 153 154 155 156 157 158 159 160
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
161 162 163 164

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
165 166 167 168 169 170
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
171 172
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
173
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
174 175 176 177 178 179 180 181
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
182

W
Wu Yi 已提交
183 184 185 186 187 188 189 190 191 192 193
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
194
    """
Y
Yancey1989 已提交
195

G
gongweibao 已提交
196 197 198 199 200 201 202 203 204
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

205 206 207
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
208 209 210
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

238 239 240 241 242
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
243
                  sync_mode=True,
W
Wu Yi 已提交
244 245
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
246
        """
Y
yi.wu 已提交
247 248 249 250 251 252 253 254 255
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
256 257 258
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
259
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
260 261
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
262 263 264
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
265 266 267
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
268 269
        if startup_program is None:
            startup_program = default_startup_program()
270
        self.origin_program = program
W
Wu Yi 已提交
271 272
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
273

W
Wu Yi 已提交
274 275 276 277 278 279 280 281 282
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

283 284 285 286 287 288 289
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
290
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
291
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
292
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
293
        self.grad_name_to_param_name = dict()
294 295
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
296
            self.grad_name_to_param_name[grad_var.name] = param_var.name
297

T
tangwei12 已提交
298 299 300 301 302 303
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

304
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
305
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
306
        self._init_splited_vars()
307

G
gongweibao 已提交
308
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
309
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
310
        send_vars = []
311 312 313 314 315 316

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
317
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
318

G
gongweibao 已提交
319
        if not self.config.slice_var_up:
320 321
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
322

323
        self.grad_name_to_send_dummy_out = dict()
324
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
325
            eplist = ps_dispatcher.dispatch(splited_vars)
326

G
gongweibao 已提交
327
            if not self.config.slice_var_up:
328 329
                assert (len(splited_vars) == 1)

330
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
331
            if len(splited_vars) == 1:
332
                splited_grad_varname = splited_vars[0].name
333 334
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
335
            elif len(splited_vars) > 1:
336
                orig_var = program.global_block().vars[splited_grad_varname]
337 338
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
339
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
340
                index += 1
Y
Yancey1989 已提交
341 342
            else:
                AssertionError("Can not insert the send op by original "
343
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
344

W
Wu Yi 已提交
345 346
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
347
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
348

W
Wu Yi 已提交
349 350 351 352
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
353
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
354
                index=index + 1,
355
                type="send",
Y
update  
Yancey1989 已提交
356
                inputs={"X": splited_vars},
357
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
358 359
                attrs={
                    "epmap": eplist,
360
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
361 362 363 364
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
365
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
366
                })
Y
update  
Yancey1989 已提交
367 368
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
369 370

        if self.sync_mode:
W
Wu Yi 已提交
371 372
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
373 374 375 376
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
377
            input_deps = list(self.grad_name_to_send_dummy_out.values())
378

Y
Yancey1989 已提交
379 380
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
381
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
382
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
383 384
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
385
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
386
                })
Y
Yancey1989 已提交
387

G
gongweibao 已提交
388
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
389
        recv_vars = []
Y
update  
Yancey1989 已提交
390
        for _, var in enumerate(send_vars):
391
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
392
        ps_dispatcher.reset()
Y
Yancey1989 已提交
393 394
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
395
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
396 397
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
398

Y
Yancey1989 已提交
399
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
400
        all_recv_outputs = []
401
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
402 403 404 405
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
406 407 408 409
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
410
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
411 412
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
413 414 415 416 417 418 419 420 421
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
422 423
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
424
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
425 426 427
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
428
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
429 430
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
431
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
432
                })
T
typhoonzero 已提交
433

Q
qiaolongfei 已提交
434
        if self.sync_mode:
W
Wu Yi 已提交
435
            # form a WAW dependency
Q
qiaolongfei 已提交
436 437 438
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
439
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
440 441 442 443
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
444

445
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
446 447
            if len(splited_var) <= 1:
                continue
448
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
449
            program.global_block().append_op(
T
typhoonzero 已提交
450
                type="concat",
T
typhoonzero 已提交
451
                inputs={"X": splited_var},
T
typhoonzero 已提交
452
                outputs={"Out": [orig_param]},
453 454 455 456
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
457

G
gongweibao 已提交
458 459
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

460
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
461 462
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
463
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
464

W
Wu Yi 已提交
465
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
466 467 468 469 470 471
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
472
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
473
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
474
        lr_ops = self._get_lr_ops()
475
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
476 477
        delete_ops(self.origin_program.global_block(), lr_ops)

478 479
        # delete table init op
        if self.has_distributed_lookup_table:
480 481 482
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
483 484
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
485 486 487 488 489
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
490
            table_init_op = table_param_init_op[0]
491 492 493 494 495 496
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
497

498
        self.origin_program.__str__()
G
gongweibao 已提交
499

W
Wu Yi 已提交
500 501 502
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

503
        return self.origin_program
T
typhoonzero 已提交
504

W
Wu Yi 已提交
505
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
506 507 508 509
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
510
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
511
            eplist (list): A list of strings indicating
G
gongweibao 已提交
512 513 514 515

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
516
        startup_program = self.startup_program
G
gongweibao 已提交
517 518 519 520

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
521
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
542
                inputs={"X": []},
G
gongweibao 已提交
543 544 545 546 547 548
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
549 550
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
551 552 553
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
554
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
555 556 557 558 559
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
560
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
561
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
562 563
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
564
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
565
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
566 567 568 569 570 571 572 573 574 575
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
576 577 578 579 580 581 582 583
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
584 585
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
586
        Get parameter server side program.
587

Y
yi.wu 已提交
588 589
        Args:
            endpoint (str): current parameter server endpoint.
590

Y
yi.wu 已提交
591 592
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
593
        """
Y
yi.wu 已提交
594 595 596 597
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
598 599 600
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
601 602
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
603
        pserver_program.random_seed = self.origin_program.random_seed
604
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
605 606 607 608 609 610 611 612
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
613 614 615 616 617
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
618 619 620 621 622 623 624 625 626
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
627
            if self.sync_mode and self.trainer_num > 1:
628
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
629 630 631 632 633 634 635 636 637
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
638

Q
qiaolongfei 已提交
639
        # step 3
640
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
641 642 643
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
644
        # step 3.2
T
typhoonzero 已提交
645 646 647 648
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
649 650
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
651
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
652
        # step 3.3
T
typhoonzero 已提交
653
        # Iterate through the ops, and if an op and the optimize ops
654
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
655
        # append it into the sub program.
T
typhoonzero 已提交
656 657 658

        global_ops = []

Y
wip  
yi.wu 已提交
659 660
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
661
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
662
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
663
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
664
            elif op not in lr_ops:
Q
Qiyang Min 已提交
665
                self._append_pserver_non_opt_ops(block, op)
666 667 668 669 670 671

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
672

Y
Yancey1989 已提交
673
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
674 675 676 677 678 679 680 681
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
682
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
683 684 685

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
686
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
687 688

            # clone ops
Y
Yancey1989 已提交
689 690
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
691
                # clone sub_block of op
Y
Yancey1989 已提交
692
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
693 694

            # reset the block of op
W
Wu Yi 已提交
695
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
696

697
        # append lr decay ops to the child block if exists
698
        lr_ops = self._get_lr_ops()
699 700
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
701
        if len(lr_ops) > 0:
W
Wu Yi 已提交
702
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
703
                pserver_program.num_blocks - 1)
704
            optimize_blocks.append(lr_decay_block)
705
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
706
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
707
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
708 709
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
710

T
typhoonzero 已提交
711
        # append op to the current block
Q
qiaolongfei 已提交
712
        grad_to_block_id = []
Q
qiaolongfei 已提交
713
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
714
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
715
            per_opt_block = pserver_program._create_block(pre_block_idx)
716
            optimize_blocks.append(per_opt_block)
717
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
718
            # append grad merging ops before clip and weight decay
719 720
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
721
            for _, op in enumerate(self.optimize_ops):
722 723 724 725 726
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
727 728 729
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
730 731 732 733 734 735
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
736
                            op not in global_ops:
737 738 739 740 741
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
742

W
Wu Yi 已提交
743 744
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
745
        # append global ops
746
        if global_ops:
W
Wu Yi 已提交
747
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
748
                pserver_program.num_blocks - 1)
749
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
750
            for glb_op in global_ops:
X
Xi Chen 已提交
751
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
752
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
753

754
        # process distributed lookup_table
Q
qiaolongfei 已提交
755
        prefetch_var_name_to_block_id = []
756 757
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
758
            table_opt_block = self._create_table_optimize_block(
759
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
760
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
761
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
762
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
763 764
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
765

T
tangwei12 已提交
766
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
767 768
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
769

770 771 772 773 774 775 776
        if optimize_blocks.size() == 0:
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
777
        attrs = {
778
            "optimize_blocks": optimize_blocks,
779 780 781
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
782
            "grad_to_block_id": grad_to_block_id,
783
        }
T
tangwei12 已提交
784 785

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
786
            attrs['checkpint_block_id'] = checkpoint_block_id
787

T
tangwei12 已提交
788 789 790 791
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
792 793 794 795 796
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
797
            attrs=attrs)
798

T
tangwei12 已提交
799
        # add distributed attrs
T
tangwei12 已提交
800
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
801
            endpoint)
802

W
Wu Yi 已提交
803
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
804 805
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
806 807
        return pserver_program

W
Wu Yi 已提交
808 809 810 811 812 813
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
814

W
Wu Yi 已提交
815 816 817 818
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
819 820
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
821 822
        return pserver_prog, pserver_startup

823 824
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
825
                            pserver_program=None,
826
                            startup_program=None):
T
typhoonzero 已提交
827
        """
W
Wu Yi 已提交
828 829
        **Deprecated**

T
typhoonzero 已提交
830 831 832
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
833 834 835

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
836 837
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
838
                when initalizing
839

Y
yi.wu 已提交
840 841
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
842
        """
843 844 845
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
846
        if pserver_program != None:
847 848 849
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
850
        if startup_program != None:
851 852 853
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
854

T
typhoonzero 已提交
855
        s_prog = Program()
W
Wu Yi 已提交
856
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
857
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
858 859 860 861 862 863 864 865 866 867 868
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
869
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
870
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
871
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
872 873 874 875
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
876
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
877 878
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
879 880 881 882 883 884 885 886 887 888
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
889 890

            if op_on_pserver:
891 892 893
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
894 895 896
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
897
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
898 899 900 901
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
902
                    attrs=op.all_attrs())
903 904

        # add slice vars
T
tangwei12 已提交
905
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
906

T
typhoonzero 已提交
907 908
        return s_prog

T
tangwei12 已提交
909 910 911
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
912
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
913
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
914
            if not block_name:
915 916
                continue

T
tangwei12 已提交
917
            block_idx = int(block_name.split(block_suffix)[1])
918 919 920 921 922 923
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
924
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
925

T
tangwei12 已提交
926
        return slice_vars_and_attrs
927

928 929
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
930 931 932 933 934 935 936 937 938
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
939
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
991
    def _init_splited_vars(self):
Y
yi.wu 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1015
        if self.config.slice_var_up:
Y
yi.wu 已提交
1016 1017
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1018 1019 1020
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1021
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1022 1023
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1024 1025 1026
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1027 1028 1029 1030
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1031 1032
        assert (len(grad_blocks) == len(param_blocks))

1033
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1034 1035
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1036
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1037 1038 1039 1040
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1041
        # dict(grad_splited_var -> param_splited_var)
1042
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1043 1044 1045
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1046
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1047
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1048 1049

        # create mapping of endpoint -> split var to create pserver side program
1050
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1060
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1061 1062
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1063
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1064
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1065 1066
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1067 1068
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1069 1070 1071 1072 1073 1074 1075 1076 1077

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1078 1079
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1080 1081 1082
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1083
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1084
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1085 1086

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1087
                    self.all_out_emb_vars.append(out_var)
1088 1089

                    # delete lookup_table_op
1090
                    delete_ops(program.global_block(), [op])
1091 1092 1093
                    # break for loop
                    break

S
seiriosPlus 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1140
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1141
        # 2. add split_ids_op and send_op to send gradient to pservers
1142

1143 1144
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1145
        table_grad_name = grad_var_name(self.table_name)
1146 1147 1148 1149
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1150
                program.global_block()._insert_op(
1151 1152 1153 1154 1155
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1156 1157
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1158
                program.global_block()._insert_op(
1159
                    index=op_index + 2,
1160
                    type="send",
1161
                    inputs={'X': self.trainer_side_table_grad_list},
1162 1163 1164 1165 1166
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1167
                    attrs={
1168
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1169
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1170 1171 1172 1173 1174
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1175
                    })
1176 1177 1178 1179 1180 1181
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1182
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1208
        return prefetch_var_name_to_block_id
1209 1210

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1211
                                     pre_block_idx, grad_to_block_id):
1212
        # STEP: create table optimize block
1213
        table_opt_block = pserver_program._create_block(pre_block_idx)
1214
        # create table param and grad var in pserver program
1215 1216 1217 1218 1219 1220 1221
        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
        ][0]

Y
Yancey1989 已提交
1222 1223
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1224

T
tangwei12 已提交
1225
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1226 1227
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1228 1229 1230
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1231 1232
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1233
            shape=table_shape,
Y
Yancey1989 已提交
1234 1235 1236
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1237

1238 1239
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1240
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1241
            self.origin_program.global_block().vars[grad_var_name(
1242
                self.table_name)])
1243

1244 1245 1246
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1247

1248 1249 1250
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1251
            pserver_side_table_grad_list = [
1252 1253 1254 1255 1256 1257 1258 1259 1260
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1261
            # append sum op for pserver_side_table_grad_list
1262 1263
            table_opt_block.append_op(
                type="sum",
1264
                inputs={"X": pserver_side_table_grad_list},
1265 1266
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1267 1268
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1269
            origin_grad_name = grad_var.name
1270 1271
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1272 1273
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1274
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1275
            grad_var = pserver_program.global_block()._rename_var(
1276
                origin_grad_name, splited_grad_name)
1277 1278 1279 1280 1281 1282 1283

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1284
        # only support sgd now
1285 1286 1287 1288
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1289
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1290

1291 1292 1293
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1294 1295
        return table_opt_block

T
tangwei12 已提交
1296 1297 1298 1299 1300 1301
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1302
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1303
            name="kLookupTablePath",
T
tangwei12 已提交
1304 1305
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1306

W
Wu Yi 已提交
1307
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1308
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1309 1310 1311 1312
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1313
            attrs={'file_path': "none"})
T
tangwei12 已提交
1314 1315 1316

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1317 1318 1319 1320 1321
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1322
        Create vars for each split.
T
typhoonzero 已提交
1323 1324
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1325 1326 1327 1328
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1329
        Returns:
1330
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1331
                from original var name to each var split.
T
typhoonzero 已提交
1332
        """
1333 1334

        # varname->[(block_id, current_block_size)]
1335
        block_map = collections.OrderedDict()
1336

1337
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1338 1339
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1340
            if varname not in block_map:
T
typhoonzero 已提交
1341
                block_map[varname] = []
1342
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1343

M
minqiyang 已提交
1344
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1345
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1346
            if len(splited) == 1:
1347
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1348
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1349
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1350
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1351 1352 1353 1354 1355
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1356
                continue
T
typhoonzero 已提交
1357
            var_mapping[varname] = []
T
typhoonzero 已提交
1358 1359 1360 1361
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1362

T
typhoonzero 已提交
1363
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1364
                size = block[1]
M
minqiyang 已提交
1365
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1366 1367 1368
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1369
                new_var_name = ""
1370
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1371
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1372
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1373 1374
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1375
                                   (varname, i)
T
typhoonzero 已提交
1376
                var = program.global_block().create_var(
T
typhoonzero 已提交
1377 1378
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1379
                    dtype=orig_var.dtype,
1380
                    type=orig_var.type,
T
typhoonzero 已提交
1381
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1382
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1383
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1384
        return var_mapping
T
done  
typhoonzero 已提交
1385

1386
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1387 1388 1389 1390 1391 1392
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1393
            persistable=persistable)
T
done  
typhoonzero 已提交
1394

Y
Yancey1989 已提交
1395
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1396 1397 1398 1399
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1400
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1401 1402 1403 1404
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1405 1406 1407 1408
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1409 1410 1411 1412
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1413
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1414 1415 1416 1417
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1418 1419 1420 1421
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1422 1423 1424
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1425

T
typhoonzero 已提交
1426 1427 1428 1429
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1430
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1443
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1444 1445
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1446 1447
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1448
                return param_shape
1449 1450 1451
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
T
typhoonzero 已提交
1452 1453
        elif op_type == "sgd":
            pass
1454 1455 1456 1457
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1458 1459
        return orig_shape

1460 1461
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1462
        orig_var_name = ""
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1473
        else:
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1496
            return None
1497 1498 1499 1500
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1501
        else:
1502
            merged_var_name = orig_varname
1503 1504

        merged_var = pserver_block.vars[merged_var_name]
1505 1506 1507
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1508
            for i in range(self.trainer_num):
1509
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1510
                                   (merged_var_name, i)
1511 1512 1513 1514
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1515 1516
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1517 1518 1519 1520 1521
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1522
        return merged_var
T
typhoonzero 已提交
1523

1524
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1525
                            grad_to_block_id, origin_program, merged_var):
1526
        program = optimize_block.program
T
typhoonzero 已提交
1527
        pserver_block = program.global_block()
1528
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1539
        for key in opt_op.input_names:
T
typhoonzero 已提交
1540 1541 1542
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1543
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1544 1545
                if not param_block:
                    return
T
typhoonzero 已提交
1546
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1547
                    name=param_block.name,
T
typhoonzero 已提交
1548
                    persistable=True,
T
typhoonzero 已提交
1549 1550 1551
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1552
            elif key == "LearningRate":
1553
                # learning rate variable has already be created by non-optimize op,
1554
                # don't create it once again.
1555
                lr_varname = opt_op.input(key)[0]
1556
                if lr_varname in pserver_block.vars:
1557 1558 1559 1560 1561 1562 1563 1564 1565
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1566

T
typhoonzero 已提交
1567
        for key in opt_op.input_names:
1568
            new_shape = None
W
Wu Yi 已提交
1569
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1570
                continue
1571
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1572 1573 1574 1575
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1576
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1577 1578 1579 1580 1581
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1582

1583
        # change output's ParamOut variable
1584 1585
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1586
        outputs["ParamOut"] = new_inputs["Param"]
1587
        optimize_block.append_op(
T
typhoonzero 已提交
1588 1589
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1590
            outputs=outputs,
G
gongweibao 已提交
1591
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1592

1593 1594
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1595
        for _, g in six.iteritems(var_dict):
1596 1597 1598 1599 1600 1601
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1602 1603 1604
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1605
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1606 1607 1608 1609
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1610
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1611 1612 1613

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1614
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1615 1616 1617 1618
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1619
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1620

Y
Yancey1989 已提交
1621
        return block.append_op(
G
gongweibao 已提交
1622
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1623 1624

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1625
        program = optimize_block.program
1626
        # Append the ops for parameters that do not need to be optimized/updated
1627 1628
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1629
        for key, varlist in six.iteritems(inputs):
1630 1631
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1632
            for var in varlist:
1633 1634 1635 1636 1637 1638
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1639
                elif var.name not in program.global_block().vars:
1640
                    program.global_block().create_var(
T
typhoonzero 已提交
1641 1642 1643 1644 1645
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1646 1647
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1648
        for key, varlist in six.iteritems(outputs):
1649 1650 1651
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1652 1653 1654 1655
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1656
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1657
                    program.global_block()._clone_variable(var)
1658

Y
Yancey1989 已提交
1659
        return optimize_block.append_op(
T
typhoonzero 已提交
1660
            type=opt_op.type,
T
typhoonzero 已提交
1661 1662
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1663
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1664

1665 1666 1667 1668
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1669
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1670
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1671 1672 1673 1674 1675 1676
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1677 1678
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1679 1680 1681 1682 1683 1684
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1685
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1686
        if "Param" in op.input_names and \
T
tangwei12 已提交
1687
                "LearningRate" in op.input_names:
1688 1689 1690 1691 1692 1693 1694
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1695
        if op.input("Param")[0] in param_names:
1696 1697 1698
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1699
                param = op.input("Param")[0]
T
typhoonzero 已提交
1700
                if same_or_split_var(n, param) and n != param:
1701 1702 1703
                    return True
            return False

T
typhoonzero 已提交
1704
    def _get_input_map_from_op(self, varmap, op):
1705
        """Returns a dict from op input name to the vars in varmap."""
1706
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1718
        """Returns a dict from op output name to the vars in varmap."""
1719
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1729 1730

    def _get_lr_ops(self):
1731 1732 1733
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1734 1735 1736 1737
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1738 1739 1740 1741 1742
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1743 1744 1745 1746
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1747
            if self._is_optimizer_op(op):
1748 1749 1750 1751
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1752
        block = self.origin_program.global_block()
1753 1754 1755 1756 1757
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1758

1759 1760 1761 1762 1763
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1764
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1765 1766 1767 1768 1769 1770
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1771 1772
                    # we only need to append op for once
                    break
1773
        return lr_ops
Y
Yancey1989 已提交
1774

W
Wu Yi 已提交
1775 1776 1777 1778 1779
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1780 1781
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1782 1783 1784
            return True
        return False

Y
Yancey1989 已提交
1785
    def _get_optimize_pass(self):
1786
        """
1787
        Get optimizer operators, parameters and gradients from origin_program
1788 1789 1790 1791
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1792 1793 1794
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1795 1796
        # tmp set to dedup
        optimize_params = set()
1797
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1798
        for op in block.ops:
W
Wu Yi 已提交
1799
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1800
                opt_ops.append(op)
1801 1802 1803 1804 1805 1806
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1807 1808
                        params_grads.append([
                            origin_var_dict[param_name],
1809
                            origin_var_dict[grad_name]
1810
                        ])
Y
Yancey1989 已提交
1811 1812 1813
            else:
                pass
        return opt_ops, params_grads