distribute_transpiler.py 64.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
53 54


T
typhoonzero 已提交
55 56 57 58 59 60
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
61

T
typhoonzero 已提交
62 63
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
64 65


66 67 68 69
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
70
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
71
    """
72 73 74 75 76 77
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
78
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
79 80 81

    Args:
        var_list (list): List of variables.
82 83
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
84 85
        min_block_size (int): Minimum splitted block size.
    Returns:
86
        blocks (list[(varname, block_id, current_block_size)]): A list
87
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
88 89 90
    """
    blocks = []
    for var in var_list:
91
        split_count = slice_count
T
typhoonzero 已提交
92 93 94 95
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
96
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
106
        # update split_count after aligning
T
typhoonzero 已提交
107
        split_count = int(math.ceil(var_numel / float(block_size)))
108
        for block_id in range(split_count):
T
typhoonzero 已提交
109 110 111 112 113 114 115
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
116 117 118 119 120 121 122
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
123
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
132
class DistributeTranspiler(object):
Y
yi.wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

180 181 182 183 184 185 186
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
187 188 189 190 191 192 193 194 195 196 197
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
198 199 200 201
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
202 203 204
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
205 206 207 208 209 210 211
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
212
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
213 214
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

G
gongweibao 已提交
215
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
216
        self._init_splited_vars()
217

G
gongweibao 已提交
218
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
219
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
220
        send_vars = []
221 222 223 224 225 226

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
227
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
228

G
gongweibao 已提交
229
        if not self.config.slice_var_up:
230
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
231
            random.shuffle(grad_var_mapping_items)
232 233

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
234
            eplist = ps_dispatcher.dispatch(splited_vars)
235

G
gongweibao 已提交
236
            if not self.config.slice_var_up:
237 238
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
239 240 241 242 243 244 245 246 247
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
248
                index += 1
Y
Yancey1989 已提交
249 250 251 252
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

W
Wu Yi 已提交
253
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
254
                index=index + 1,
255
                type="send",
Y
update  
Yancey1989 已提交
256
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
257 258 259 260 261
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
262 263
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
264 265 266 267 268

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
269
                outputs={},
Y
Yancey1989 已提交
270 271
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
272 273
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
274
                })
Y
Yancey1989 已提交
275

G
gongweibao 已提交
276
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
277
        recv_vars = []
Y
update  
Yancey1989 已提交
278
        for _, var in enumerate(send_vars):
279
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
280
        ps_dispatcher.reset()
Y
Yancey1989 已提交
281 282
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
283
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
284 285
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
286

Y
Yancey1989 已提交
287
        # step4: Concat the parameters splits together after recv.
M
minqiyang 已提交
288
        for varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
289 290 291 292 293 294 295 296
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
297 298 299 300 301
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
302

Q
qiaolongfei 已提交
303 304 305 306 307 308 309 310 311
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
312

M
minqiyang 已提交
313
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
314 315
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
316
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
317
            program.global_block().append_op(
T
typhoonzero 已提交
318
                type="concat",
T
typhoonzero 已提交
319
                inputs={"X": splited_var},
T
typhoonzero 已提交
320
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
321
                attrs={"axis": 0})
T
typhoonzero 已提交
322

G
gongweibao 已提交
323 324
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

325
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
326 327
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
328
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
329

T
typhoonzero 已提交
330
    def get_trainer_program(self):
Y
yi.wu 已提交
331 332 333 334 335 336
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
337
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
338
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
339
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
340
        self.origin_program.__str__()
G
gongweibao 已提交
341

342
        return self.origin_program
T
typhoonzero 已提交
343

G
gongweibao 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
                inputs={},
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
413 414
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
415
        Get parameter server side program.
416

Y
yi.wu 已提交
417 418
        Args:
            endpoint (str): current parameter server endpoint.
419

Y
yi.wu 已提交
420 421
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
422
        """
Y
yi.wu 已提交
423 424 425 426 427
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
428 429
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
430
        pserver_program.random_seed = self.origin_program.random_seed
431
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
432 433 434 435 436 437 438 439
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
440 441 442 443 444
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
445 446 447 448 449 450 451 452 453
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
454
            if self.sync_mode and self.trainer_num > 1:
455
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
456 457 458 459 460 461 462 463 464
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
465

Q
qiaolongfei 已提交
466
        # step 3
467
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
468 469 470
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
471
        # step 3.2
T
typhoonzero 已提交
472 473 474 475
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
476 477
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
478
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
479
        # step 3.3
T
typhoonzero 已提交
480
        # Iterate through the ops, and if an op and the optimize ops
481
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
482
        # append it into the sub program.
T
typhoonzero 已提交
483 484 485

        global_ops = []

Y
wip  
yi.wu 已提交
486 487
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
488
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
489
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
490
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
491
            elif op not in lr_ops:
Q
Qiyang Min 已提交
492
                self._append_pserver_non_opt_ops(block, op)
493 494 495 496 497 498

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
499

Y
Yancey1989 已提交
500
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
501 502 503 504 505 506 507 508
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
509
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
510 511 512

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
513
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
514 515

            # clone ops
Y
Yancey1989 已提交
516 517
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
518
                # clone sub_block of op
Y
Yancey1989 已提交
519
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
520 521 522 523

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

524
        # append lr decay ops to the child block if exists
525
        lr_ops = self._get_lr_ops()
526 527
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
528
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
529 530
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
531
            optimize_blocks.append(lr_decay_block)
532
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
533
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
534
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
535 536
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
537

T
typhoonzero 已提交
538
        # append op to the current block
Q
qiaolongfei 已提交
539
        grad_to_block_id = []
Q
qiaolongfei 已提交
540
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
541
        for idx, opt_op in enumerate(opt_op_on_pserver):
542
            per_opt_block = pserver_program.create_block(pre_block_idx)
543
            optimize_blocks.append(per_opt_block)
544
            # append grad merging ops before clip and weight decay
545
            # cases may like:
T
typhoonzero 已提交
546
            # L2Decay op -> clip op -> optimize
547 548 549 550 551 552 553
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
554
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
555 556
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
557
                if ufind.is_connected(op, opt_op) and op not in global_ops:
558
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
559
                                           merged_var, lr_ops)
T
typhoonzero 已提交
560

W
Wu Yi 已提交
561 562
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
563
        # append global ops
564
        if global_ops:
Q
qiaolongfei 已提交
565 566
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
567
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
568
            for glb_op in global_ops:
X
Xi Chen 已提交
569
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
570
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
571

572
        # process distributed lookup_table
Q
qiaolongfei 已提交
573
        prefetch_var_name_to_block_id = []
574 575
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
576
            table_opt_block = self._create_table_optimize_block(
577
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
578
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
579
            prefetch_var_name_to_block_id = self._create_prefetch_block(
580
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
581 582
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
583 584 585 586

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
587
            assert len(prefetch_var_name_to_block_id) > 0
588
        else:
Q
qiaolongfei 已提交
589
            assert len(prefetch_var_name_to_block_id) == 0
590

591
        attrs = {
592
            "optimize_blocks": optimize_blocks,
593 594 595
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
596
            "grad_to_block_id": grad_to_block_id,
597 598 599 600
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
601
            attrs['checkpint_block_id'] = checkpoint_block_id
602

T
typhoonzero 已提交
603 604 605 606 607
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
608
            attrs=attrs)
609

W
Wu Yi 已提交
610
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
611 612
        return pserver_program

613 614 615 616
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
617 618 619 620
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
621 622 623 624 625

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
626 627
            startup_program (Program): if pass None, will use
                default_startup_program
628

Y
yi.wu 已提交
629 630
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
631 632
        """
        s_prog = Program()
633 634 635 636
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
637
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
638 639 640 641 642 643 644 645 646 647 648
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
649
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
650
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
651
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
652 653 654 655
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
656
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
657 658
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
659 660 661 662 663 664 665 666 667 668
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
669 670

            if op_on_pserver:
671 672 673
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
674 675 676
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
677
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
678 679 680 681
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
682
                    attrs=op.all_attrs())
T
typhoonzero 已提交
683 684
        return s_prog

685 686
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
687 688 689 690 691 692 693 694 695
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
696
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
748
    def _init_splited_vars(self):
Y
yi.wu 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
772
        if self.config.slice_var_up:
Y
yi.wu 已提交
773 774
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
775 776 777
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
778
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
779 780
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
781 782 783
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
784 785 786 787
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
788 789 790 791 792 793 794 795 796
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
797
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
798 799 800 801 802 803 804
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
805
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
806 807 808 809 810 811 812 813 814
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

815
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
816 817
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
818
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
819 820 821 822 823 824 825 826 827
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
828 829 830 831 832 833 834 835 836

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

837
                    lookup_table_op_index = list(all_ops).index(op)
838 839 840
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
841
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
842
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
843 844 845 846 847 848
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
849
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
850 851 852 853
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
854 855

                    # insert split_ids_op
W
Wu Yi 已提交
856
                    program.global_block()._insert_op(
857
                        index=lookup_table_op_index,
858 859 860 861 862 863 864
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
865
                        outputs={"Out": prefetch_input_vars})
866 867

                    # insert prefetch_op
W
Wu Yi 已提交
868
                    program.global_block()._insert_op(
869
                        index=lookup_table_op_index + 1,
870
                        type="prefetch",
Q
qiaolongfei 已提交
871 872
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
873
                        attrs={
874
                            "epmap": pserver_endpoints,
875 876 877
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
878
                        })
879 880

                    # insert concat_op
W
Wu Yi 已提交
881
                    program.global_block()._insert_op(
882 883 884 885 886 887 888
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
889
                            'X': prefetch_output_vars
890
                        },
891 892 893 894 895
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
896
                        })
897 898

                    # delete lookup_table_op
899
                    delete_ops(program.global_block(), [op])
900 901 902
                    # break for loop
                    break

Y
Yancey1989 已提交
903
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
904
        # 2. add split_ids_op and send_op to send gradient to pservers
905 906
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
907
        table_grad_name = grad_var_name(self.table_name)
908 909 910 911
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
912
                program.global_block()._insert_op(
913 914 915 916 917
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
918
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
919
                program.global_block()._insert_op(
920
                    index=op_index + 2,
921
                    type="send",
922
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
923 924
                    outputs={},
                    attrs={
925
                        "sync_mode": True,
Y
Yancey1989 已提交
926 927 928
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
929 930 931 932 933 934
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
963 964

    def _create_table_optimize_block(self, pserver_index, pserver_program,
965
                                     pre_block_idx, grad_to_block_id):
966 967
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
968 969
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
970

T
tangwei12 已提交
971
        zero_dim = int(
T
tangwei12 已提交
972 973 974 975
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
976 977
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
978
            shape=table_shape,
Y
Yancey1989 已提交
979 980 981
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
982 983
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
984
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
985
            self.origin_program.global_block().vars[grad_var_name(
986
                self.table_name)])
987 988 989 990

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
991 992
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
993
        ][0]
Q
qiaolongfei 已提交
994
        table_opt_block = pserver_program.create_block(pre_block_idx)
995

996 997 998
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
999
            pserver_side_table_grad_list = [
1000 1001 1002 1003 1004 1005 1006 1007 1008
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1009
            # append sum op for pserver_side_table_grad_list
1010 1011
            table_opt_block.append_op(
                type="sum",
1012
                inputs={"X": pserver_side_table_grad_list},
1013 1014
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1015 1016
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1017
            origin_grad_name = grad_var.name
1018 1019
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1020 1021
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1022
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1023
            grad_var = pserver_program.global_block()._rename_var(
1024
                origin_grad_name, splited_grad_name)
1025 1026 1027 1028 1029 1030 1031 1032 1033

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1034
        # only support sgd now
1035 1036 1037 1038
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1039
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1040

1041 1042 1043
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1044 1045
        return table_opt_block

T
tangwei12 已提交
1046 1047 1048 1049 1050 1051
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1052
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1053
            name="kLookupTablePath",
T
tangwei12 已提交
1054 1055
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1056

T
tangwei12 已提交
1057
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1058
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1059 1060 1061 1062
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1063
            attrs={'file_path': "none"})
T
tangwei12 已提交
1064 1065 1066

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1067 1068 1069 1070 1071
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1072
        Create vars for each split.
T
typhoonzero 已提交
1073 1074
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1075 1076 1077 1078
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1079
        Returns:
1080
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1081
                from original var name to each var split.
T
typhoonzero 已提交
1082
        """
1083 1084

        # varname->[(block_id, current_block_size)]
1085
        block_map = collections.OrderedDict()
1086

1087
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1088 1089
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1090
            if varname not in block_map:
T
typhoonzero 已提交
1091
                block_map[varname] = []
1092
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1093

M
minqiyang 已提交
1094
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1095
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1096
            if len(splited) == 1:
1097
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1098 1099
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1100
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1101 1102 1103 1104 1105
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1106
                continue
T
typhoonzero 已提交
1107
            var_mapping[varname] = []
T
typhoonzero 已提交
1108 1109 1110 1111
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1112

T
typhoonzero 已提交
1113
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1114
                size = block[1]
M
minqiyang 已提交
1115
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1116 1117 1118
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1119
                new_var_name = ""
1120
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1121 1122 1123 1124 1125
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1126
                var = program.global_block().create_var(
T
typhoonzero 已提交
1127 1128
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1129
                    dtype=orig_var.dtype,
1130
                    type=orig_var.type,
T
typhoonzero 已提交
1131
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1132
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1133
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1134
        return var_mapping
T
done  
typhoonzero 已提交
1135

W
Wu Yi 已提交
1136
    def _create_splited_vars(self, source_var, block, tag):
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1147 1148 1149 1150 1151 1152
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1153
            persistable=persistable)
T
done  
typhoonzero 已提交
1154

Y
Yancey1989 已提交
1155
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1156 1157 1158 1159
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1160
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1170
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1180

T
typhoonzero 已提交
1181 1182 1183 1184
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1185
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1208 1209
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1210
        orig_var_name = ""
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1221
        else:
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1249
        else:
1250 1251 1252 1253 1254 1255
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1256
            for i in range(self.trainer_num):
1257 1258 1259 1260 1261 1262 1263
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1264 1265
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1266 1267 1268 1269 1270 1271 1272 1273
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1274

1275
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1276
                            grad_to_block_id, origin_program, merged_var):
1277
        program = optimize_block.program
T
typhoonzero 已提交
1278
        pserver_block = program.global_block()
1279
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1280

T
typhoonzero 已提交
1281 1282
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1292
        for key in opt_op.input_names:
T
typhoonzero 已提交
1293 1294
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1311
            elif key == "Param":
W
Wu Yi 已提交
1312
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1313 1314
                if not param_block:
                    return
T
typhoonzero 已提交
1315
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1316
                    name=param_block.name,
T
typhoonzero 已提交
1317
                    persistable=True,
T
typhoonzero 已提交
1318 1319 1320
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1321
            elif key == "LearningRate":
1322
                # learning rate variable has already be created by non-optimize op,
1323
                # don't create it once again.
1324
                lr_varname = opt_op.input(key)[0]
1325
                if lr_varname in pserver_block.vars:
1326 1327 1328 1329 1330 1331 1332 1333 1334
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1335

T
typhoonzero 已提交
1336
        for key in opt_op.input_names:
1337
            new_shape = None
W
Wu Yi 已提交
1338
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1339
                continue
1340
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1341 1342 1343 1344
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1345
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1346 1347 1348 1349 1350
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1351

1352
        # change output's ParamOut variable
1353 1354
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1355
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1356

1357
        optimize_block.append_op(
T
typhoonzero 已提交
1358 1359
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1360
            outputs=outputs,
G
gongweibao 已提交
1361
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1362

1363 1364
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1365
        for _, g in six.iteritems(var_dict):
1366 1367 1368 1369 1370 1371
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1372 1373 1374
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1375
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1376 1377 1378 1379
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1380
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1381 1382 1383

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1384
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1385 1386 1387 1388
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1389
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1390

Y
Yancey1989 已提交
1391
        return block.append_op(
G
gongweibao 已提交
1392
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1393 1394

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1395
        program = optimize_block.program
1396
        # Append the ops for parameters that do not need to be optimized/updated
1397 1398
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1399
        for key, varlist in six.iteritems(inputs):
1400 1401
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1402
            for var in varlist:
1403 1404 1405 1406 1407 1408
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1409
                elif var.name not in program.global_block().vars:
1410
                    program.global_block().create_var(
T
typhoonzero 已提交
1411 1412 1413 1414 1415
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1416 1417
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1418
        for key, varlist in six.iteritems(outputs):
1419 1420 1421
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1422 1423 1424 1425
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1426
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1427
                    program.global_block()._clone_variable(var)
1428

Y
Yancey1989 已提交
1429
        return optimize_block.append_op(
T
typhoonzero 已提交
1430
            type=opt_op.type,
T
typhoonzero 已提交
1431 1432
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1433
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1434

1435 1436 1437 1438
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1439 1440
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1441 1442 1443 1444 1445 1446
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1447 1448
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1449 1450 1451 1452 1453 1454
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1455
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1456 1457
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1458 1459 1460 1461 1462 1463 1464
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1465
        if op.input("Param")[0] in param_names:
1466 1467 1468
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1469
                param = op.input("Param")[0]
T
typhoonzero 已提交
1470
                if same_or_split_var(n, param) and n != param:
1471 1472 1473
                    return True
            return False

T
typhoonzero 已提交
1474
    def _get_input_map_from_op(self, varmap, op):
1475
        """Returns a dict from op input name to the vars in varmap."""
1476
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1488
        """Returns a dict from op output name to the vars in varmap."""
1489
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1499 1500 1501 1502 1503 1504

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1505
            if self._is_optimizer_op(op):
1506 1507 1508 1509
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1510
        block = self.origin_program.global_block()
1511 1512 1513 1514 1515
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1516

1517 1518 1519 1520 1521
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1522
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1523 1524 1525 1526 1527 1528
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1529 1530
                    # we only need to append op for once
                    break
1531
        return lr_ops
Y
Yancey1989 已提交
1532

W
Wu Yi 已提交
1533 1534 1535 1536 1537
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1538 1539
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1540 1541 1542
            return True
        return False

Y
Yancey1989 已提交
1543
    def _get_optimize_pass(self):
1544
        """
1545
        Get optimizer operators, parameters and gradients from origin_program
1546 1547 1548 1549
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1550 1551 1552
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1553
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1554
        for op in block.ops:
W
Wu Yi 已提交
1555
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1556
                opt_ops.append(op)
1557 1558 1559 1560 1561
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1562 1563
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1564 1565 1566 1567
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1568 1569 1570
            else:
                pass
        return opt_ops, params_grads