distribute_transpiler.py 65.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
S
seiriosPlus 已提交
34
import random
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
53 54


T
typhoonzero 已提交
55 56 57 58 59 60
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
61

T
typhoonzero 已提交
62 63
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
64 65


66 67 68 69
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
70
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
71
    """
72 73 74 75 76 77
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
78
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
79 80 81

    Args:
        var_list (list): List of variables.
82 83
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
84 85
        min_block_size (int): Minimum splitted block size.
    Returns:
86
        blocks (list[(varname, block_id, current_block_size)]): A list
87
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
88 89 90
    """
    blocks = []
    for var in var_list:
91
        split_count = slice_count
T
typhoonzero 已提交
92 93 94 95
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
96
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
106
        # update split_count after aligning
T
typhoonzero 已提交
107
        split_count = int(math.ceil(var_numel / float(block_size)))
108
        for block_id in range(split_count):
T
typhoonzero 已提交
109 110 111 112 113 114 115
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
116 117 118 119 120 121 122
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
123
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
132
class DistributeTranspiler(object):
Y
yi.wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

180 181 182 183 184 185 186
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
187 188 189 190 191 192 193 194 195 196 197
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
198 199 200 201
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
202 203 204
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
205 206 207 208 209 210 211
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
212
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
213
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
214 215 216
        self.param_name_to_grad_name = dict()
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
217

G
gongweibao 已提交
218
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
219
        self._init_splited_vars()
220

G
gongweibao 已提交
221
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
222
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
223
        send_vars = []
224 225 226 227 228 229

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
230
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
231

G
gongweibao 已提交
232
        if not self.config.slice_var_up:
233
            random.seed(self.origin_program.random_seed)
S
seiriosPlus 已提交
234
            random.shuffle(grad_var_mapping_items)
235

236 237
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
238
            eplist = ps_dispatcher.dispatch(splited_vars)
239

G
gongweibao 已提交
240
            if not self.config.slice_var_up:
241 242
                assert (len(splited_vars) == 1)

243
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
244
            if len(splited_vars) == 1:
245
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
246
                index = find_op_by_output_arg(program.global_block(),
247
                                              splited_grad_varname)
Y
Yancey1989 已提交
248
            elif len(splited_vars) > 1:
249
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
250
                index = find_op_by_output_arg(program.global_block(),
251
                                              splited_grad_varname)
Y
Yancey1989 已提交
252
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
253
                index += 1
Y
Yancey1989 已提交
254 255
            else:
                AssertionError("Can not insert the send op by original "
256
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
257

258 259
            dummy_output = program.global_block().create_var()
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
260
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
261
                index=index + 1,
262
                type="send",
Y
update  
Yancey1989 已提交
263
                inputs={"X": splited_vars},
264
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
265 266
                attrs={
                    "epmap": eplist,
267 268
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
269
                })
Y
update  
Yancey1989 已提交
270 271
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
272 273 274 275 276

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
277
                outputs={},
Y
Yancey1989 已提交
278 279
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
280
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
281
                })
Y
Yancey1989 已提交
282

G
gongweibao 已提交
283
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
284
        recv_vars = []
Y
update  
Yancey1989 已提交
285
        for _, var in enumerate(send_vars):
286
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
287
        ps_dispatcher.reset()
Y
Yancey1989 已提交
288 289
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
290
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
291 292
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
293

Y
Yancey1989 已提交
294
        # step4: Concat the parameters splits together after recv.
295
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
296 297 298 299
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
300 301
            grad_send_dummy_out = grad_name_to_send_dummy_out[
                self.param_name_to_grad_name[param_varname]]
Y
Yancey1989 已提交
302 303
            program.global_block().append_op(
                type="recv",
304
                inputs={"X": [grad_send_dummy_out]},
Y
Yancey1989 已提交
305 306 307
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
308 309
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
310
                })
T
typhoonzero 已提交
311

Q
qiaolongfei 已提交
312 313 314 315 316 317 318 319 320
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
321

322
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
323 324
            if len(splited_var) <= 1:
                continue
325
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
326
            program.global_block().append_op(
T
typhoonzero 已提交
327
                type="concat",
T
typhoonzero 已提交
328
                inputs={"X": splited_var},
T
typhoonzero 已提交
329
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
330
                attrs={"axis": 0})
T
typhoonzero 已提交
331

G
gongweibao 已提交
332 333
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

334
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
335 336
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
337
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
338

T
typhoonzero 已提交
339
    def get_trainer_program(self):
Y
yi.wu 已提交
340 341 342 343 344 345
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
346
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
347
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
348
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
349
        self.origin_program.__str__()
G
gongweibao 已提交
350

351
        return self.origin_program
T
typhoonzero 已提交
352

G
gongweibao 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
393
                inputs={"X": []},
G
gongweibao 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
422 423
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
424
        Get parameter server side program.
425

Y
yi.wu 已提交
426 427
        Args:
            endpoint (str): current parameter server endpoint.
428

Y
yi.wu 已提交
429 430
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
431
        """
Y
yi.wu 已提交
432 433 434 435 436
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
437 438
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
439
        pserver_program.random_seed = self.origin_program.random_seed
440
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
441 442 443 444 445 446 447 448
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
449 450 451 452 453
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
454 455 456 457 458 459 460 461 462
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
463
            if self.sync_mode and self.trainer_num > 1:
464
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
465 466 467 468 469 470 471 472 473
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
474

Q
qiaolongfei 已提交
475
        # step 3
476
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
477 478 479
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
480
        # step 3.2
T
typhoonzero 已提交
481 482 483 484
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
485 486
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
487
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
488
        # step 3.3
T
typhoonzero 已提交
489
        # Iterate through the ops, and if an op and the optimize ops
490
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
491
        # append it into the sub program.
T
typhoonzero 已提交
492 493 494

        global_ops = []

Y
wip  
yi.wu 已提交
495 496
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
497
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
498
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
499
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
500
            elif op not in lr_ops:
Q
Qiyang Min 已提交
501
                self._append_pserver_non_opt_ops(block, op)
502 503 504 505 506 507

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
508

Y
Yancey1989 已提交
509
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
510 511 512 513 514 515 516 517
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
518
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
519 520 521

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
522
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
523 524

            # clone ops
Y
Yancey1989 已提交
525 526
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
527
                # clone sub_block of op
Y
Yancey1989 已提交
528
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
529 530 531 532

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

533
        # append lr decay ops to the child block if exists
534
        lr_ops = self._get_lr_ops()
535 536
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
537
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
538 539
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
540
            optimize_blocks.append(lr_decay_block)
541
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
542
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
543
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
544 545
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
546

T
typhoonzero 已提交
547
        # append op to the current block
Q
qiaolongfei 已提交
548
        grad_to_block_id = []
Q
qiaolongfei 已提交
549
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
550
        for idx, opt_op in enumerate(opt_op_on_pserver):
551
            per_opt_block = pserver_program.create_block(pre_block_idx)
552
            optimize_blocks.append(per_opt_block)
553
            # append grad merging ops before clip and weight decay
554
            # cases may like:
T
typhoonzero 已提交
555
            # L2Decay op -> clip op -> optimize
556 557 558 559 560 561 562
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
563
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
564 565
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
566
                if ufind.is_connected(op, opt_op) and op not in global_ops:
567
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
568
                                           merged_var, lr_ops)
T
typhoonzero 已提交
569

W
Wu Yi 已提交
570 571
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
572
        # append global ops
573
        if global_ops:
Q
qiaolongfei 已提交
574 575
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
576
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
577
            for glb_op in global_ops:
X
Xi Chen 已提交
578
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
579
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
580

581
        # process distributed lookup_table
Q
qiaolongfei 已提交
582
        prefetch_var_name_to_block_id = []
583 584
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
585
            table_opt_block = self._create_table_optimize_block(
586
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
587
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
588
            prefetch_var_name_to_block_id = self._create_prefetch_block(
589
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
590 591
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
592 593 594 595

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
596
            assert len(prefetch_var_name_to_block_id) > 0
597
        else:
Q
qiaolongfei 已提交
598
            assert len(prefetch_var_name_to_block_id) == 0
599

600
        attrs = {
601
            "optimize_blocks": optimize_blocks,
602 603 604
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
605
            "grad_to_block_id": grad_to_block_id,
606 607 608 609
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
610
            attrs['checkpint_block_id'] = checkpoint_block_id
611

T
typhoonzero 已提交
612 613 614 615 616
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
617
            attrs=attrs)
618

W
Wu Yi 已提交
619
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
620 621
        return pserver_program

622 623 624 625
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
626 627 628 629
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
630 631 632 633 634

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
635 636
            startup_program (Program): if pass None, will use
                default_startup_program
637

Y
yi.wu 已提交
638 639
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
640 641
        """
        s_prog = Program()
642 643 644 645
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
646
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
647 648 649 650 651 652 653 654 655 656 657
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
658
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
659
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
660
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
661 662 663 664
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
665
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
666 667
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
668 669 670 671 672 673 674 675 676 677
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
678 679

            if op_on_pserver:
680 681 682
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
683 684 685
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
686
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
687 688 689 690
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
691
                    attrs=op.all_attrs())
T
typhoonzero 已提交
692 693
        return s_prog

694 695
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
696 697 698 699 700 701 702 703 704
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
705
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
757
    def _init_splited_vars(self):
Y
yi.wu 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
781
        if self.config.slice_var_up:
Y
yi.wu 已提交
782 783
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
784 785 786
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
787
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
788 789
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
790 791 792
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
793 794 795 796
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
797 798
        assert (len(grad_blocks) == len(param_blocks))

799
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
800 801
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
802
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
803 804 805 806
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
807
        # dict(grad_splited_var -> param_splited_var)
808
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
809 810 811 812
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
813
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
814 815

        # create mapping of endpoint -> split var to create pserver side program
816
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
817 818 819 820 821 822 823 824 825
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

826
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
827 828
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
829
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
830 831 832 833 834 835 836 837 838
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
839 840 841 842 843 844 845 846 847

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

848
                    lookup_table_op_index = list(all_ops).index(op)
849 850 851
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
852
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
853
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
854 855 856 857 858 859
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
860
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
861 862 863 864
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
865 866

                    # insert split_ids_op
W
Wu Yi 已提交
867
                    program.global_block()._insert_op(
868
                        index=lookup_table_op_index,
869 870 871 872 873 874 875
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
876
                        outputs={"Out": prefetch_input_vars})
877 878

                    # insert prefetch_op
W
Wu Yi 已提交
879
                    program.global_block()._insert_op(
880
                        index=lookup_table_op_index + 1,
881
                        type="prefetch",
Q
qiaolongfei 已提交
882 883
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
884
                        attrs={
885
                            "epmap": pserver_endpoints,
886 887 888
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
889
                        })
890 891

                    # insert concat_op
W
Wu Yi 已提交
892
                    program.global_block()._insert_op(
893 894 895 896 897 898 899
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
900
                            'X': prefetch_output_vars
901
                        },
902 903 904 905 906
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
907
                        })
908 909

                    # delete lookup_table_op
910
                    delete_ops(program.global_block(), [op])
911 912 913
                    # break for loop
                    break

Y
Yancey1989 已提交
914
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
915
        # 2. add split_ids_op and send_op to send gradient to pservers
916 917
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
918
        table_grad_name = grad_var_name(self.table_name)
919 920 921 922
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
923
                program.global_block()._insert_op(
924 925 926 927 928
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
929
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
930
                program.global_block()._insert_op(
931
                    index=op_index + 2,
932
                    type="send",
933
                    inputs={'X': self.trainer_side_table_grad_list},
934
                    outputs={'Out': []},
Y
Yancey1989 已提交
935
                    attrs={
936
                        "sync_mode": True,
Y
Yancey1989 已提交
937 938 939
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
940 941 942 943 944 945
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
974 975

    def _create_table_optimize_block(self, pserver_index, pserver_program,
976
                                     pre_block_idx, grad_to_block_id):
977 978
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
979 980
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
981

T
tangwei12 已提交
982
        zero_dim = int(
T
tangwei12 已提交
983 984 985 986
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
987 988
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
989
            shape=table_shape,
Y
Yancey1989 已提交
990 991 992
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
993 994
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
995
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
996
            self.origin_program.global_block().vars[grad_var_name(
997
                self.table_name)])
998 999 1000 1001

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1002 1003
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1004
        ][0]
Q
qiaolongfei 已提交
1005
        table_opt_block = pserver_program.create_block(pre_block_idx)
1006

1007 1008 1009
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1010
            pserver_side_table_grad_list = [
1011 1012 1013 1014 1015 1016 1017 1018 1019
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1020
            # append sum op for pserver_side_table_grad_list
1021 1022
            table_opt_block.append_op(
                type="sum",
1023
                inputs={"X": pserver_side_table_grad_list},
1024 1025
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1026 1027
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1028
            origin_grad_name = grad_var.name
1029 1030
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1031 1032
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1033
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1034
            grad_var = pserver_program.global_block()._rename_var(
1035
                origin_grad_name, splited_grad_name)
1036 1037 1038 1039 1040 1041 1042 1043 1044

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1045
        # only support sgd now
1046 1047 1048 1049
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1050
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1051

1052 1053 1054
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1055 1056
        return table_opt_block

T
tangwei12 已提交
1057 1058 1059 1060 1061 1062
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1063
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1064
            name="kLookupTablePath",
T
tangwei12 已提交
1065 1066
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1067

T
tangwei12 已提交
1068
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1069
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1070 1071 1072 1073
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1074
            attrs={'file_path': "none"})
T
tangwei12 已提交
1075 1076 1077

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1078 1079 1080 1081 1082
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1083
        Create vars for each split.
T
typhoonzero 已提交
1084 1085
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1086 1087 1088 1089
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1090
        Returns:
1091
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1092
                from original var name to each var split.
T
typhoonzero 已提交
1093
        """
1094 1095

        # varname->[(block_id, current_block_size)]
1096
        block_map = collections.OrderedDict()
1097

1098
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1099 1100
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1101
            if varname not in block_map:
T
typhoonzero 已提交
1102
                block_map[varname] = []
1103
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1104

M
minqiyang 已提交
1105
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1106
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1107
            if len(splited) == 1:
1108
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1109 1110
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1111
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1112 1113 1114 1115 1116
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1117
                continue
T
typhoonzero 已提交
1118
            var_mapping[varname] = []
T
typhoonzero 已提交
1119 1120 1121 1122
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1123

T
typhoonzero 已提交
1124
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1125
                size = block[1]
M
minqiyang 已提交
1126
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1127 1128 1129
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1130
                new_var_name = ""
1131
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1132 1133 1134 1135 1136
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1137
                var = program.global_block().create_var(
T
typhoonzero 已提交
1138 1139
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1140
                    dtype=orig_var.dtype,
1141
                    type=orig_var.type,
T
typhoonzero 已提交
1142
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1143
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1144
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1145
        return var_mapping
T
done  
typhoonzero 已提交
1146

W
Wu Yi 已提交
1147
    def _create_splited_vars(self, source_var, block, tag):
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1158 1159 1160 1161 1162 1163
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1164
            persistable=persistable)
T
done  
typhoonzero 已提交
1165

Y
Yancey1989 已提交
1166
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1167 1168 1169 1170
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1171
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1181
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1191

T
typhoonzero 已提交
1192 1193 1194 1195
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1196
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1219 1220
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1221
        orig_var_name = ""
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1232
        else:
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1260
        else:
1261 1262 1263 1264 1265 1266
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1267
            for i in range(self.trainer_num):
1268 1269 1270 1271 1272 1273 1274
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1275 1276
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1277 1278 1279 1280 1281 1282 1283 1284
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1285

1286
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1287
                            grad_to_block_id, origin_program, merged_var):
1288
        program = optimize_block.program
T
typhoonzero 已提交
1289
        pserver_block = program.global_block()
1290
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1291

T
typhoonzero 已提交
1292 1293
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1303
        for key in opt_op.input_names:
T
typhoonzero 已提交
1304 1305
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1322
            elif key == "Param":
W
Wu Yi 已提交
1323
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1324 1325
                if not param_block:
                    return
T
typhoonzero 已提交
1326
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1327
                    name=param_block.name,
T
typhoonzero 已提交
1328
                    persistable=True,
T
typhoonzero 已提交
1329 1330 1331
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1332
            elif key == "LearningRate":
1333
                # learning rate variable has already be created by non-optimize op,
1334
                # don't create it once again.
1335
                lr_varname = opt_op.input(key)[0]
1336
                if lr_varname in pserver_block.vars:
1337 1338 1339 1340 1341 1342 1343 1344 1345
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1346

T
typhoonzero 已提交
1347
        for key in opt_op.input_names:
1348
            new_shape = None
W
Wu Yi 已提交
1349
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1350
                continue
1351
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1352 1353 1354 1355
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1356
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1357 1358 1359 1360 1361
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1362

1363
        # change output's ParamOut variable
1364 1365
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1366
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1367

1368
        optimize_block.append_op(
T
typhoonzero 已提交
1369 1370
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1371
            outputs=outputs,
G
gongweibao 已提交
1372
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1373

1374 1375
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1376
        for _, g in six.iteritems(var_dict):
1377 1378 1379 1380 1381 1382
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1383 1384 1385
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1386
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1387 1388 1389 1390
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1391
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1392 1393 1394

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1395
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1396 1397 1398 1399
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1400
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1401

Y
Yancey1989 已提交
1402
        return block.append_op(
G
gongweibao 已提交
1403
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1404 1405

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1406
        program = optimize_block.program
1407
        # Append the ops for parameters that do not need to be optimized/updated
1408 1409
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1410
        for key, varlist in six.iteritems(inputs):
1411 1412
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1413
            for var in varlist:
1414 1415 1416 1417 1418 1419
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1420
                elif var.name not in program.global_block().vars:
1421
                    program.global_block().create_var(
T
typhoonzero 已提交
1422 1423 1424 1425 1426
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1427 1428
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1429
        for key, varlist in six.iteritems(outputs):
1430 1431 1432
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1433 1434 1435 1436
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1437
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1438
                    program.global_block()._clone_variable(var)
1439

Y
Yancey1989 已提交
1440
        return optimize_block.append_op(
T
typhoonzero 已提交
1441
            type=opt_op.type,
T
typhoonzero 已提交
1442 1443
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1444
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1445

1446 1447 1448 1449
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1450 1451
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1452 1453 1454 1455 1456 1457
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1458 1459
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1460 1461 1462 1463 1464 1465
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1466
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1467 1468
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1469 1470 1471 1472 1473 1474 1475
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1476
        if op.input("Param")[0] in param_names:
1477 1478 1479
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1480
                param = op.input("Param")[0]
T
typhoonzero 已提交
1481
                if same_or_split_var(n, param) and n != param:
1482 1483 1484
                    return True
            return False

T
typhoonzero 已提交
1485
    def _get_input_map_from_op(self, varmap, op):
1486
        """Returns a dict from op input name to the vars in varmap."""
1487
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1499
        """Returns a dict from op output name to the vars in varmap."""
1500
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1510 1511 1512 1513 1514 1515

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1516
            if self._is_optimizer_op(op):
1517 1518 1519 1520
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1521
        block = self.origin_program.global_block()
1522 1523 1524 1525 1526
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1527

1528 1529 1530 1531 1532
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1533
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1534 1535 1536 1537 1538 1539
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1540 1541
                    # we only need to append op for once
                    break
1542
        return lr_ops
Y
Yancey1989 已提交
1543

W
Wu Yi 已提交
1544 1545 1546 1547 1548
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1549 1550
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1551 1552 1553
            return True
        return False

Y
Yancey1989 已提交
1554
    def _get_optimize_pass(self):
1555
        """
1556
        Get optimizer operators, parameters and gradients from origin_program
1557 1558 1559 1560
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1561 1562 1563
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1564
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1565
        for op in block.ops:
W
Wu Yi 已提交
1566
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1567
                opt_ops.append(op)
1568 1569 1570 1571 1572
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1573 1574
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1575 1576 1577 1578
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1579 1580 1581
            else:
                pass
        return opt_ops, params_grads