Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
9c0b1cf1
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9c0b1cf1
编写于
1月 09, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update wip pserver transpile
上级
56e758fc
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
106 addition
and
46 deletion
+106
-46
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+106
-46
未找到文件。
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
9c0b1cf1
...
...
@@ -98,8 +98,7 @@ class DistributeTranspiler:
# 3. append send_op to trainer.
# 4. append concat_op to trainer to update local weights.
# 5. create new program as parameter server.
# 5. create parameter server program by split_method generated endpoint->VarBlock
# 6. run compile time infershape for parameter server program
# 6. create parameter server program by split_method generated endpoint->VarBlock
pserver_endpoints
=
pservers
.
split
(
","
)
...
...
@@ -124,6 +123,15 @@ class DistributeTranspiler:
# let send_op know which endpoint to send which var, eplist is of the same
# order of send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
# create mapping of endpoint -> var to create pserver side program
self
.
param_grad_ep_mapping
=
dict
()
for
i
,
ep
in
enumerate
(
eplist
):
param
=
send_outputs
[
i
]
grad
=
send_inputs
[
i
]
if
not
self
.
param_grad_ep_mapping
.
has_key
(
ep
):
self
.
param_grad_ep_mapping
[
ep
]
=
{
"params"
:
[],
"grads"
:
[]}
self
.
param_grad_ep_mapping
[
ep
][
"params"
].
append
(
param
)
self
.
param_grad_ep_mapping
[
ep
][
"grads"
].
append
(
grad
)
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
...
...
@@ -235,27 +243,29 @@ class DistributeTranspiler:
var_list
.
append
(
var_each
)
return
var_list
def
get_pserver_program
(
self
,
endpoint
,
optimize_ops
):
pserver_program
=
Program
()
for
v
in
self
.
param_grad_map
[
endpoint
][
"params"
]:
self
.
_clone_param
(
pserver_program
.
global_block
(),
v
)
optimize_sub_program
=
Program
()
grad_var_names
=
[
var
.
name
for
var
in
self
.
param_grad_map
[
endpoint
][
"grads"
]
]
for
opt_op
in
optimize_ops
:
for
_
,
var
in
opt_op
.
inputs
.
iteritems
():
# NOTE: append operators to merge gradients from multiple
# trainers. If trainers == 1, this is not needed.
if
self
.
trainers
>
1
and
var
.
name
in
grad_var_names
:
def
_append_pserver_ops
(
self
,
opt_op
,
endpoint
):
new_inputs
=
dict
()
for
key
,
var
in
opt_op
.
inputs
.
iteritems
():
if
key
==
"Grad"
:
grad_block
=
None
for
g
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]:
if
g
.
name
.
startswith
(
var
.
name
):
grad_block
=
g
break
if
not
grad_block
:
# do not append this op if current endpoint
# is not dealing with this grad block
return
merged_var
=
optimize_sub_program
.
global_block
().
create_var
(
name
=
grad_block
.
name
,
persistable
=
grad_block
.
persistable
,
dtype
=
grad_block
.
dtype
,
shape
=
grad_block
.
shape
)
# append merging ops if trainers > 1
if
self
.
trainers
>
1
:
vars2merge
=
self
.
_create_var_for_trainers
(
optimize_sub_program
.
global_block
(),
var
,
self
.
trainers
)
merged_var
=
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
optimize_sub_program
.
global_block
(),
grad_block
,
self
.
trainers
)
optimize_sub_program
.
global_block
().
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
vars2merge
},
...
...
@@ -265,38 +275,88 @@ class DistributeTranspiler:
inputs
=
{
"X"
:
merged_var
},
outputs
=
{
"Out"
:
merged_var
},
attrs
=
{
"scale"
:
1.0
/
float
(
self
.
trainers
)})
else
:
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
new_inputs
[
key
]
=
merged_var
elif
key
==
"Param"
:
# param is already created on global program
param_block
=
None
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
if
p
.
name
.
startswith
(
var
.
name
):
param_block
=
p
break
if
not
param_block
:
return
tmpvar
=
optimize_sub_program
.
global_block
().
create_var
(
name
=
param_block
.
name
,
persistable
=
param_block
.
persistable
,
dtype
=
param_block
.
dtype
,
shape
=
param_block
.
shape
)
new_inputs
[
key
]
=
tmpvar
else
:
tmpvar
=
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
new_inputs
[
key
]
=
tmpvar
if
opt_op
.
inputs
.
has_key
(
"Grad"
):
if
opt_op
.
inputs
[
"Grad"
].
name
in
grad_var_names
:
optimize_sub_program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
opt_op
.
inputs
,
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
# FIXME: change outputs ParamOut
optimize_sub_program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
def
_append_pserver_non_opt_ops
(
self
,
opt_op
):
for
_
,
var
in
opt_op
.
inputs
.
iteritems
():
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
optimize_sub_program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
def
get_pserver_program
(
self
,
endpoint
,
optimize_ops
):
"""
get pserver side program by endpoint
NOTE: assume blocks of the same variable is not distributed
on the same pserver, only change param/grad varnames for
trainers to fetch. For each pserver endpoint, server side
program must be a sub-set of the original optimization program.
"""
# step5
pserver_program
=
Program
()
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
self
.
_clone_param
(
pserver_program
.
global_block
(),
v
)
# step6
optimize_sub_program
=
Program
()
for
opt_op
in
optimize_ops
:
if
opt_ops
.
inputs
.
has_key
(
"Grad"
):
# append optimize_op
self
.
_append_pserver_ops
(
opt_op
,
endpoint
)
else
:
optimize_sub_program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
opt_op
.
inputs
,
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
self
.
_append_pserver_non_opt_ops
(
opt_op
)
pserver_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"RX"
:
self
.
param_grad_map
[
endpoint
][
"grads"
]
},
# grads to recv
inputs
=
{
"RX"
:
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]
},
# grads to recv
outputs
=
{},
attrs
=
{
"OptimizeProgram"
:
optimize_sub_program
.
desc
,
"endpoint"
:
endpoint
,
"ParamList"
:
[
p
.
name
for
p
in
self
.
param_grad_map
[
endpoint
][
"params"
]],
"GradList"
:
[
p
.
name
for
p
in
self
.
param_grad_map
[
endpoint
][
"grads"
]],
"ParamList"
:
[
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
],
"GradList"
:
[
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]
],
"Trainers"
:
self
.
trainers
})
pserver_program
.
sync_with_cpp
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录