distribute_transpiler.py 70.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
42
                        default_startup_program, Block, \
W
Wu Yi 已提交
43
                        Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
53 54


T
typhoonzero 已提交
55 56 57 58 59 60
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
61

T
typhoonzero 已提交
62 63
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
64 65


66 67 68 69
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
70
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
71
    """
72 73 74 75 76 77
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
78
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
79 80 81

    Args:
        var_list (list): List of variables.
82 83
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
84 85
        min_block_size (int): Minimum splitted block size.
    Returns:
86
        blocks (list[(varname, block_id, current_block_size)]): A list
87
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
88 89 90
    """
    blocks = []
    for var in var_list:
91
        split_count = slice_count
T
typhoonzero 已提交
92 93 94 95
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
96
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
97 98 99 100 101 102 103 104 105
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
106
        # update split_count after aligning
T
typhoonzero 已提交
107
        split_count = int(math.ceil(var_numel / float(block_size)))
108
        for block_id in range(split_count):
T
typhoonzero 已提交
109 110 111 112 113 114 115
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
116 117 118 119 120 121 122
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
123
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
124 125 126 127 128 129 130 131
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
132
class DistributeTranspiler(object):
Y
yi.wu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175 176 177 178 179
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

180 181 182 183 184
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
185 186
                  sync_mode=True,
                  startup_program=None):
187
        """
Y
yi.wu 已提交
188 189 190 191 192 193 194 195 196 197 198
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
199 200
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
201 202 203
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
204 205
        if startup_program is None:
            startup_program = default_startup_program()
206
        self.origin_program = program
W
Wu Yi 已提交
207 208
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
209

210 211 212 213 214 215 216
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
217
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
218
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
219
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
220
        self.grad_name_to_param_name = dict()
221 222
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
223
            self.grad_name_to_param_name[grad_var.name] = param_var.name
224

T
tangwei12 已提交
225 226 227 228 229 230
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

231
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
232
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
233
        self._init_splited_vars()
234

G
gongweibao 已提交
235
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
236
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
237
        send_vars = []
238 239 240 241 242 243

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
244
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
245

G
gongweibao 已提交
246
        if not self.config.slice_var_up:
247 248
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
249

250 251
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
252
            eplist = ps_dispatcher.dispatch(splited_vars)
253

G
gongweibao 已提交
254
            if not self.config.slice_var_up:
255 256
                assert (len(splited_vars) == 1)

257
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
258
            if len(splited_vars) == 1:
259
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
260
                index = find_op_by_output_arg(program.global_block(),
261
                                              splited_grad_varname)
Y
Yancey1989 已提交
262
            elif len(splited_vars) > 1:
263
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
264
                index = find_op_by_output_arg(program.global_block(),
265
                                              splited_grad_varname)
Y
Yancey1989 已提交
266
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
267
                index += 1
Y
Yancey1989 已提交
268 269
            else:
                AssertionError("Can not insert the send op by original "
270
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
271

W
Wu Yi 已提交
272 273
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
274
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
275

W
Wu Yi 已提交
276 277 278 279
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
280
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
281
                index=index + 1,
282
                type="send",
Y
update  
Yancey1989 已提交
283
                inputs={"X": splited_vars},
284
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
285 286
                attrs={
                    "epmap": eplist,
287
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
288 289 290 291
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
292
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
293
                })
Y
update  
Yancey1989 已提交
294 295
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
296 297

        if self.sync_mode:
W
Wu Yi 已提交
298 299 300
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
            input_deps = grad_name_to_send_dummy_out.values()
Y
Yancey1989 已提交
301 302
            program.global_block().append_op(
                type="send_barrier",
W
Wu Yi 已提交
303 304
                inputs={"X": input_deps},
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
305 306
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
307
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
308
                })
Y
Yancey1989 已提交
309

G
gongweibao 已提交
310
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
311
        recv_vars = []
Y
update  
Yancey1989 已提交
312
        for _, var in enumerate(send_vars):
313
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
314
        ps_dispatcher.reset()
Y
Yancey1989 已提交
315 316
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
317
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
318 319
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
320

Y
Yancey1989 已提交
321
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
322
        all_recv_outputs = []
323
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
324 325 326 327
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
328 329 330 331 332 333 334
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
                recv_dep_in = grad_name_to_send_dummy_out[
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
335 336 337 338 339 340 341 342 343
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
344 345
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
346
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
347 348 349
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
350
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
351 352
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
353
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
354
                })
T
typhoonzero 已提交
355

Q
qiaolongfei 已提交
356
        if self.sync_mode:
W
Wu Yi 已提交
357
            # form a WAW dependency
Q
qiaolongfei 已提交
358 359 360
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
361
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
362 363 364 365
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
366

367
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
368 369
            if len(splited_var) <= 1:
                continue
370
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
371
            program.global_block().append_op(
T
typhoonzero 已提交
372
                type="concat",
T
typhoonzero 已提交
373
                inputs={"X": splited_var},
T
typhoonzero 已提交
374
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
375
                attrs={"axis": 0})
T
typhoonzero 已提交
376

G
gongweibao 已提交
377 378
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

379
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
380 381
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
382
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
383

T
typhoonzero 已提交
384
    def get_trainer_program(self):
Y
yi.wu 已提交
385 386 387 388 389 390
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
391
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
392
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
393
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
394
        self.origin_program.__str__()
G
gongweibao 已提交
395

396
        return self.origin_program
T
typhoonzero 已提交
397

W
Wu Yi 已提交
398
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
399 400 401 402
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
403 404
            recv_vars (list): Variable list to recv for current trainer_id
            eplist (list): A list of strings indicating 
G
gongweibao 已提交
405 406 407 408

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
409
        startup_program = self.startup_program
G
gongweibao 已提交
410 411 412 413

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
414
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
435
                inputs={"X": []},
G
gongweibao 已提交
436 437 438 439 440 441
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
442 443
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
444 445 446
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
447
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
448 449 450 451 452
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
453
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
454 455 456
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
457 458 459 460 461 462 463 464 465 466 467 468
            # NOTE: if enable memory optimization, origin vars maybe removed.
            if startup_program.global_block().vars.has_key(varname):
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
469 470 471 472 473 474 475 476
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
477 478
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
479
        Get parameter server side program.
480

Y
yi.wu 已提交
481 482
        Args:
            endpoint (str): current parameter server endpoint.
483

Y
yi.wu 已提交
484 485
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
486
        """
Y
yi.wu 已提交
487 488 489 490
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
W
Wu Yi 已提交
491 492 493
        sys.stderr.write("get_pserver_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
T
typhoonzero 已提交
494 495
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
496
        pserver_program.random_seed = self.origin_program.random_seed
497
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
498 499 500 501 502 503 504 505
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
506 507 508 509 510
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
511 512 513 514 515 516 517 518 519
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
520
            if self.sync_mode and self.trainer_num > 1:
521
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
522 523 524 525 526 527 528 529 530
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
531

Q
qiaolongfei 已提交
532
        # step 3
533
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
534 535 536
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
537
        # step 3.2
T
typhoonzero 已提交
538 539 540 541
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
542 543
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
544
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
545
        # step 3.3
T
typhoonzero 已提交
546
        # Iterate through the ops, and if an op and the optimize ops
547
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
548
        # append it into the sub program.
T
typhoonzero 已提交
549 550 551

        global_ops = []

Y
wip  
yi.wu 已提交
552 553
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
554
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
555
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
556
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
557
            elif op not in lr_ops:
Q
Qiyang Min 已提交
558
                self._append_pserver_non_opt_ops(block, op)
559 560 561 562 563 564

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
565

Y
Yancey1989 已提交
566
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
567 568 569 570 571 572 573 574
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
575
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
576 577 578

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
579
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
580 581

            # clone ops
Y
Yancey1989 已提交
582 583
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
584
                # clone sub_block of op
Y
Yancey1989 已提交
585
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
586 587 588 589

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

590
        # append lr decay ops to the child block if exists
591
        lr_ops = self._get_lr_ops()
592 593
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
594
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
595 596
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
597
            optimize_blocks.append(lr_decay_block)
598
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
599
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
600
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
601 602
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
603

T
typhoonzero 已提交
604
        # append op to the current block
Q
qiaolongfei 已提交
605
        grad_to_block_id = []
Q
qiaolongfei 已提交
606
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
607
        for idx, opt_op in enumerate(opt_op_on_pserver):
608
            per_opt_block = pserver_program.create_block(pre_block_idx)
609
            optimize_blocks.append(per_opt_block)
610
            # append grad merging ops before clip and weight decay
611
            # cases may like:
T
typhoonzero 已提交
612
            # L2Decay op -> clip op -> optimize
613 614 615 616 617 618 619
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
620
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
621 622
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
623
                if ufind.is_connected(op, opt_op) and op not in global_ops:
624
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
625
                                           merged_var, lr_ops)
T
typhoonzero 已提交
626

W
Wu Yi 已提交
627 628
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
629
        # append global ops
630
        if global_ops:
Q
qiaolongfei 已提交
631 632
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
633
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
634
            for glb_op in global_ops:
X
Xi Chen 已提交
635
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
636
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
637

638
        # process distributed lookup_table
Q
qiaolongfei 已提交
639
        prefetch_var_name_to_block_id = []
640 641
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
642
            table_opt_block = self._create_table_optimize_block(
643
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
644
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
645
            prefetch_var_name_to_block_id = self._create_prefetch_block(
646
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
647 648
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
649

T
tangwei12 已提交
650 651
            pserver_program._distributed_lookup_table = self.table_name

652 653 654
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
655
            assert len(prefetch_var_name_to_block_id) > 0
656
        else:
Q
qiaolongfei 已提交
657
            assert len(prefetch_var_name_to_block_id) == 0
658

659
        attrs = {
660
            "optimize_blocks": optimize_blocks,
661 662 663
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
664
            "grad_to_block_id": grad_to_block_id,
665 666 667 668
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
669
            attrs['checkpint_block_id'] = checkpoint_block_id
670

T
typhoonzero 已提交
671 672 673 674 675
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
676
            attrs=attrs)
677

T
tangwei12 已提交
678
        # add distributed attrs
T
tangwei12 已提交
679
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
680
            endpoint)
681

W
Wu Yi 已提交
682
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
683 684
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
685 686
        return pserver_program

W
Wu Yi 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
        
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
        pserver_startup = self.get_startup_program(endpoint)
        return pserver_prog, pserver_startup

701 702
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
703
                            pserver_program=None,
704
                            startup_program=None):
T
typhoonzero 已提交
705
        """
W
Wu Yi 已提交
706 707
        **Deprecated**

T
typhoonzero 已提交
708 709 710
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
711 712 713

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
714 715 716
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
                when initalizing 
717

Y
yi.wu 已提交
718 719
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
720
        """
W
Wu Yi 已提交
721 722 723 724 725 726 727 728 729 730 731 732
        sys.stderr.write("get_startup_program() is deprecated, call\
            get_pserver_programs() to get pserver main and startup\
            in a single call.")
        if pserver_program != None:
            sys.stderr.write("passing pserver_program to get_startup_program()\
                is deprecated, you can use new API get_pserver_programs() to\
                get both pserver main program and startup program.")
        if startup_program != None:
            sys.stderr.write("passing startup_program to get_startup_program()\
                is deprecated, use fluid.program_guard() or pass this argument\
                to transpile() call.")

T
typhoonzero 已提交
733
        s_prog = Program()
W
Wu Yi 已提交
734
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
735
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
736 737 738 739 740 741 742 743 744 745 746
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
747
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
748
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
749
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
750 751 752 753
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
754
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
755 756
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
757 758 759 760 761 762 763 764 765 766
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
767 768

            if op_on_pserver:
769 770 771
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
772 773 774
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
775
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
776 777 778 779
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
780
                    attrs=op.all_attrs())
781 782

        # add slice vars
T
tangwei12 已提交
783
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
784

T
typhoonzero 已提交
785 786
        return s_prog

T
tangwei12 已提交
787 788 789
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
790
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
791
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
792
            if not block_name:
793 794
                continue

T
tangwei12 已提交
795
            block_idx = int(block_name.split(block_suffix)[1])
796 797 798 799 800 801
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
802
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
803

T
tangwei12 已提交
804
        return slice_vars_and_attrs
805

806 807
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
808 809 810 811 812 813 814 815 816
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
817
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
869
    def _init_splited_vars(self):
Y
yi.wu 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
893
        if self.config.slice_var_up:
Y
yi.wu 已提交
894 895
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
896 897 898
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
899
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
900 901
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
902 903 904
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
905 906 907 908
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
909 910
        assert (len(grad_blocks) == len(param_blocks))

911
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
912 913
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
914
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
915 916 917 918
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
919
        # dict(grad_splited_var -> param_splited_var)
920
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
921 922 923 924
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
925
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
926 927

        # create mapping of endpoint -> split var to create pserver side program
928
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
929 930 931 932 933 934 935 936 937
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

938
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
939 940
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
941
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
942 943 944 945 946 947 948 949 950
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
951 952 953 954 955 956 957 958 959

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

960
                    lookup_table_op_index = list(all_ops).index(op)
961 962 963
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
964
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
965
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
966 967 968 969 970 971
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
972
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
973 974 975 976
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
977 978

                    # insert split_ids_op
W
Wu Yi 已提交
979
                    program.global_block()._insert_op(
980
                        index=lookup_table_op_index,
981 982 983 984 985 986 987
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
988
                        outputs={"Out": prefetch_input_vars})
989 990

                    # insert prefetch_op
W
Wu Yi 已提交
991
                    program.global_block()._insert_op(
992
                        index=lookup_table_op_index + 1,
993
                        type="prefetch",
Q
qiaolongfei 已提交
994 995
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
996
                        attrs={
997
                            "epmap": pserver_endpoints,
998 999 1000
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1001
                        })
1002 1003

                    # insert concat_op
W
Wu Yi 已提交
1004
                    program.global_block()._insert_op(
1005 1006 1007 1008 1009 1010 1011
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1012
                            'X': prefetch_output_vars
1013
                        },
1014 1015 1016 1017 1018
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1019
                        })
1020 1021

                    # delete lookup_table_op
1022
                    delete_ops(program.global_block(), [op])
1023 1024 1025
                    # break for loop
                    break

Y
Yancey1989 已提交
1026
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1027
        # 2. add split_ids_op and send_op to send gradient to pservers
1028 1029
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1030
        table_grad_name = grad_var_name(self.table_name)
1031 1032 1033 1034
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1035
                program.global_block()._insert_op(
1036 1037 1038 1039 1040
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1041
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1042
                program.global_block()._insert_op(
1043
                    index=op_index + 2,
1044
                    type="send",
1045
                    inputs={'X': self.trainer_side_table_grad_list},
1046
                    outputs={'Out': []},
Y
Yancey1989 已提交
1047
                    attrs={
1048
                        "sync_mode": True,
Y
Yancey1989 已提交
1049
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1050 1051 1052 1053 1054
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1055
                    })
1056 1057 1058 1059 1060 1061
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1090 1091

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1092
                                     pre_block_idx, grad_to_block_id):
1093 1094
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1095 1096
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1097

T
tangwei12 已提交
1098
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1099 1100
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1101 1102 1103
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1104 1105
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1106
            shape=table_shape,
Y
Yancey1989 已提交
1107 1108 1109
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1110 1111
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1112
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1113
            self.origin_program.global_block().vars[grad_var_name(
1114
                self.table_name)])
1115 1116 1117 1118

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1119 1120
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1121
        ][0]
Q
qiaolongfei 已提交
1122
        table_opt_block = pserver_program.create_block(pre_block_idx)
1123

1124 1125 1126
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1127
            pserver_side_table_grad_list = [
1128 1129 1130 1131 1132 1133 1134 1135 1136
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1137
            # append sum op for pserver_side_table_grad_list
1138 1139
            table_opt_block.append_op(
                type="sum",
1140
                inputs={"X": pserver_side_table_grad_list},
1141 1142
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1143 1144
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1145
            origin_grad_name = grad_var.name
1146 1147
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1148 1149
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1150
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1151
            grad_var = pserver_program.global_block()._rename_var(
1152
                origin_grad_name, splited_grad_name)
1153 1154 1155 1156 1157 1158 1159 1160 1161

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1162
        # only support sgd now
1163 1164 1165 1166
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1167
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1168

1169 1170 1171
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1172 1173
        return table_opt_block

T
tangwei12 已提交
1174 1175 1176 1177 1178 1179
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1180
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1181
            name="kLookupTablePath",
T
tangwei12 已提交
1182 1183
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1184

T
tangwei12 已提交
1185
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1186
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1187 1188 1189 1190
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1191
            attrs={'file_path': "none"})
T
tangwei12 已提交
1192 1193 1194

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1195 1196 1197 1198 1199
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1200
        Create vars for each split.
T
typhoonzero 已提交
1201 1202
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1203 1204 1205 1206
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1207
        Returns:
1208
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1209
                from original var name to each var split.
T
typhoonzero 已提交
1210
        """
1211 1212

        # varname->[(block_id, current_block_size)]
1213
        block_map = collections.OrderedDict()
1214

1215
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1216 1217
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1218
            if varname not in block_map:
T
typhoonzero 已提交
1219
                block_map[varname] = []
1220
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1221

M
minqiyang 已提交
1222
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1223
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1224
            if len(splited) == 1:
1225
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1226 1227
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1228
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1229 1230 1231 1232 1233
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1234
                continue
T
typhoonzero 已提交
1235
            var_mapping[varname] = []
T
typhoonzero 已提交
1236 1237 1238 1239
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1240

T
typhoonzero 已提交
1241
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1242
                size = block[1]
M
minqiyang 已提交
1243
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1244 1245 1246
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1247
                new_var_name = ""
1248
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1249 1250 1251 1252 1253
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1254
                var = program.global_block().create_var(
T
typhoonzero 已提交
1255 1256
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1257
                    dtype=orig_var.dtype,
1258
                    type=orig_var.type,
T
typhoonzero 已提交
1259
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1260
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1261
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1262
        return var_mapping
T
done  
typhoonzero 已提交
1263

W
Wu Yi 已提交
1264
    def _create_splited_vars(self, source_var, block, tag):
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1275 1276 1277 1278 1279 1280
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1281
            persistable=persistable)
T
done  
typhoonzero 已提交
1282

Y
Yancey1989 已提交
1283
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1284 1285 1286 1287
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1288
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1298
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1308

T
typhoonzero 已提交
1309 1310 1311 1312
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1313
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1329 1330
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1331 1332 1333 1334 1335
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1336 1337
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1338
        orig_var_name = ""
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1349
        else:
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1377
        else:
1378 1379 1380 1381 1382 1383
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1384
            for i in range(self.trainer_num):
1385 1386 1387 1388 1389 1390 1391
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1392 1393
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1394 1395 1396 1397 1398
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1399
        return merged_var
T
typhoonzero 已提交
1400

1401
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1402
                            grad_to_block_id, origin_program, merged_var):
1403
        program = optimize_block.program
T
typhoonzero 已提交
1404
        pserver_block = program.global_block()
1405
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1416
        for key in opt_op.input_names:
T
typhoonzero 已提交
1417 1418 1419
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1420
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1421 1422
                if not param_block:
                    return
T
typhoonzero 已提交
1423
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1424
                    name=param_block.name,
T
typhoonzero 已提交
1425
                    persistable=True,
T
typhoonzero 已提交
1426 1427 1428
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1429
            elif key == "LearningRate":
1430
                # learning rate variable has already be created by non-optimize op,
1431
                # don't create it once again.
1432
                lr_varname = opt_op.input(key)[0]
1433
                if lr_varname in pserver_block.vars:
1434 1435 1436 1437 1438 1439 1440 1441 1442
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1443

T
typhoonzero 已提交
1444
        for key in opt_op.input_names:
1445
            new_shape = None
W
Wu Yi 已提交
1446
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1447
                continue
1448
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1449 1450 1451 1452
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1453
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1454 1455 1456 1457 1458
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1459

1460
        # change output's ParamOut variable
1461 1462
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1463
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1464

1465
        optimize_block.append_op(
T
typhoonzero 已提交
1466 1467
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1468
            outputs=outputs,
G
gongweibao 已提交
1469
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1470

1471 1472
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1473
        for _, g in six.iteritems(var_dict):
1474 1475 1476 1477 1478 1479
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1480 1481 1482
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1483
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1484 1485 1486 1487
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1488
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1489 1490 1491

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1492
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1493 1494 1495 1496
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1497
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1498

Y
Yancey1989 已提交
1499
        return block.append_op(
G
gongweibao 已提交
1500
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1501 1502

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1503
        program = optimize_block.program
1504
        # Append the ops for parameters that do not need to be optimized/updated
1505 1506
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1507
        for key, varlist in six.iteritems(inputs):
1508 1509
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1510
            for var in varlist:
1511 1512 1513 1514 1515 1516
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1517
                elif var.name not in program.global_block().vars:
1518
                    program.global_block().create_var(
T
typhoonzero 已提交
1519 1520 1521 1522 1523
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1524 1525
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1526
        for key, varlist in six.iteritems(outputs):
1527 1528 1529
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1530 1531 1532 1533
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1534
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1535
                    program.global_block()._clone_variable(var)
1536

Y
Yancey1989 已提交
1537
        return optimize_block.append_op(
T
typhoonzero 已提交
1538
            type=opt_op.type,
T
typhoonzero 已提交
1539 1540
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1541
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1542

1543 1544 1545 1546
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1547 1548
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1549 1550 1551 1552 1553 1554
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1555 1556
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1557 1558 1559 1560 1561 1562
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1563
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1564 1565
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1566 1567 1568 1569 1570 1571 1572
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1573
        if op.input("Param")[0] in param_names:
1574 1575 1576
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1577
                param = op.input("Param")[0]
T
typhoonzero 已提交
1578
                if same_or_split_var(n, param) and n != param:
1579 1580 1581
                    return True
            return False

T
typhoonzero 已提交
1582
    def _get_input_map_from_op(self, varmap, op):
1583
        """Returns a dict from op input name to the vars in varmap."""
1584
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1596
        """Returns a dict from op output name to the vars in varmap."""
1597
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1607 1608 1609 1610 1611 1612

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1613
            if self._is_optimizer_op(op):
1614 1615 1616 1617
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1618
        block = self.origin_program.global_block()
1619 1620 1621 1622 1623
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1624

1625 1626 1627 1628 1629
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1630
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1631 1632 1633 1634 1635 1636
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1637 1638
                    # we only need to append op for once
                    break
1639
        return lr_ops
Y
Yancey1989 已提交
1640

W
Wu Yi 已提交
1641 1642 1643 1644 1645
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1646 1647
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1648 1649 1650
            return True
        return False

Y
Yancey1989 已提交
1651
    def _get_optimize_pass(self):
1652
        """
1653
        Get optimizer operators, parameters and gradients from origin_program
1654 1655 1656 1657
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1658 1659 1660
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1661
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1662
        for op in block.ops:
W
Wu Yi 已提交
1663
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1664
                opt_ops.append(op)
1665 1666 1667 1668 1669
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1670 1671
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1672 1673 1674 1675
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1676 1677 1678
            else:
                pass
        return opt_ops, params_grads