distribute_transpiler.py 66.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
36
import six
37

38
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
39
from .. import core, framework
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
41
                        default_startup_program, Block, \
W
Wu Yi 已提交
42
                        Parameter, grad_var_name
43 44
from .details import *
from functools import reduce
45 46 47

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
48
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
49 50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
52 53


T
typhoonzero 已提交
54 55 56 57 58 59
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
60

T
typhoonzero 已提交
61 62
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
63 64


65 66 67 68
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
69
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
70
    """
71 72 73 74 75 76
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
77
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
78 79 80

    Args:
        var_list (list): List of variables.
81 82
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
83 84
        min_block_size (int): Minimum splitted block size.
    Returns:
85
        blocks (list[(varname, block_id, current_block_size)]): A list
86
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
87 88 89
    """
    blocks = []
    for var in var_list:
90
        split_count = slice_count
T
typhoonzero 已提交
91 92 93 94
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
95
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
96 97 98 99 100 101 102 103 104
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
105
        # update split_count after aligning
T
typhoonzero 已提交
106
        split_count = int(math.ceil(var_numel / float(block_size)))
107
        for block_id in range(split_count):
T
typhoonzero 已提交
108 109 110 111 112 113 114
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
115 116 117 118 119 120 121
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
122
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
123 124 125 126 127 128 129 130
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
131
class DistributeTranspiler(object):
Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
166

G
gongweibao 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

179 180 181 182 183 184 185
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
186 187 188 189 190 191 192 193 194 195 196
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
197 198 199 200
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
201 202 203
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
204 205 206 207 208 209 210
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
211
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
212
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
213
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
214
        self.grad_name_to_param_name = dict()
215 216
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
217
            self.grad_name_to_param_name[grad_var.name] = param_var.name
218

T
tangwei12 已提交
219 220 221 222 223 224
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

225
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
226
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
227
        self._init_splited_vars()
228

G
gongweibao 已提交
229
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
230
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
231
        send_vars = []
232 233 234 235 236 237

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
238
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
239

G
gongweibao 已提交
240
        if not self.config.slice_var_up:
241 242
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
243

244 245
        grad_name_to_send_dummy_out = dict()
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
246
            eplist = ps_dispatcher.dispatch(splited_vars)
247

G
gongweibao 已提交
248
            if not self.config.slice_var_up:
249 250
                assert (len(splited_vars) == 1)

251
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
252
            if len(splited_vars) == 1:
253
                splited_grad_varname = splited_vars[0].name
Y
Yancey1989 已提交
254
                index = find_op_by_output_arg(program.global_block(),
255
                                              splited_grad_varname)
Y
Yancey1989 已提交
256
            elif len(splited_vars) > 1:
257
                orig_var = program.global_block().vars[splited_grad_varname]
Y
Yancey1989 已提交
258
                index = find_op_by_output_arg(program.global_block(),
259
                                              splited_grad_varname)
Y
Yancey1989 已提交
260
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
261
                index += 1
Y
Yancey1989 已提交
262 263
            else:
                AssertionError("Can not insert the send op by original "
264
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
265

W
Wu Yi 已提交
266 267
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
268
            grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
269

W
Wu Yi 已提交
270
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
271
                index=index + 1,
272
                type="send",
Y
update  
Yancey1989 已提交
273
                inputs={"X": splited_vars},
274
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
275 276
                attrs={
                    "epmap": eplist,
277
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
278 279
                    OP_ROLE_VAR_ATTR_NAME:
                    [self.grad_name_to_param_name[grad_varname], grad_varname],
280
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
281
                })
Y
update  
Yancey1989 已提交
282 283
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
284 285 286 287 288

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
289
                outputs={},
Y
Yancey1989 已提交
290 291
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
292
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
293
                })
Y
Yancey1989 已提交
294

G
gongweibao 已提交
295
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
296
        recv_vars = []
Y
update  
Yancey1989 已提交
297
        for _, var in enumerate(send_vars):
298
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
299
        ps_dispatcher.reset()
Y
Yancey1989 已提交
300 301
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
302
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
303 304
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
305

Y
Yancey1989 已提交
306
        # step4: Concat the parameters splits together after recv.
307
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
308 309 310 311
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
312 313
            grad_send_dummy_out = grad_name_to_send_dummy_out[
                self.param_name_to_grad_name[param_varname]]
Y
Yancey1989 已提交
314 315
            program.global_block().append_op(
                type="recv",
316
                inputs={"X": [grad_send_dummy_out]},
Y
Yancey1989 已提交
317 318 319
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
320
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
321 322 323 324
                    OP_ROLE_VAR_ATTR_NAME: [
                        param_varname,
                        self.param_name_to_grad_name[param_varname]
                    ],
325
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
326
                })
T
typhoonzero 已提交
327

Q
qiaolongfei 已提交
328 329 330 331 332 333 334 335 336
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
337

338
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
339 340
            if len(splited_var) <= 1:
                continue
341
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
342
            program.global_block().append_op(
T
typhoonzero 已提交
343
                type="concat",
T
typhoonzero 已提交
344
                inputs={"X": splited_var},
T
typhoonzero 已提交
345
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
346
                attrs={"axis": 0})
T
typhoonzero 已提交
347

G
gongweibao 已提交
348 349
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

350
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
351 352
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
353
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
354

T
typhoonzero 已提交
355
    def get_trainer_program(self):
Y
yi.wu 已提交
356 357 358 359 360 361
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
362
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
363
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
364
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
365
        self.origin_program.__str__()
G
gongweibao 已提交
366

367
        return self.origin_program
T
typhoonzero 已提交
368

G
gongweibao 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
388
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
409
                inputs={"X": []},
G
gongweibao 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
425
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
426 427 428 429 430 431 432 433 434 435 436 437
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
438 439
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
440
        Get parameter server side program.
441

Y
yi.wu 已提交
442 443
        Args:
            endpoint (str): current parameter server endpoint.
444

Y
yi.wu 已提交
445 446
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
447
        """
Y
yi.wu 已提交
448 449 450 451 452
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
453 454
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
455
        pserver_program.random_seed = self.origin_program.random_seed
456
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
457 458 459 460 461 462 463 464
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
465 466 467 468 469
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
470 471 472 473 474 475 476 477 478
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
479
            if self.sync_mode and self.trainer_num > 1:
480
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
481 482 483 484 485 486 487 488 489
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
490

Q
qiaolongfei 已提交
491
        # step 3
492
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
493 494 495
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
496
        # step 3.2
T
typhoonzero 已提交
497 498 499 500
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
501 502
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
503
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
504
        # step 3.3
T
typhoonzero 已提交
505
        # Iterate through the ops, and if an op and the optimize ops
506
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
507
        # append it into the sub program.
T
typhoonzero 已提交
508 509 510

        global_ops = []

Y
wip  
yi.wu 已提交
511 512
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
513
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
514
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
515
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
516
            elif op not in lr_ops:
Q
Qiyang Min 已提交
517
                self._append_pserver_non_opt_ops(block, op)
518 519 520 521 522 523

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
524

Y
Yancey1989 已提交
525
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
526 527 528 529 530 531 532 533
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
534
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
535 536 537

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
538
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
539 540

            # clone ops
Y
Yancey1989 已提交
541 542
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
543
                # clone sub_block of op
Y
Yancey1989 已提交
544
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
545 546 547 548

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

549
        # append lr decay ops to the child block if exists
550
        lr_ops = self._get_lr_ops()
551 552
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
553
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
554 555
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
556
            optimize_blocks.append(lr_decay_block)
557
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
558
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
559
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
560 561
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
562

T
typhoonzero 已提交
563
        # append op to the current block
Q
qiaolongfei 已提交
564
        grad_to_block_id = []
Q
qiaolongfei 已提交
565
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
566
        for idx, opt_op in enumerate(opt_op_on_pserver):
567
            per_opt_block = pserver_program.create_block(pre_block_idx)
568
            optimize_blocks.append(per_opt_block)
569
            # append grad merging ops before clip and weight decay
570
            # cases may like:
T
typhoonzero 已提交
571
            # L2Decay op -> clip op -> optimize
572 573 574 575 576 577 578
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
579
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
580 581
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
582
                if ufind.is_connected(op, opt_op) and op not in global_ops:
583
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
584
                                           merged_var, lr_ops)
T
typhoonzero 已提交
585

W
Wu Yi 已提交
586 587
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
588
        # append global ops
589
        if global_ops:
Q
qiaolongfei 已提交
590 591
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
592
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
593
            for glb_op in global_ops:
X
Xi Chen 已提交
594
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
595
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
596

597
        # process distributed lookup_table
Q
qiaolongfei 已提交
598
        prefetch_var_name_to_block_id = []
599 600
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
601
            table_opt_block = self._create_table_optimize_block(
602
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
603
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
604
            prefetch_var_name_to_block_id = self._create_prefetch_block(
605
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
606 607
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
608

T
tangwei12 已提交
609 610
            pserver_program._distributed_lookup_table = self.table_name

611 612 613
        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
614
            assert len(prefetch_var_name_to_block_id) > 0
615
        else:
Q
qiaolongfei 已提交
616
            assert len(prefetch_var_name_to_block_id) == 0
617

618
        attrs = {
619
            "optimize_blocks": optimize_blocks,
620 621 622
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
623
            "grad_to_block_id": grad_to_block_id,
624 625 626 627
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
628
            attrs['checkpint_block_id'] = checkpoint_block_id
629

T
typhoonzero 已提交
630 631 632 633 634
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
635
            attrs=attrs)
636

T
tangwei12 已提交
637
        # add distributed attrs
T
tangwei12 已提交
638
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
639
            endpoint)
640

W
Wu Yi 已提交
641
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
642 643
        return pserver_program

644 645 646 647
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
648 649 650 651
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
652 653 654 655 656

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
657 658
            startup_program (Program): if pass None, will use
                default_startup_program
659

Y
yi.wu 已提交
660 661
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
662 663
        """
        s_prog = Program()
664 665 666 667
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
668
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
669 670 671 672 673 674 675 676 677 678 679
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
680
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
681
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
682
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
683 684 685 686
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
687
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
688 689
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
690 691 692 693 694 695 696 697 698 699
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
700 701

            if op_on_pserver:
702 703 704
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
705 706 707
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
708
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
709 710 711 712
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
713
                    attrs=op.all_attrs())
714 715

        # add slice vars
T
tangwei12 已提交
716
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
717

T
typhoonzero 已提交
718 719
        return s_prog

T
tangwei12 已提交
720 721 722
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
723
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
724
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
725
            if not block_name:
726 727
                continue

T
tangwei12 已提交
728
            block_idx = int(block_name.split(block_suffix)[1])
729 730 731 732 733 734
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
735
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
736

T
tangwei12 已提交
737
        return slice_vars_and_attrs
738

739 740
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
741 742 743 744 745 746 747 748 749
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
750
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
802
    def _init_splited_vars(self):
Y
yi.wu 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
826
        if self.config.slice_var_up:
Y
yi.wu 已提交
827 828
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
829 830 831
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
832
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
833 834
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
835 836 837
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
838 839 840 841
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
842 843
        assert (len(grad_blocks) == len(param_blocks))

844
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
845 846
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
847
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
848 849 850 851
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
852
        # dict(grad_splited_var -> param_splited_var)
853
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
854 855 856 857
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
858
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
859 860

        # create mapping of endpoint -> split var to create pserver side program
861
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
862 863 864 865 866 867 868 869 870
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

871
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
872 873
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
874
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
875 876 877 878 879 880 881 882 883
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
884 885 886 887 888 889 890 891 892

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

893
                    lookup_table_op_index = list(all_ops).index(op)
894 895 896
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
897
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
898
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
899 900 901 902 903 904
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
905
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
906 907 908 909
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
910 911

                    # insert split_ids_op
W
Wu Yi 已提交
912
                    program.global_block()._insert_op(
913
                        index=lookup_table_op_index,
914 915 916 917 918 919 920
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
921
                        outputs={"Out": prefetch_input_vars})
922 923

                    # insert prefetch_op
W
Wu Yi 已提交
924
                    program.global_block()._insert_op(
925
                        index=lookup_table_op_index + 1,
926
                        type="prefetch",
Q
qiaolongfei 已提交
927 928
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
929
                        attrs={
930
                            "epmap": pserver_endpoints,
931 932 933
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
934
                        })
935 936

                    # insert concat_op
W
Wu Yi 已提交
937
                    program.global_block()._insert_op(
938 939 940 941 942 943 944
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
945
                            'X': prefetch_output_vars
946
                        },
947 948 949 950 951
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
952
                        })
953 954

                    # delete lookup_table_op
955
                    delete_ops(program.global_block(), [op])
956 957 958
                    # break for loop
                    break

Y
Yancey1989 已提交
959
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
960
        # 2. add split_ids_op and send_op to send gradient to pservers
961 962
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
963
        table_grad_name = grad_var_name(self.table_name)
964 965 966 967
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
968
                program.global_block()._insert_op(
969 970 971 972 973
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
974
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
975
                program.global_block()._insert_op(
976
                    index=op_index + 2,
977
                    type="send",
978
                    inputs={'X': self.trainer_side_table_grad_list},
979
                    outputs={'Out': []},
Y
Yancey1989 已提交
980
                    attrs={
981
                        "sync_mode": True,
Y
Yancey1989 已提交
982
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
983 984 985 986 987
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
988
                    })
989 990 991 992 993 994
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1023 1024

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1025
                                     pre_block_idx, grad_to_block_id):
1026 1027
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
1028 1029
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1030

T
tangwei12 已提交
1031
        zero_dim = int(
T
tangwei12 已提交
1032 1033 1034 1035
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1036 1037
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1038
            shape=table_shape,
Y
Yancey1989 已提交
1039 1040 1041
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1042 1043
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1044
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1045
            self.origin_program.global_block().vars[grad_var_name(
1046
                self.table_name)])
1047 1048 1049 1050

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
1051 1052
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1053
        ][0]
Q
qiaolongfei 已提交
1054
        table_opt_block = pserver_program.create_block(pre_block_idx)
1055

1056 1057 1058
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1059
            pserver_side_table_grad_list = [
1060 1061 1062 1063 1064 1065 1066 1067 1068
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1069
            # append sum op for pserver_side_table_grad_list
1070 1071
            table_opt_block.append_op(
                type="sum",
1072
                inputs={"X": pserver_side_table_grad_list},
1073 1074
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1075 1076
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1077
            origin_grad_name = grad_var.name
1078 1079
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1080 1081
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1082
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1083
            grad_var = pserver_program.global_block()._rename_var(
1084
                origin_grad_name, splited_grad_name)
1085 1086 1087 1088 1089 1090 1091 1092 1093

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1094
        # only support sgd now
1095 1096 1097 1098
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1099
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1100

1101 1102 1103
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1104 1105
        return table_opt_block

T
tangwei12 已提交
1106 1107 1108 1109 1110 1111
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1112
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1113
            name="kLookupTablePath",
T
tangwei12 已提交
1114 1115
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1116

T
tangwei12 已提交
1117
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1118
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1119 1120 1121 1122
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1123
            attrs={'file_path': "none"})
T
tangwei12 已提交
1124 1125 1126

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1127 1128 1129 1130 1131
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1132
        Create vars for each split.
T
typhoonzero 已提交
1133 1134
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1135 1136 1137 1138
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1139
        Returns:
1140
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1141
                from original var name to each var split.
T
typhoonzero 已提交
1142
        """
1143 1144

        # varname->[(block_id, current_block_size)]
1145
        block_map = collections.OrderedDict()
1146

1147
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1148 1149
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1150
            if varname not in block_map:
T
typhoonzero 已提交
1151
                block_map[varname] = []
1152
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1153

M
minqiyang 已提交
1154
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1155
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1156
            if len(splited) == 1:
1157
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1158 1159
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1160
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1161 1162 1163 1164 1165
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1166
                continue
T
typhoonzero 已提交
1167
            var_mapping[varname] = []
T
typhoonzero 已提交
1168 1169 1170 1171
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1172

T
typhoonzero 已提交
1173
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1174
                size = block[1]
M
minqiyang 已提交
1175
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1176 1177 1178
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1179
                new_var_name = ""
1180
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1181 1182 1183 1184 1185
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1186
                var = program.global_block().create_var(
T
typhoonzero 已提交
1187 1188
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1189
                    dtype=orig_var.dtype,
1190
                    type=orig_var.type,
T
typhoonzero 已提交
1191
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1192
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1193
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1194
        return var_mapping
T
done  
typhoonzero 已提交
1195

W
Wu Yi 已提交
1196
    def _create_splited_vars(self, source_var, block, tag):
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1207 1208 1209 1210 1211 1212
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1213
            persistable=persistable)
T
done  
typhoonzero 已提交
1214

Y
Yancey1989 已提交
1215
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1216 1217 1218 1219
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1220
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1230
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1240

T
typhoonzero 已提交
1241 1242 1243 1244
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1245
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1261 1262
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1263 1264 1265 1266 1267
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1268 1269
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1270
        orig_var_name = ""
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1281
        else:
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1309
        else:
1310 1311 1312 1313 1314 1315
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1316
            for i in range(self.trainer_num):
1317 1318 1319 1320 1321 1322 1323
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1324 1325
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1326 1327 1328 1329 1330 1331 1332 1333
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1334

1335
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1336
                            grad_to_block_id, origin_program, merged_var):
1337
        program = optimize_block.program
T
typhoonzero 已提交
1338
        pserver_block = program.global_block()
1339
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1350
        for key in opt_op.input_names:
T
typhoonzero 已提交
1351 1352 1353
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1354
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1355 1356
                if not param_block:
                    return
T
typhoonzero 已提交
1357
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1358
                    name=param_block.name,
T
typhoonzero 已提交
1359
                    persistable=True,
T
typhoonzero 已提交
1360 1361 1362
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1363
            elif key == "LearningRate":
1364
                # learning rate variable has already be created by non-optimize op,
1365
                # don't create it once again.
1366
                lr_varname = opt_op.input(key)[0]
1367
                if lr_varname in pserver_block.vars:
1368 1369 1370 1371 1372 1373 1374 1375 1376
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1377

T
typhoonzero 已提交
1378
        for key in opt_op.input_names:
1379
            new_shape = None
W
Wu Yi 已提交
1380
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1381
                continue
1382
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1383 1384 1385 1386
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1387
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1388 1389 1390 1391 1392
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1393

1394
        # change output's ParamOut variable
1395 1396
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1397
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1398

1399
        optimize_block.append_op(
T
typhoonzero 已提交
1400 1401
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1402
            outputs=outputs,
G
gongweibao 已提交
1403
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1404

1405 1406
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1407
        for _, g in six.iteritems(var_dict):
1408 1409 1410 1411 1412 1413
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1414 1415 1416
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1417
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1418 1419 1420 1421
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1422
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1423 1424 1425

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1426
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1427 1428 1429 1430
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1431
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1432

Y
Yancey1989 已提交
1433
        return block.append_op(
G
gongweibao 已提交
1434
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1435 1436

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1437
        program = optimize_block.program
1438
        # Append the ops for parameters that do not need to be optimized/updated
1439 1440
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1441
        for key, varlist in six.iteritems(inputs):
1442 1443
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1444
            for var in varlist:
1445 1446 1447 1448 1449 1450
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1451
                elif var.name not in program.global_block().vars:
1452
                    program.global_block().create_var(
T
typhoonzero 已提交
1453 1454 1455 1456 1457
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1458 1459
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1460
        for key, varlist in six.iteritems(outputs):
1461 1462 1463
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1464 1465 1466 1467
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1468
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1469
                    program.global_block()._clone_variable(var)
1470

Y
Yancey1989 已提交
1471
        return optimize_block.append_op(
T
typhoonzero 已提交
1472
            type=opt_op.type,
T
typhoonzero 已提交
1473 1474
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1475
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1476

1477 1478 1479 1480
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1481 1482
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1483 1484 1485 1486 1487 1488
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1489 1490
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1491 1492 1493 1494 1495 1496
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1497
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1498 1499
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1500 1501 1502 1503 1504 1505 1506
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1507
        if op.input("Param")[0] in param_names:
1508 1509 1510
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1511
                param = op.input("Param")[0]
T
typhoonzero 已提交
1512
                if same_or_split_var(n, param) and n != param:
1513 1514 1515
                    return True
            return False

T
typhoonzero 已提交
1516
    def _get_input_map_from_op(self, varmap, op):
1517
        """Returns a dict from op input name to the vars in varmap."""
1518
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1530
        """Returns a dict from op output name to the vars in varmap."""
1531
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1541 1542 1543 1544 1545 1546

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1547
            if self._is_optimizer_op(op):
1548 1549 1550 1551
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1552
        block = self.origin_program.global_block()
1553 1554 1555 1556 1557
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1558

1559 1560 1561 1562 1563
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1564
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1565 1566 1567 1568 1569 1570
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1571 1572
                    # we only need to append op for once
                    break
1573
        return lr_ops
Y
Yancey1989 已提交
1574

W
Wu Yi 已提交
1575 1576 1577 1578 1579
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1580 1581
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1582 1583 1584
            return True
        return False

Y
Yancey1989 已提交
1585
    def _get_optimize_pass(self):
1586
        """
1587
        Get optimizer operators, parameters and gradients from origin_program
1588 1589 1590 1591
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1592 1593 1594
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1595
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1596
        for op in block.ops:
W
Wu Yi 已提交
1597
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1598
                opt_ops.append(op)
1599 1600 1601 1602 1603
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1604 1605
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1606 1607 1608 1609
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1610 1611 1612
            else:
                pass
        return opt_ops, params_grads