operator.h 16.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
22
#include "op_info.h"
Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/data_type.h"
Y
Yu Yang 已提交
25
#include "paddle/framework/framework.pb.h"
26
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
27
#include "paddle/framework/scope.h"
Q
Qiao Longfei 已提交
28
#include "paddle/framework/shape_inference.h"
Q
qijun 已提交
29 30 31
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
32
#include "paddle/platform/variant.h"
Q
qijun 已提交
33
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
34 35 36 37

namespace paddle {
namespace framework {

38
/// If a variable is a empty variable, that name will be used.
39
constexpr char kEmptyVarName[] = "@EMPTY@";
40 41 42

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
43
constexpr char kTempVarName[] = "@TEMP@";
44 45 46 47

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
48
constexpr char kGradVarSuffix[] = "@GRAD";
49 50

/// Variables with this suffix are supposed to be filled up with zeros.
51
constexpr char kZeroVarSuffix[] = "@ZERO";
52 53 54 55 56

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
57
class OperatorBase;
58 59
class InferShapeContext;
class ExecutionContext;
60

Q
Qiao Longfei 已提交
61 62 63
extern const Tensor* GetTensorFromVar(const Variable* var);
extern Tensor* GetTensorFromVar(Variable* var);

Q
Qiao Longfei 已提交
64 65 66 67 68 69 70 71
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
72 73
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
74

Q
Qiao Longfei 已提交
75 76 77
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
78
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
79 80 81 82 83
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

84
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
85 86 87

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
88
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
89 90

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
91
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
92 93
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
94 95
  virtual bool IsNetOp() const { return false; }

96 97
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
98 99 100
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
101 102
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
103

Y
Yu Yang 已提交
104
  //! Get a input with argument's name described in `op_proto`
105
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
106
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
107
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
108

Q
qijun 已提交
109 110
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
111
  //! Get a output with argument's name described in `op_proto`
112
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
113 114
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
115
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
116

Y
Yu Yang 已提交
117
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
118

Q
qiaolongfei 已提交
119
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
120
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
121 122
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
123
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
124 125
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
126

Q
qiaolongfei 已提交
127
 protected:
Q
Qiao Longfei 已提交
128
  std::string type_;
D
dongzhihong 已提交
129
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
130
  // I (Inputs)opear
D
dongzhihong 已提交
131 132
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
133
  VariableNameMap inputs_;
Y
Yu Yang 已提交
134

D
dongzhihong 已提交
135 136
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
137
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
138
  AttributeMap attrs_;
139 140 141 142

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
143 144
};

Y
Yu Yang 已提交
145 146
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
147
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
148
#define DEFINE_OP_CLONE_METHOD(cls)                       \
Y
Yu Yang 已提交
149
  std::unique_ptr<OperatorBase> Clone() const final {     \
Y
Yu Yang 已提交
150
    return std::unique_ptr<OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
151
  }
Y
Yu Yang 已提交
152

Y
Yu Yang 已提交
153 154 155 156
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
157 158
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
159 160 161
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
162
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
163

164 165
class NOP : public OperatorBase {
 public:
166
  using OperatorBase::OperatorBase;
167 168 169
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
170 171 172
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
173 174
};

175
class InferShapeContext {
Y
Yan Chunwei 已提交
176
 public:
177 178
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
179

Q
qiaolongfei 已提交
180 181 182 183
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
184
  template <typename T>
Y
Yu Yang 已提交
185 186
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
187 188
  }

Y
Yu Yang 已提交
189
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
190
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
191 192
  }

Y
Yu Yang 已提交
193
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
194
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
195 196
  }

197
  const Variable* InputVar(const std::string& name) const {
198
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
199
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
200 201
  }

202
  Variable* OutputVar(const std::string& name) const {
203
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
204
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
205 206
  }

207 208
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
209 210
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
211
    res.reserve(names.size());
212 213
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
214 215
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
216
                   });
Y
Yan Chunwei 已提交
217 218 219
    return res;
  }

220
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
221
    auto names = op_.Outputs(name);
222
    std::vector<Variable*> res;
223
    res.reserve(names.size());
224 225
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
226 227
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
228
                   });
Y
Yan Chunwei 已提交
229 230 231
    return res;
  }

232 233
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
234
    auto* var = InputVar(name);
235
    return var == nullptr ? nullptr : &var->Get<T>();
236 237 238 239
  }

  template <typename T>
  T* Output(const std::string& name) const {
240
    auto var = OutputVar(name);
241
    return var == nullptr ? nullptr : var->GetMutable<T>();
242 243 244 245 246 247 248 249
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
250
                   [&](const std::string& sub_name) {
251
                     auto var = scope_.FindVar(sub_name);
252
                     return var == nullptr ? nullptr : &var->Get<T>();
253 254 255 256 257
                   });
    return res;
  }

  template <typename T>
258
  std::vector<T*> MultiOutput(const std::string& name) const {
259
    auto names = op_.Outputs(name);
260
    std::vector<T*> res;
261 262
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
263
                   [&](const std::string& sub_name) {
264
                     auto var = scope_.FindVar(sub_name);
265
                     return var == nullptr ? nullptr : var->GetMutable<T>();
266 267 268 269
                   });
    return res;
  }

270 271 272 273 274 275
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
276
    if (!in_var->IsType<LoDTensor>()) return;
277
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
278
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
279 280 281
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
282 283
  }

Q
qiaolongfei 已提交
284
 private:
285
  const OperatorBase& op_;
286
  const Scope& scope_;
287 288
};

289 290 291 292 293 294 295
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
    const std::string& name) const;

296 297 298 299 300 301 302
template <>
Tensor* InferShapeContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
    const std::string& name) const;

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

318
class ExecutionContext : public InferShapeContext {
319
 public:
320
  ExecutionContext(const OperatorBase& op, const Scope& scope,
321
                   const platform::DeviceContext& device_context)
322
      : InferShapeContext(op, scope), device_context_(device_context) {}
323

Q
qijun 已提交
324 325 326
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
327
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
328

329
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
330

331
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
332
    return device_context_;
Q
qijun 已提交
333
  }
Q
qijun 已提交
334

335 336
 private:
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
337 338
};

Q
Qiao Longfei 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
class RuntimeInferShapeContext : public InferShapeContextBase {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const {
    auto ipt = op_.Input(name);
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const {
    auto ipt = op_.Output(name);
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  DDim GetInputDim(const std::string& name) const {
    return GetDim(op_.Input(name));
  }

  void SetInputDim(const std::string& name, const DDim& dim) {
    SetDim(op_.Input(name), dim);
  }

  DDim GetOutputDim(const std::string& name) const {
    return GetDim(op_.Output(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

 private:
  template <bool Allocate>
  Tensor* GetTensor(const std::string& name) const {
    Tensor* t = nullptr;
    auto* var = scope_.FindVar(name);
    if (!var->IsType<LoDTensor>() && !var->IsType<Tensor>()) {
      if (Allocate) {
        t = var->GetMutable<LoDTensor>();
      } else {
        PADDLE_THROW("Variable(%s) should be tensor", name);
      }
    } else {
      t = GetTensorFromVar(scope_.FindVar(name));
    }
    return t;
  }

  DDim GetDim(const std::string& name) const {
    return GetTensor<false>(name)->dims();
  }

  void SetDim(const std::string& name, const DDim& dim) {
    GetTensor<true>(name)->Resize(dim);
  }

  const OperatorBase& op_;
  const Scope& scope_;
};

Y
Yu Yang 已提交
411
class OpKernelBase {
Q
qijun 已提交
412
 public:
Q
qijun 已提交
413
  /**
414
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
415 416
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
417
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
418 419
   */

420
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
421

Y
Yu Yang 已提交
422 423 424 425 426 427 428
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
429 430
};

Q
Qiao Longfei 已提交
431 432
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
433 434
  struct OpKernelKey {
    platform::Place place_;
Y
Yu Yang 已提交
435
    DataType data_type_;
Q
Qiao Longfei 已提交
436

Y
Yu Yang 已提交
437 438 439 440 441
    OpKernelKey(DataType data_type, platform::Place place)
        : place_(place), data_type_(data_type) {}

    OpKernelKey(DataType data_type, const platform::DeviceContext& dev_ctx)
        : place_(dev_ctx.GetPlace()), data_type_(data_type) {}
Y
Yu Yang 已提交
442

Q
qijun 已提交
443
    bool operator==(const OpKernelKey& o) const {
Y
Yu Yang 已提交
444 445
      return platform::places_are_same_class(place_, o.place_) &&
             data_type_ == o.data_type_;
Q
qijun 已提交
446
    }
Y
Yu Yang 已提交
447 448 449
  };

  struct OpKernelHash {
Y
Yu Yang 已提交
450
    std::hash<int> hash_;
Y
Yu Yang 已提交
451
    size_t operator()(const OpKernelKey& key) const {
Y
Yu Yang 已提交
452 453 454 455 456
      int place = key.place_.which();
      int data_type = static_cast<int>(key.data_type_);
      // NOTE: Number of places limit to 16.
      int pre_hash = data_type << 4 | (place & 0x0F);
      return hash_(pre_hash);
Y
Yu Yang 已提交
457 458 459 460
    }
  };

  using OpKernelMap =
Y
Yu Yang 已提交
461 462
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernelBase>,
                         OpKernelHash>;
Q
Qiao Longfei 已提交
463

Y
Yu Yang 已提交
464 465
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
466 467
      : OperatorBase(type, inputs, outputs, attrs) {}

Q
Qiao Longfei 已提交
468
  // runtime infershape
469
  void InferShape(const Scope& scope) const override {
Q
Qiao Longfei 已提交
470 471
    auto c = RuntimeInferShapeContext(*this, scope);
    InferShape(&c);
472 473
  }

Y
Yu Yang 已提交
474
  void Run(const Scope& scope,
Y
Yu Yang 已提交
475
           const platform::DeviceContext& dev_ctx) const final {
Y
Yu Yang 已提交
476 477 478 479
    ExecutionContext ctx(*this, scope, dev_ctx);
    auto& opKernel = AllOpKernels().at(type_).at(
        OpKernelKey(IndicateDataType(ctx), dev_ctx));
    opKernel->Compute(ctx);
Q
Qiao Longfei 已提交
480 481
  }

Y
Yu Yang 已提交
482 483 484 485
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
486
  }
Y
Yan Chunwei 已提交
487

488
  bool SupportGPU() const override {
Y
Yu Yang 已提交
489 490 491 492 493
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
494 495
  }

Y
Yu Yang 已提交
496
 protected:
Q
Qiao Longfei 已提交
497
  virtual void InferShape(InferShapeContextBase* ctx) const = 0;
Y
Yu Yang 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

  // indicate kernel DataType by input data. Defaultly all input data must be
  // same.
  virtual DataType IndicateDataType(const ExecutionContext& ctx) const {
    auto& scope = ctx.scope();
    int data_type = -1;
    for (auto& input : this->inputs_) {
      for (auto& ipt_name : input.second) {
        auto* var = scope.FindVar(ipt_name);
        if (var != nullptr) {
          const Tensor* t = nullptr;
          if (var->IsType<Tensor>()) {
            t = &var->Get<Tensor>();
          } else if (var->IsType<LoDTensor>()) {
            t = &var->Get<LoDTensor>();
          }
          if (t != nullptr) {
            int tmp = static_cast<int>(ToDataType(t->type()));
            PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                           "DataType of Paddle Op must be same.");
            data_type = tmp;
          }
        }
      }
    }
    PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
    return static_cast<DataType>(data_type);
  }
Q
Qiao Longfei 已提交
526 527 528 529
};

}  // namespace framework
}  // namespace paddle