trainer.py 50.3 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval, Pose3DEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
48
from ppdet.modeling.post_process import multiclass_nms
K
Kaipeng Deng 已提交
49

50
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
51
from .export_utils import _dump_infer_config, _prune_input_spec, apply_to_static
K
Kaipeng Deng 已提交
52

53 54
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
55
from ppdet.utils.logger import setup_logger
56
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
57 58 59

__all__ = ['Trainer']

60
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
61

K
Kaipeng Deng 已提交
62 63 64 65 66 67 68

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
69
        self.optimizer = None
70
        self.is_loaded_weights = False
S
shangliang Xu 已提交
71 72
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
73 74
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)
K
Kaipeng Deng 已提交
75

G
George Ni 已提交
76
        # build data loader
W
wangguanzhong 已提交
77
        capital_mode = self.mode.capitalize()
78
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
79 80
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
81
        else:
W
wangguanzhong 已提交
82 83
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
84 85 86 87 88

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

89 90 91 92
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
93
        if self.mode == 'train':
W
wangguanzhong 已提交
94
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
95 96 97 98
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
99 100
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
101

F
FlyingQianMM 已提交
102
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
103 104
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
105
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
106

K
Kaipeng Deng 已提交
107
        # build model
108 109 110 111 112
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
113

F
Feng Ni 已提交
114 115 116
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
117 118
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
119

120
        #normalize params for deploy
C
Chang Xu 已提交
121 122 123
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
124 125 126 127 128 129 130
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
131 132
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
133

K
Kaipeng Deng 已提交
134 135 136
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
137 138
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
139 140 141
            elif cfg.architecture == "METRO_Body":
                reader_name = '{}Reader'.format(self.mode.capitalize())
                self.loader = create(reader_name)(self.dataset, cfg.worker_num)
142 143 144 145 146 147 148 149 150
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
151
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
152

F
Feng Ni 已提交
153 154 155 156 157 158 159 160 161
        # get Params
        print_params = self.cfg.get('print_params', False)
        if print_params:
            params = sum([
                p.numel() for n, p in self.model.named_parameters()
                if all([x not in n for x in ['_mean', '_variance']])
            ])  # exclude BatchNorm running status
            logger.info('Params: ', params / 1e6)

K
Kaipeng Deng 已提交
162 163 164
        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
165 166 167 168
            if steps_per_epoch < 1:
                logger.warning(
                    "Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
                )
K
Kaipeng Deng 已提交
169
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
170
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
171

M
minghaoBD 已提交
172 173 174 175
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
176
        if self.use_amp and self.amp_level == 'O2':
177 178 179 180
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)
S
shangliang Xu 已提交
181 182 183 184
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
185 186
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_black_list = self.cfg.get('ema_black_list', None)
S
shangliang Xu 已提交
187 188 189 190
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
191 192
                cycle_epoch=cycle_epoch,
                ema_black_list=ema_black_list)
S
shangliang Xu 已提交
193

W
wangguanzhong 已提交
194 195
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
196

K
Kaipeng Deng 已提交
197 198 199
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
200
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
201 202 203 204 205 206 207 208 209 210 211

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
212
            if self.cfg.get('use_vdl', False):
213
                self._callbacks.append(VisualDLWriter(self))
214 215
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
216 217
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
218 219 220
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
221 222
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
223
            self._compose_callback = ComposeCallback(self._callbacks)
224
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
225 226
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
227 228 229 230
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
231 232
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
233 234
            self._metrics = []
            return
235
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
236
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
237
            # TODO: bias should be unified
W
wangxinxin08 已提交
238
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
239 240
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
241
            save_prediction_only = self.cfg.get('save_prediction_only', False)
242 243 244

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
245 246
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
247 248 249 250 251 252 253

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
254
                dataset = eval_dataset
W
Wenyu 已提交
255 256 257
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
258

259
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
260 261 262 263 264 265 266 267 268 269 270
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
271
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
272 273 274 275 276 277 278 279 280
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
281
                        save_prediction_only=save_prediction_only)
282
                ]
283 284 285 286 287 288
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)
W
wangxinxin08 已提交
289
            imid2path = self.cfg.get('imid2path', None)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
W
wangxinxin08 已提交
305 306
                    save_prediction_only=save_prediction_only,
                    imid2path=imid2path)
307
            ]
K
Kaipeng Deng 已提交
308
        elif self.cfg.metric == 'VOC':
309 310 311 312
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
313 314
            self._metrics = [
                VOCMetric(
315
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
316
                    class_num=self.cfg.num_classes,
317
                    map_type=self.cfg.map_type,
318 319 320
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
321
            ]
322 323 324 325 326 327 328 329 330
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
331 332 333 334
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
335
            save_prediction_only = self.cfg.get('save_prediction_only', False)
336
            self._metrics = [
337 338 339 340 341 342
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
343
            ]
Z
zhiboniu 已提交
344 345 346 347
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
348
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
349
            self._metrics = [
350 351 352 353 354 355
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
356
            ]
357 358 359 360 361 362 363
        elif self.cfg.metric == 'Pose3DEval':
            save_prediction_only = self.cfg.get('save_prediction_only', False)
            self._metrics = [
                Pose3DEval(
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
            ]
G
George Ni 已提交
364 365
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
366
        else:
367
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
368
                self.cfg.metric))
K
Kaipeng Deng 已提交
369 370 371 372 373 374 375
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
376
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
390
    def load_weights(self, weights):
391 392
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
393
        self.start_epoch = 0
394
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
395 396
        logger.debug("Load weights {} to start training".format(weights))

397 398 399 400 401 402 403
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
404
    def resume_weights(self, weights):
405 406 407 408 409
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
410 411
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
412
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
413

K
Kaipeng Deng 已提交
414
    def train(self, validate=False):
K
Kaipeng Deng 已提交
415
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
416
        Init_mark = False
W
wangguanzhong 已提交
417
        if validate:
W
wangguanzhong 已提交
418 419
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
420

421
        model = self.model
422 423
        if self.cfg.get('to_static', False):
            model = apply_to_static(self.cfg, model)
A
Aganlengzi 已提交
424 425 426 427
        sync_bn = (
            getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
            (self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu) and
            self._nranks > 1)
W
wangxinxin08 已提交
428
        if sync_bn:
429
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
430

431
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
432
        if self.use_amp:
433
            scaler = paddle.amp.GradScaler(
434
                enable=self.cfg.use_gpu or self.cfg.use_npu or self.cfg.use_mlu,
435 436
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
437
        if self.cfg.get('fleet', False):
438
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
439
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
440
        elif self._nranks > 1:
G
George Ni 已提交
441 442 443
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
444
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
445

K
Kaipeng Deng 已提交
446 447 448 449 450 451 452 453 454 455 456 457
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
458
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
459 460 461
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
462
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
463

464 465
        self._compose_callback.on_train_begin(self.status)

466 467 468
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
469
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
470
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
471 472 473
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
474
            model.train()
K
Kaipeng Deng 已提交
475 476 477 478
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
479
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
480
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
481
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
482

S
shangliang Xu 已提交
483
                if self.use_amp:
484 485 486 487
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
488
                            with paddle.amp.auto_cast(
A
Aganlengzi 已提交
489 490
                                    enable=self.cfg.use_gpu or
                                    self.cfg.use_npu or self.cfg.use_mlu,
491 492
                                    custom_white_list=self.custom_white_list,
                                    custom_black_list=self.custom_black_list,
493 494 495 496 497 498 499 500 501 502
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
503
                        with paddle.amp.auto_cast(
A
Aganlengzi 已提交
504 505
                                enable=self.cfg.use_gpu or self.cfg.use_npu or
                                self.cfg.use_mlu,
506 507 508
                                custom_white_list=self.custom_white_list,
                                custom_black_list=self.custom_black_list,
                                level=self.amp_level):
509 510 511 512 513 514
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
515 516 517
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
535
                    self.optimizer.step()
K
Kaipeng Deng 已提交
536 537
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
538 539
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
540 541 542
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
543
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
544 545 546 547
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
548
                if self.use_ema:
S
shangliang Xu 已提交
549
                    self.ema.update()
F
Feng Ni 已提交
550
                iter_tic = time.time()
K
Kaipeng Deng 已提交
551

M
minghaoBD 已提交
552 553
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
554

555
            is_snapshot = (self._nranks < 2 or (self._local_rank == 0 or self.cfg.metric == "Pose3DEval")) \
S
shangliang Xu 已提交
556 557 558 559 560 561 562
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
563 564
            self._compose_callback.on_epoch_end(self.status)

565
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
566 567 568 569 570 571 572
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
573 574 575
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
576 577 578 579 580 581 582 583
                    if self.cfg.metric == "Pose3DEval":
                        self._eval_loader = create('EvalReader')(
                            self._eval_dataset, self.cfg.worker_num)
                    else:
                        self._eval_loader = create('EvalReader')(
                            self._eval_dataset,
                            self.cfg.worker_num,
                            batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
584 585 586 587 588 589
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
590

K
Kaipeng Deng 已提交
591
                with paddle.no_grad():
592
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
593 594
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
595 596
            if is_snapshot and self.use_ema:
                # reset original weight
597
                self.model.set_dict(weight)
S
shangliang Xu 已提交
598
                self.status.pop('weight')
599

600 601
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
602
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
603 604 605
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
606
        self.status['mode'] = 'eval'
607

K
Kaipeng Deng 已提交
608
        self.model.eval()
G
Guanghua Yu 已提交
609
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
610 611 612
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
613
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
614 615 616
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
617 618
            if self.use_amp:
                with paddle.amp.auto_cast(
A
Aganlengzi 已提交
619 620
                        enable=self.cfg.use_gpu or self.cfg.use_npu or
                        self.cfg.use_mlu,
621 622 623
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
S
shangliang Xu 已提交
624 625 626
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
627 628 629 630 631

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
632 633 634 635 636
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
637 638 639 640 641 642 643 644 645
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
646
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
647 648 649
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
650
    def evaluate(self):
651 652 653 654 655 656 657 658 659
        # get distributed model
        if self.cfg.get('fleet', False):
            self.model = fleet.distributed_model(self.model)
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
        elif self._nranks > 1:
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            self.model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
660 661
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    def _eval_with_loader_slice(self,
                                loader,
                                slice_size=[640, 640],
                                overlap_ratio=[0.25, 0.25],
                                combine_method='nms',
                                match_threshold=0.6,
                                match_metric='iou'):
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
        self.status['mode'] = 'eval'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)

        merged_bboxs = []
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            if self.use_amp:
                with paddle.amp.auto_cast(
A
Aganlengzi 已提交
687 688
                        enable=self.cfg.use_gpu or self.cfg.use_npu or
                        self.cfg.use_mlu,
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)

            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']
                # update metrics
                for metric in self._metrics:
                    metric.update(data, merged_results)

                # multi-scale inputs: all inputs have same im_id
                if isinstance(data, typing.Sequence):
                    sample_num += data[0]['im_id'].numpy().shape[0]
                else:
                    sample_num += data['im_id'].numpy().shape[0]

            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        self._compose_callback.on_epoch_end(self.status)
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def evaluate_slice(self,
                       slice_size=[640, 640],
                       overlap_ratio=[0.25, 0.25],
                       combine_method='nms',
                       match_threshold=0.6,
                       match_metric='iou'):
        with paddle.no_grad():
            self._eval_with_loader_slice(self.loader, slice_size, overlap_ratio,
                                         combine_method, match_threshold,
                                         match_metric)

    def slice_predict(self,
                      images,
                      slice_size=[640, 640],
                      overlap_ratio=[0.25, 0.25],
                      combine_method='nms',
                      match_threshold=0.6,
                      match_metric='iou',
                      draw_threshold=0.5,
                      output_dir='output',
F
Feng Ni 已提交
764 765
                      save_results=False,
                      visualize=True):
766 767 768
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
        self.dataset.set_slice_images(images, slice_size, overlap_ratio)
        loader = create('TestReader')(self.dataset, 0)
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)

        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)

        results = []  # all images
        merged_bboxs = []  # single image
        for step_id, data in enumerate(tqdm(loader)):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)

            outs['bbox'] = outs['bbox'].numpy()  # only in test mode
            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount.numpy()
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount.numpy()
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']

                for key in ['im_shape', 'scale_factor', 'im_id']:
                    if isinstance(data, typing.Sequence):
F
Feng Ni 已提交
820
                        merged_results[key] = data[0][key]
821
                    else:
F
Feng Ni 已提交
822
                        merged_results[key] = data[key]
823 824 825 826 827
                for key, value in merged_results.items():
                    if hasattr(value, 'numpy'):
                        merged_results[key] = value.numpy()
                results.append(merged_results)

F
Feng Ni 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']
                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())
                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
W
Wenyu 已提交
841

F
Feng Ni 已提交
842
                    image = visualize_results(
W
Wenyu 已提交
843 844 845 846 847 848 849 850 851 852
                        image,
                        bbox_res,
                        mask_res=None,
                        segm_res=None,
                        keypoint_res=None,
                        pose3d_res=None,
                        im_id=int(im_id),
                        catid2name=catid2name,
                        threshold=draw_threshold)

F
Feng Ni 已提交
853 854 855 856 857 858 859 860 861 862
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)
                    start = end
863

C
cnn 已提交
864 865 866 867
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
wangxinxin08 已提交
868 869 870 871 872
                save_results=False,
                visualize=True):
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

K
Kaipeng Deng 已提交
873 874 875
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
wangxinxin08 已提交
876 877
        imid2path = self.dataset.get_imid2path()

W
Wenyu 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
W
wangxinxin08 已提交
891
            self.cfg['imid2path'] = imid2path
W
Wenyu 已提交
892 893 894 895 896 897 898 899 900 901 902 903
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

W
wangxinxin08 已提交
904 905
            self.cfg.pop('imid2path')

W
Wenyu 已提交
906 907 908 909 910 911 912 913 914 915
            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
916
        anno_file = self.dataset.get_anno()
C
cnn 已提交
917 918
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
919

K
Kaipeng Deng 已提交
920 921 922
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
923
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
924 925
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
926
        results = []
F
Feng Ni 已提交
927
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
928 929 930
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
931

W
Wenyu 已提交
932 933 934
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
935
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
936 937 938 939
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
940
            for key, value in outs.items():
941 942
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
943
            results.append(outs)
W
Wenyu 已提交
944

945 946
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
947 948
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
949

W
Wenyu 已提交
950 951 952 953
        for _m in metrics:
            _m.accumulate()
            _m.reset()

W
wangxinxin08 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']

                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())

                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
                    mask_res = batch_res['mask'][start:end] \
                            if 'mask' in batch_res else None
                    segm_res = batch_res['segm'][start:end] \
                            if 'segm' in batch_res else None
                    keypoint_res = batch_res['keypoint'][start:end] \
                            if 'keypoint' in batch_res else None
975 976
                    pose3d_res = batch_res['pose3d'][start:end] \
                            if 'pose3d' in batch_res else None
W
wangxinxin08 已提交
977 978
                    image = visualize_results(
                        image, bbox_res, mask_res, segm_res, keypoint_res,
979
                        pose3d_res, int(im_id), catid2name, draw_threshold)
W
wangxinxin08 已提交
980 981 982 983 984 985 986 987 988 989 990
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)

                    start = end
K
Kaipeng Deng 已提交
991 992 993 994 995 996 997 998 999

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
1000 1001 1002 1003
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
1004
        image_shape = None
1005 1006
        im_shape = [None, 2]
        scale_factor = [None, 2]
1007 1008 1009 1010 1011 1012
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
1013
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
1014
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
1015
        if image_shape is None:
G
Guanghua Yu 已提交
1016
            image_shape = [None, 3, -1, -1]
1017

G
Guanghua Yu 已提交
1018 1019
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
1020 1021 1022
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
1023

1024
        if hasattr(self.model, 'deploy'):
1025
            self.model.deploy = True
S
shangliang Xu 已提交
1026

1027 1028 1029 1030
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
1031

1032 1033 1034 1035
        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

1036 1037 1038 1039 1040 1041
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
1042 1043 1044
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
1045 1046 1047 1048 1049 1050
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
1051

K
Kaipeng Deng 已提交
1052 1053 1054 1055 1056 1057 1058
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
1059
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
1060
            "im_shape": InputSpec(
1061
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
1062
            "scale_factor": InputSpec(
1063
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
1064
        }]
G
George Ni 已提交
1065 1066 1067 1068 1069
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
1082
        # TODO: Hard code, delete it when support prune input_spec.
1083
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
1084 1085 1086 1087
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
1101

G
Guanghua Yu 已提交
1102 1103 1104 1105
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
1106

G
Guanghua Yu 已提交
1107 1108 1109 1110
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
1111

G
Guanghua Yu 已提交
1112 1113
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
1114 1115

        # dy2st and save model
1116
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
1117 1118 1119 1120 1121
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
1122
            self.cfg.slim.save_quantized_model(
1123 1124
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
1125 1126
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
1127

G
Guanghua Yu 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
1140
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
1141
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
1142
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
1143 1144 1145 1146 1147 1148

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
1197 1198 1199
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images