trainer.py 30.2 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24
import numpy as np
M
Mark Ma 已提交
25
import typing
26
from PIL import Image, ImageOps
K
Kaipeng Deng 已提交
27 28

import paddle
W
wangguanzhong 已提交
29 30
import paddle.distributed as dist
from paddle.distributed import fleet
31
from paddle import amp
K
Kaipeng Deng 已提交
32
from paddle.static import InputSpec
33
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
34 35

from ppdet.core.workspace import create
W
wangxinxin08 已提交
36
from ppdet.modeling.architectures.meta_arch import BaseArch
K
Kaipeng Deng 已提交
37
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
38
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
39
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
40 41
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
42
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
43
import ppdet.utils.stats as stats
44
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
45

46
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
47
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
48 49

from ppdet.utils.logger import setup_logger
50
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
51 52 53

__all__ = ['Trainer']

54 55
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
56 57 58 59 60 61 62

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
63
        self.optimizer = None
64
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
65

G
George Ni 已提交
66
        # build data loader
67 68 69 70 71 72 73 74 75
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
76 77 78 79 80 81
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
82 83
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
84

F
FlyingQianMM 已提交
85
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
86 87
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
88
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
89

K
Kaipeng Deng 已提交
90
        # build model
91 92 93 94 95
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
96

97 98 99
        #normalize params for deploy
        self.model.load_meanstd(cfg['TestReader']['sample_transforms'])

100 101
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
102 103
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
104
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
105 106 107 108
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
109

K
Kaipeng Deng 已提交
110 111 112 113 114
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
115 116 117 118 119 120
            reader_name = '{}Reader'.format(self.mode.capitalize())
            # If metric is VOC, need to be set collate_batch=False.
            if cfg.metric == 'VOC':
                cfg[reader_name]['collate_batch'] = False
            self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                              self._eval_batch_sampler)
K
Kaipeng Deng 已提交
121
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
122 123 124 125 126

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
127
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
128

M
minghaoBD 已提交
129 130 131 132
        if self.cfg.get('unstructured_prune'):
            self.pruner = create('UnstructuredPruner')(self.model,
                                                       steps_per_epoch)

W
wangguanzhong 已提交
133 134
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
135

K
Kaipeng Deng 已提交
136 137 138
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
139
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
140 141 142 143 144 145 146 147 148 149 150

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
151
            if self.cfg.get('use_vdl', False):
152
                self._callbacks.append(VisualDLWriter(self))
153 154
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
155 156 157
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
158 159
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
160
            self._compose_callback = ComposeCallback(self._callbacks)
161
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
162 163
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
164 165 166 167
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
168 169
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
170 171
            self._metrics = []
            return
172
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
173
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
174
            # TODO: bias should be unified
175
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
176 177
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
178
            save_prediction_only = self.cfg.get('save_prediction_only', False)
179 180 181

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
182 183
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
184 185 186 187

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
188
            dataset = self.dataset
189 190 191 192
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
193
                dataset = eval_dataset
194

195
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
196 197 198 199 200 201 202 203 204 205 206
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
207
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
208 209 210 211 212 213 214 215 216
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
217
                        save_prediction_only=save_prediction_only)
218
                ]
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
248 249 250
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
251
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
252
                    class_num=self.cfg.num_classes,
253 254
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
255
            ]
256 257 258 259 260 261 262 263 264
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
265 266 267 268
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
269
            save_prediction_only = self.cfg.get('save_prediction_only', False)
270
            self._metrics = [
271 272 273 274 275 276
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
277
            ]
Z
zhiboniu 已提交
278 279 280 281
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
282
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
283
            self._metrics = [
284 285 286 287 288 289
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
290
            ]
G
George Ni 已提交
291 292
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
293
        else:
294
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
295
                self.cfg.metric))
K
Kaipeng Deng 已提交
296 297 298 299 300 301 302
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
303
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
317
    def load_weights(self, weights):
318 319
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
320
        self.start_epoch = 0
321
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
322 323
        logger.debug("Load weights {} to start training".format(weights))

324 325 326 327 328 329 330
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
331
    def resume_weights(self, weights):
332 333 334 335 336 337
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
338
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
339

K
Kaipeng Deng 已提交
340
    def train(self, validate=False):
K
Kaipeng Deng 已提交
341
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
342
        Init_mark = False
K
Kaipeng Deng 已提交
343

W
wangxinxin08 已提交
344
        sync_bn = (getattr(self.cfg, 'norm_type', None) in [None, 'sync_bn'] and
W
wangxinxin08 已提交
345 346
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
W
wangxinxin08 已提交
347
            self.model = BaseArch.convert_sync_batchnorm(self.model)
W
wangxinxin08 已提交
348

349
        model = self.model
350
        if self.cfg.get('fleet', False):
351
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
352
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
353
        elif self._nranks > 1:
G
George Ni 已提交
354 355 356 357
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
358 359

        # initial fp16
360
        if self.cfg.get('fp16', False):
361 362
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
363

K
Kaipeng Deng 已提交
364 365 366 367 368 369 370 371 372 373 374 375
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
376
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
377 378 379
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
380
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
381

382 383
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
384
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
385
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
386 387 388
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
389
            model.train()
K
Kaipeng Deng 已提交
390 391 392 393
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
394
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
395
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
396
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
397

398
                if self.cfg.get('fp16', False):
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
416 417
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
418 419
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
420 421 422
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
423
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
424 425 426 427
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
428 429
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
430
                iter_tic = time.time()
K
Kaipeng Deng 已提交
431

432 433
            # apply ema weight on model
            if self.use_ema:
434
                weight = copy.deepcopy(self.model.state_dict())
435
                self.model.set_dict(self.ema.apply())
M
minghaoBD 已提交
436 437
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
438

K
Kaipeng Deng 已提交
439 440
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
441
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
442
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
443 444 445 446 447 448 449 450
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
451 452 453
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
454 455 456 457
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
458 459 460 461 462 463
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
464
                with paddle.no_grad():
465
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
466 467
                    self._eval_with_loader(self._eval_loader)

468 469 470 471
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

472 473
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
474
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
475 476 477
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
478 479
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
480
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
481 482 483
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
K
Kaipeng Deng 已提交
484
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
485 486 487 488 489 490 491 492 493
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
494 495 496 497 498
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
499 500 501 502 503 504 505 506 507
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
508
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
509 510 511
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
512
    def evaluate(self):
513 514
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
515

C
cnn 已提交
516 517 518 519 520
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
521 522 523 524 525 526
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
527 528
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
529

K
Kaipeng Deng 已提交
530 531 532
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
533
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
534 535
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
536
        results = []
K
Kaipeng Deng 已提交
537 538 539 540
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
541

K
Kaipeng Deng 已提交
542
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
543 544 545 546
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
547
            for key, value in outs.items():
548 549
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
550 551 552
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
553 554
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
555

556
        for outs in results:
K
Kaipeng Deng 已提交
557 558
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
559

K
Kaipeng Deng 已提交
560 561 562 563
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
564
                image = ImageOps.exif_transpose(image)
565
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
566

567
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
568 569 570 571
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
572 573
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
574 575 576 577
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
578
                    int(im_id), catid2name, draw_threshold)
579
                self.status['result_image'] = np.array(image.copy())
580 581
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
582 583 584 585 586
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
587 588
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
589 590 591 592 593 594 595
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
596 597 598 599 600 601 602 603 604 605 606 607
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
608
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
609
        image_shape = None
610 611
        im_shape = [None, 2]
        scale_factor = [None, 2]
612 613 614 615 616 617
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
618
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
619
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
620
        if image_shape is None:
G
Guanghua Yu 已提交
621
            image_shape = [None, 3, -1, -1]
622

G
Guanghua Yu 已提交
623 624
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
625 626 627
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
628

629 630 631 632 633
        if hasattr(self.model, 'deploy'):
            self.model.deploy = True
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
K
Kaipeng Deng 已提交
634

K
Kaipeng Deng 已提交
635 636 637 638 639 640 641
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
642
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
643
            "im_shape": InputSpec(
644
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
645
            "scale_factor": InputSpec(
646
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
647
        }]
G
George Ni 已提交
648 649 650 651 652
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
653 654 655 656 657 658 659 660 661 662 663 664
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
665 666 667 668 669 670 671
        # TODO: Hard code, delete it when support prune input_spec.
        if self.cfg.architecture == 'PicoDet':
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
672 673 674 675 676 677 678 679
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
680

G
Guanghua Yu 已提交
681 682
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
683 684 685

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
686 687 688 689 690
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
691
            self.cfg.slim.save_quantized_model(
692 693
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
694 695
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
696

G
Guanghua Yu 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))