trainer.py 39.2 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51

52 53
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
54
from ppdet.utils.logger import setup_logger
55
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
56 57 58

__all__ = ['Trainer']

59
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
60

K
Kaipeng Deng 已提交
61 62 63 64 65 66 67

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
68
        self.optimizer = None
69
        self.is_loaded_weights = False
S
shangliang Xu 已提交
70 71
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
72 73
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)
K
Kaipeng Deng 已提交
74

G
George Ni 已提交
75
        # build data loader
W
wangguanzhong 已提交
76
        capital_mode = self.mode.capitalize()
77
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
78 79
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
80
        else:
W
wangguanzhong 已提交
81 82
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
83 84 85 86 87

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

88 89 90 91
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
92
        if self.mode == 'train':
W
wangguanzhong 已提交
93
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
94 95 96 97
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
98 99
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
100

F
FlyingQianMM 已提交
101
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
102 103
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
104
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
105

K
Kaipeng Deng 已提交
106
        # build model
107 108 109 110 111
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
112

F
Feng Ni 已提交
113 114 115
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
116 117
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
118

119
        #normalize params for deploy
C
Chang Xu 已提交
120 121 122
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
123 124 125 126 127 128 129
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
130 131
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
132

K
Kaipeng Deng 已提交
133 134 135
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
136 137 138 139 140 141 142 143 144 145 146
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
147
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
148 149 150 151 152

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
153
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
154

M
minghaoBD 已提交
155 156 157 158
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
159
        if self.use_amp and self.amp_level == 'O2':
160 161 162 163
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)
S
shangliang Xu 已提交
164 165 166 167 168 169 170 171 172 173 174
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
                cycle_epoch=cycle_epoch)

W
wangguanzhong 已提交
175 176
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
177

K
Kaipeng Deng 已提交
178 179 180
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
181
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
182 183 184 185 186 187 188 189 190 191 192

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
193
            if self.cfg.get('use_vdl', False):
194
                self._callbacks.append(VisualDLWriter(self))
195 196
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
197 198
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
199 200 201
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
202 203
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
204
            self._compose_callback = ComposeCallback(self._callbacks)
205
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
206 207
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
208 209 210 211
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
212 213
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
214 215
            self._metrics = []
            return
216
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
217
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
218
            # TODO: bias should be unified
W
wangxinxin08 已提交
219
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
220 221
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
222
            save_prediction_only = self.cfg.get('save_prediction_only', False)
223 224 225

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
226 227
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
228 229 230 231 232 233 234

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
235
                dataset = eval_dataset
W
Wenyu 已提交
236 237 238
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
239

240
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
241 242 243 244 245 246 247 248 249 250 251
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
252
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
253 254 255 256 257 258 259 260 261
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
262
                        save_prediction_only=save_prediction_only)
263
                ]
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
293
        elif self.cfg.metric == 'VOC':
294 295 296 297
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
298 299
            self._metrics = [
                VOCMetric(
300
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
301
                    class_num=self.cfg.num_classes,
302
                    map_type=self.cfg.map_type,
303 304 305
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
306
            ]
307 308 309 310 311 312 313 314 315
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
316 317 318 319
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
320
            save_prediction_only = self.cfg.get('save_prediction_only', False)
321
            self._metrics = [
322 323 324 325 326 327
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
328
            ]
Z
zhiboniu 已提交
329 330 331 332
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
333
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
334
            self._metrics = [
335 336 337 338 339 340
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
341
            ]
G
George Ni 已提交
342 343
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
344
        else:
345
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
346
                self.cfg.metric))
K
Kaipeng Deng 已提交
347 348 349 350 351 352 353
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
354
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
368
    def load_weights(self, weights):
369 370
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
371
        self.start_epoch = 0
372
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
373 374
        logger.debug("Load weights {} to start training".format(weights))

375 376 377 378 379 380 381
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
382
    def resume_weights(self, weights):
383 384 385 386 387
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
388 389
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
390
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
391

K
Kaipeng Deng 已提交
392
    def train(self, validate=False):
K
Kaipeng Deng 已提交
393
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
394
        Init_mark = False
W
wangguanzhong 已提交
395
        if validate:
W
wangguanzhong 已提交
396 397
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
398

399
        model = self.model
400
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
401 402
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
403
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
404

405
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
406
        if self.use_amp:
407 408 409 410
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
411
        if self.cfg.get('fleet', False):
412
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
413
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
414
        elif self._nranks > 1:
G
George Ni 已提交
415 416 417
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
418
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
419

K
Kaipeng Deng 已提交
420 421 422 423 424 425 426 427 428 429 430 431
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
432
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
433 434 435
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
436
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
437

438 439
        self._compose_callback.on_train_begin(self.status)

440 441 442
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
443
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
444
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
445 446 447
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
448
            model.train()
K
Kaipeng Deng 已提交
449 450 451 452
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
453
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
454
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
455
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
456

S
shangliang Xu 已提交
457
                if self.use_amp:
458 459 460 461
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
462
                            with paddle.amp.auto_cast(
463 464 465
                                    enable=self.cfg.use_gpu,
                                    custom_white_list=self.custom_white_list,
                                    custom_black_list=self.custom_black_list,
466 467 468 469 470 471 472 473 474 475
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
476
                        with paddle.amp.auto_cast(
477 478 479 480
                                enable=self.cfg.use_gpu,
                                custom_white_list=self.custom_white_list,
                                custom_black_list=self.custom_black_list,
                                level=self.amp_level):
481 482 483 484 485 486
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
487 488 489
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
507
                    self.optimizer.step()
K
Kaipeng Deng 已提交
508 509
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
510 511
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
512 513 514
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
515
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
516 517 518 519
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
520
                if self.use_ema:
S
shangliang Xu 已提交
521
                    self.ema.update()
F
Feng Ni 已提交
522
                iter_tic = time.time()
K
Kaipeng Deng 已提交
523

M
minghaoBD 已提交
524 525
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
526

S
shangliang Xu 已提交
527 528 529 530 531 532 533 534
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
535 536
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
537
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
538 539 540 541 542 543 544
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
545 546 547
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
548 549 550 551
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
552 553 554 555 556 557
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
558

K
Kaipeng Deng 已提交
559
                with paddle.no_grad():
560
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
561 562
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
563 564
            if is_snapshot and self.use_ema:
                # reset original weight
565
                self.model.set_dict(weight)
S
shangliang Xu 已提交
566
                self.status.pop('weight')
567

568 569
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
570
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
571 572 573
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
574 575
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
576
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
577 578 579
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
580
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
581 582 583
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
584 585
            if self.use_amp:
                with paddle.amp.auto_cast(
586 587 588 589
                        enable=self.cfg.use_gpu,
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
S
shangliang Xu 已提交
590 591 592
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
593 594 595 596 597

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
598 599 600 601 602
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
603 604 605 606 607 608 609 610 611
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
612
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
613 614 615
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
616
    def evaluate(self):
617 618
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
619

C
cnn 已提交
620 621 622 623
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
624
                save_results=False):
K
Kaipeng Deng 已提交
625 626 627
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
663 664 665
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
666 667
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
668

K
Kaipeng Deng 已提交
669 670 671
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
672
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
673 674
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
675
        results = []
F
Feng Ni 已提交
676
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
677 678 679
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
680

W
Wenyu 已提交
681 682 683
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
684
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
685 686 687 688
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
689
            for key, value in outs.items():
690 691
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
692
            results.append(outs)
W
Wenyu 已提交
693

694 695
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
696 697
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
698

W
Wenyu 已提交
699 700 701 702
        for _m in metrics:
            _m.accumulate()
            _m.reset()

703
        for outs in results:
K
Kaipeng Deng 已提交
704 705
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
706

K
Kaipeng Deng 已提交
707 708 709 710
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
711
                image = ImageOps.exif_transpose(image)
712
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
713

714
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
715 716 717 718
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
719 720
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
721 722 723 724
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
725
                    int(im_id), catid2name, draw_threshold)
726
                self.status['result_image'] = np.array(image.copy())
727 728
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
729 730 731 732 733
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
734

K
Kaipeng Deng 已提交
735 736 737 738 739 740 741 742 743 744 745 746
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
747 748 749 750
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
751
        image_shape = None
752 753
        im_shape = [None, 2]
        scale_factor = [None, 2]
754 755 756 757 758 759
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
760
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
761
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
762
        if image_shape is None:
G
Guanghua Yu 已提交
763
            image_shape = [None, 3, -1, -1]
764

G
Guanghua Yu 已提交
765 766
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
767 768 769
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
770

771
        if hasattr(self.model, 'deploy'):
772
            self.model.deploy = True
S
shangliang Xu 已提交
773

774 775 776 777
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
778

779 780 781 782 783 784
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
785 786 787
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
788 789 790 791 792 793
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
794

K
Kaipeng Deng 已提交
795 796 797 798 799 800 801
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
802
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
803
            "im_shape": InputSpec(
804
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
805
            "scale_factor": InputSpec(
806
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
807
        }]
G
George Ni 已提交
808 809 810 811 812
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
813 814 815 816 817 818 819 820 821 822 823 824
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
825
        # TODO: Hard code, delete it when support prune input_spec.
826
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
827 828 829 830
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
844

G
Guanghua Yu 已提交
845 846 847 848
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
849 850 851 852 853

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
854 855 856 857
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
858

G
Guanghua Yu 已提交
859 860
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
861 862

        # dy2st and save model
863
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
864 865 866 867 868
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
869
            self.cfg.slim.save_quantized_model(
870 871
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
872 873
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
874

G
Guanghua Yu 已提交
875 876 877 878 879 880 881 882 883 884 885 886
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
887
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
888
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
889
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
890 891 892 893 894 895

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
944 945 946
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images