trainer.py 47.9 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
48
from ppdet.modeling.post_process import multiclass_nms
K
Kaipeng Deng 已提交
49

50
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
51
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
52

53 54
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
55
from ppdet.utils.logger import setup_logger
56
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
57 58 59

__all__ = ['Trainer']

60
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
61

K
Kaipeng Deng 已提交
62 63 64 65 66 67 68

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
69
        self.optimizer = None
70
        self.is_loaded_weights = False
S
shangliang Xu 已提交
71 72
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
73 74
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)
K
Kaipeng Deng 已提交
75

G
George Ni 已提交
76
        # build data loader
W
wangguanzhong 已提交
77
        capital_mode = self.mode.capitalize()
78
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
79 80
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
81
        else:
W
wangguanzhong 已提交
82 83
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
84 85 86 87 88

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

89 90 91 92
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
93
        if self.mode == 'train':
W
wangguanzhong 已提交
94
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
95 96 97 98
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
99 100
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
101

F
FlyingQianMM 已提交
102
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
103 104
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
105
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
106

K
Kaipeng Deng 已提交
107
        # build model
108 109 110 111 112
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
113

F
Feng Ni 已提交
114 115 116
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
117 118
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
119

120
        #normalize params for deploy
C
Chang Xu 已提交
121 122 123
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
124 125 126 127 128 129 130
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
131 132
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
133

K
Kaipeng Deng 已提交
134 135 136
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
137 138 139 140 141 142 143 144 145 146 147
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
148
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
149 150 151 152

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
153 154 155 156
            if steps_per_epoch < 1:
                logger.warning(
                    "Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
                )
K
Kaipeng Deng 已提交
157
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
158
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
159

M
minghaoBD 已提交
160 161 162 163
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
164
        if self.use_amp and self.amp_level == 'O2':
165 166 167 168
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)
S
shangliang Xu 已提交
169 170 171 172
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
173 174
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_black_list = self.cfg.get('ema_black_list', None)
S
shangliang Xu 已提交
175 176 177 178
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
179 180
                cycle_epoch=cycle_epoch,
                ema_black_list=ema_black_list)
S
shangliang Xu 已提交
181

W
wangguanzhong 已提交
182 183
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
184

K
Kaipeng Deng 已提交
185 186 187
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
188
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
189 190 191 192 193 194 195 196 197 198 199

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
200
            if self.cfg.get('use_vdl', False):
201
                self._callbacks.append(VisualDLWriter(self))
202 203
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
204 205
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
206 207 208
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
209 210
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
211
            self._compose_callback = ComposeCallback(self._callbacks)
212
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
213 214
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
215 216 217 218
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
219 220
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
221 222
            self._metrics = []
            return
223
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
224
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
225
            # TODO: bias should be unified
W
wangxinxin08 已提交
226
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
227 228
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
229
            save_prediction_only = self.cfg.get('save_prediction_only', False)
230 231 232

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
233 234
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
235 236 237 238 239 240 241

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
242
                dataset = eval_dataset
W
Wenyu 已提交
243 244 245
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
246

247
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
248 249 250 251 252 253 254 255 256 257 258
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
259
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
260 261 262 263 264 265 266 267 268
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
269
                        save_prediction_only=save_prediction_only)
270
                ]
271 272 273 274 275 276
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)
W
wangxinxin08 已提交
277
            imid2path = self.cfg.get('imid2path', None)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
W
wangxinxin08 已提交
293 294
                    save_prediction_only=save_prediction_only,
                    imid2path=imid2path)
295
            ]
K
Kaipeng Deng 已提交
296
        elif self.cfg.metric == 'VOC':
297 298 299 300
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
301 302
            self._metrics = [
                VOCMetric(
303
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
304
                    class_num=self.cfg.num_classes,
305
                    map_type=self.cfg.map_type,
306 307 308
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
309
            ]
310 311 312 313 314 315 316 317 318
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
319 320 321 322
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
323
            save_prediction_only = self.cfg.get('save_prediction_only', False)
324
            self._metrics = [
325 326 327 328 329 330
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
331
            ]
Z
zhiboniu 已提交
332 333 334 335
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
336
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
337
            self._metrics = [
338 339 340 341 342 343
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
344
            ]
G
George Ni 已提交
345 346
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
347
        else:
348
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
349
                self.cfg.metric))
K
Kaipeng Deng 已提交
350 351 352 353 354 355 356
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
357
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
371
    def load_weights(self, weights):
372 373
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
374
        self.start_epoch = 0
375
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
376 377
        logger.debug("Load weights {} to start training".format(weights))

378 379 380 381 382 383 384
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
385
    def resume_weights(self, weights):
386 387 388 389 390
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
391 392
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
393
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
394

K
Kaipeng Deng 已提交
395
    def train(self, validate=False):
K
Kaipeng Deng 已提交
396
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
397
        Init_mark = False
W
wangguanzhong 已提交
398
        if validate:
W
wangguanzhong 已提交
399 400
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
401

402
        model = self.model
403
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
404 405
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
406
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
407

408
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
409
        if self.use_amp:
410 411 412 413
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
414
        if self.cfg.get('fleet', False):
415
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
416
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
417
        elif self._nranks > 1:
G
George Ni 已提交
418 419 420
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
421
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
422

K
Kaipeng Deng 已提交
423 424 425 426 427 428 429 430 431 432 433 434
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
435
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
436 437 438
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
439
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
440

441 442
        self._compose_callback.on_train_begin(self.status)

443 444 445
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
446
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
447
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
448 449 450
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
451
            model.train()
K
Kaipeng Deng 已提交
452 453 454 455
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
456
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
457
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
458
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
459

S
shangliang Xu 已提交
460
                if self.use_amp:
461 462 463 464
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
465
                            with paddle.amp.auto_cast(
466 467 468
                                    enable=self.cfg.use_gpu,
                                    custom_white_list=self.custom_white_list,
                                    custom_black_list=self.custom_black_list,
469 470 471 472 473 474 475 476 477 478
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
479
                        with paddle.amp.auto_cast(
480 481 482 483
                                enable=self.cfg.use_gpu,
                                custom_white_list=self.custom_white_list,
                                custom_black_list=self.custom_black_list,
                                level=self.amp_level):
484 485 486 487 488 489
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
490 491 492
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
510
                    self.optimizer.step()
K
Kaipeng Deng 已提交
511 512
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
513 514
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
515 516 517
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
518
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
519 520 521 522
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
523
                if self.use_ema:
S
shangliang Xu 已提交
524
                    self.ema.update()
F
Feng Ni 已提交
525
                iter_tic = time.time()
K
Kaipeng Deng 已提交
526

M
minghaoBD 已提交
527 528
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
529

S
shangliang Xu 已提交
530 531 532 533 534 535 536 537
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
538 539
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
540
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
541 542 543 544 545 546 547
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
548 549 550
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
551 552 553 554
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
555 556 557 558 559 560
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
561

K
Kaipeng Deng 已提交
562
                with paddle.no_grad():
563
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
564 565
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
566 567
            if is_snapshot and self.use_ema:
                # reset original weight
568
                self.model.set_dict(weight)
S
shangliang Xu 已提交
569
                self.status.pop('weight')
570

571 572
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
573
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
574 575 576
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
577 578
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
579
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
580 581 582
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
583
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
584 585 586
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
587 588
            if self.use_amp:
                with paddle.amp.auto_cast(
589 590 591 592
                        enable=self.cfg.use_gpu,
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
S
shangliang Xu 已提交
593 594 595
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
596 597 598 599 600

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
601 602 603 604 605
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
606 607 608 609 610 611 612 613 614
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
615
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
616 617 618
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
619
    def evaluate(self):
620 621
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    def _eval_with_loader_slice(self,
                                loader,
                                slice_size=[640, 640],
                                overlap_ratio=[0.25, 0.25],
                                combine_method='nms',
                                match_threshold=0.6,
                                match_metric='iou'):
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
        self.status['mode'] = 'eval'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)

        merged_bboxs = []
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            if self.use_amp:
                with paddle.amp.auto_cast(
                        enable=self.cfg.use_gpu,
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)

            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']
                # update metrics
                for metric in self._metrics:
                    metric.update(data, merged_results)

                # multi-scale inputs: all inputs have same im_id
                if isinstance(data, typing.Sequence):
                    sample_num += data[0]['im_id'].numpy().shape[0]
                else:
                    sample_num += data['im_id'].numpy().shape[0]

            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        self._compose_callback.on_epoch_end(self.status)
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def evaluate_slice(self,
                       slice_size=[640, 640],
                       overlap_ratio=[0.25, 0.25],
                       combine_method='nms',
                       match_threshold=0.6,
                       match_metric='iou'):
        with paddle.no_grad():
            self._eval_with_loader_slice(self.loader, slice_size, overlap_ratio,
                                         combine_method, match_threshold,
                                         match_metric)

    def slice_predict(self,
                      images,
                      slice_size=[640, 640],
                      overlap_ratio=[0.25, 0.25],
                      combine_method='nms',
                      match_threshold=0.6,
                      match_metric='iou',
                      draw_threshold=0.5,
                      output_dir='output',
F
Feng Ni 已提交
723 724
                      save_results=False,
                      visualize=True):
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
        self.dataset.set_slice_images(images, slice_size, overlap_ratio)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)

        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)

        results = []  # all images
        merged_bboxs = []  # single image
        for step_id, data in enumerate(tqdm(loader)):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)

            outs['bbox'] = outs['bbox'].numpy()  # only in test mode
            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount.numpy()
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount.numpy()
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']

                for key in ['im_shape', 'scale_factor', 'im_id']:
                    if isinstance(data, typing.Sequence):
F
Feng Ni 已提交
777
                        merged_results[key] = data[0][key]
778
                    else:
F
Feng Ni 已提交
779
                        merged_results[key] = data[key]
780 781 782 783 784
                for key, value in merged_results.items():
                    if hasattr(value, 'numpy'):
                        merged_results[key] = value.numpy()
                results.append(merged_results)

F
Feng Ni 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']
                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())
                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
                    mask_res, segm_res, keypoint_res = None, None, None
                    image = visualize_results(
                        image, bbox_res, mask_res, segm_res, keypoint_res,
                        int(im_id), catid2name, draw_threshold)
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)
                    start = end
812

C
cnn 已提交
813 814 815 816
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
wangxinxin08 已提交
817 818 819 820 821
                save_results=False,
                visualize=True):
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

K
Kaipeng Deng 已提交
822 823 824
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
wangxinxin08 已提交
825 826
        imid2path = self.dataset.get_imid2path()

W
Wenyu 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
W
wangxinxin08 已提交
840
            self.cfg['imid2path'] = imid2path
W
Wenyu 已提交
841 842 843 844 845 846 847 848 849 850 851 852
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

W
wangxinxin08 已提交
853 854
            self.cfg.pop('imid2path')

W
Wenyu 已提交
855 856 857 858 859 860 861 862 863 864
            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
865
        anno_file = self.dataset.get_anno()
C
cnn 已提交
866 867
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
868

K
Kaipeng Deng 已提交
869 870 871
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
872
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
873 874
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
875
        results = []
F
Feng Ni 已提交
876
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
877 878 879
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
880

W
Wenyu 已提交
881 882 883
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
884
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
885 886 887 888
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
889
            for key, value in outs.items():
890 891
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
892
            results.append(outs)
W
Wenyu 已提交
893

894 895
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
896 897
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
898

W
Wenyu 已提交
899 900 901 902
        for _m in metrics:
            _m.accumulate()
            _m.reset()

W
wangxinxin08 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']

                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())

                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
                    mask_res = batch_res['mask'][start:end] \
                            if 'mask' in batch_res else None
                    segm_res = batch_res['segm'][start:end] \
                            if 'segm' in batch_res else None
                    keypoint_res = batch_res['keypoint'][start:end] \
                            if 'keypoint' in batch_res else None
                    image = visualize_results(
                        image, bbox_res, mask_res, segm_res, keypoint_res,
                        int(im_id), catid2name, draw_threshold)
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)

                    start = end
K
Kaipeng Deng 已提交
938 939 940 941 942 943 944 945 946

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
947 948 949 950
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
951
        image_shape = None
952 953
        im_shape = [None, 2]
        scale_factor = [None, 2]
954 955 956 957 958 959
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
960
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
961
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
962
        if image_shape is None:
G
Guanghua Yu 已提交
963
            image_shape = [None, 3, -1, -1]
964

G
Guanghua Yu 已提交
965 966
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
967 968 969
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
970

971
        if hasattr(self.model, 'deploy'):
972
            self.model.deploy = True
S
shangliang Xu 已提交
973

974 975 976 977
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
978

979 980 981 982 983 984
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
985 986 987
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
988 989 990 991 992 993
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
994

K
Kaipeng Deng 已提交
995 996 997 998 999 1000 1001
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
1002
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
1003
            "im_shape": InputSpec(
1004
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
1005
            "scale_factor": InputSpec(
1006
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
1007
        }]
G
George Ni 已提交
1008 1009 1010 1011 1012
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
1025
        # TODO: Hard code, delete it when support prune input_spec.
1026
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
1027 1028 1029 1030
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
1044

G
Guanghua Yu 已提交
1045 1046 1047 1048
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
1049 1050 1051 1052 1053

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
1054 1055 1056 1057
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
1058

G
Guanghua Yu 已提交
1059 1060
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
1061 1062

        # dy2st and save model
1063
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
1064 1065 1066 1067 1068
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
1069
            self.cfg.slim.save_quantized_model(
1070 1071
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
1072 1073
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
1074

G
Guanghua Yu 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
1087
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
1088
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
1089
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
1090 1091 1092 1093 1094 1095

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
1144 1145 1146
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images