trainer.py 47.4 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
48
from ppdet.modeling.post_process import multiclass_nms
K
Kaipeng Deng 已提交
49

50
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
51
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
52

53 54
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
55
from ppdet.utils.logger import setup_logger
56
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
57 58 59

__all__ = ['Trainer']

60
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
61

K
Kaipeng Deng 已提交
62 63 64 65 66 67 68

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
69
        self.optimizer = None
70
        self.is_loaded_weights = False
S
shangliang Xu 已提交
71 72
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
73 74
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)
K
Kaipeng Deng 已提交
75

G
George Ni 已提交
76
        # build data loader
W
wangguanzhong 已提交
77
        capital_mode = self.mode.capitalize()
78
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
79 80
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
81
        else:
W
wangguanzhong 已提交
82 83
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
84 85 86 87 88

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

89 90 91 92
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
93
        if self.mode == 'train':
W
wangguanzhong 已提交
94
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
95 96 97 98
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
99 100
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
101

F
FlyingQianMM 已提交
102
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
103 104
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
105
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
106

K
Kaipeng Deng 已提交
107
        # build model
108 109 110 111 112
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
113

F
Feng Ni 已提交
114 115 116
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
117 118
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
119

120
        #normalize params for deploy
C
Chang Xu 已提交
121 122 123
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
124 125 126 127 128 129 130
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
131 132
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
133

K
Kaipeng Deng 已提交
134 135 136
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
137 138 139 140 141 142 143 144 145 146 147
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
148
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
149 150 151 152 153

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
154
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
155

M
minghaoBD 已提交
156 157 158 159
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
160
        if self.use_amp and self.amp_level == 'O2':
161 162 163 164
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)
S
shangliang Xu 已提交
165 166 167 168 169 170 171 172 173 174 175
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
                cycle_epoch=cycle_epoch)

W
wangguanzhong 已提交
176 177
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
178

K
Kaipeng Deng 已提交
179 180 181
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
182
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
183 184 185 186 187 188 189 190 191 192 193

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
194
            if self.cfg.get('use_vdl', False):
195
                self._callbacks.append(VisualDLWriter(self))
196 197
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
198 199
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
200 201 202
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
203 204
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
205
            self._compose_callback = ComposeCallback(self._callbacks)
206
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
207 208
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
209 210 211 212
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
213 214
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
215 216
            self._metrics = []
            return
217
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
218
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
219
            # TODO: bias should be unified
W
wangxinxin08 已提交
220
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
221 222
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
223
            save_prediction_only = self.cfg.get('save_prediction_only', False)
224 225 226

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
227 228
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
229 230 231 232 233 234 235

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
236
                dataset = eval_dataset
W
Wenyu 已提交
237 238 239
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
240

241
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
242 243 244 245 246 247 248 249 250 251 252
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
253
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
254 255 256 257 258 259 260 261 262
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
263
                        save_prediction_only=save_prediction_only)
264
                ]
265 266 267 268 269 270
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)
W
wangxinxin08 已提交
271
            imid2path = self.cfg.get('imid2path', None)
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
W
wangxinxin08 已提交
287 288
                    save_prediction_only=save_prediction_only,
                    imid2path=imid2path)
289
            ]
K
Kaipeng Deng 已提交
290
        elif self.cfg.metric == 'VOC':
291 292 293 294
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
295 296
            self._metrics = [
                VOCMetric(
297
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
298
                    class_num=self.cfg.num_classes,
299
                    map_type=self.cfg.map_type,
300 301 302
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
303
            ]
304 305 306 307 308 309 310 311 312
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
313 314 315 316
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
317
            save_prediction_only = self.cfg.get('save_prediction_only', False)
318
            self._metrics = [
319 320 321 322 323 324
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
325
            ]
Z
zhiboniu 已提交
326 327 328 329
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
330
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
331
            self._metrics = [
332 333 334 335 336 337
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
338
            ]
G
George Ni 已提交
339 340
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
341
        else:
342
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
343
                self.cfg.metric))
K
Kaipeng Deng 已提交
344 345 346 347 348 349 350
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
351
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
365
    def load_weights(self, weights):
366 367
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
368
        self.start_epoch = 0
369
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
370 371
        logger.debug("Load weights {} to start training".format(weights))

372 373 374 375 376 377 378
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
379
    def resume_weights(self, weights):
380 381 382 383 384
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
385 386
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
387
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
388

K
Kaipeng Deng 已提交
389
    def train(self, validate=False):
K
Kaipeng Deng 已提交
390
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
391
        Init_mark = False
W
wangguanzhong 已提交
392
        if validate:
W
wangguanzhong 已提交
393 394
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
395

396
        model = self.model
397
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
398 399
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
400
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
401

402
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
403
        if self.use_amp:
404 405 406 407
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
408
        if self.cfg.get('fleet', False):
409
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
410
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
411
        elif self._nranks > 1:
G
George Ni 已提交
412 413 414
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
415
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
416

K
Kaipeng Deng 已提交
417 418 419 420 421 422 423 424 425 426 427 428
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
429
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
430 431 432
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
433
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
434

435 436
        self._compose_callback.on_train_begin(self.status)

437 438 439
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
440
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
441
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
442 443 444
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
445
            model.train()
K
Kaipeng Deng 已提交
446 447 448 449
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
450
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
451
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
452
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
453

S
shangliang Xu 已提交
454
                if self.use_amp:
455 456 457 458
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
459
                            with paddle.amp.auto_cast(
460 461 462
                                    enable=self.cfg.use_gpu,
                                    custom_white_list=self.custom_white_list,
                                    custom_black_list=self.custom_black_list,
463 464 465 466 467 468 469 470 471 472
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
473
                        with paddle.amp.auto_cast(
474 475 476 477
                                enable=self.cfg.use_gpu,
                                custom_white_list=self.custom_white_list,
                                custom_black_list=self.custom_black_list,
                                level=self.amp_level):
478 479 480 481 482 483
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
484 485 486
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
504
                    self.optimizer.step()
K
Kaipeng Deng 已提交
505 506
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
507 508
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
509 510 511
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
512
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
513 514 515 516
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
517
                if self.use_ema:
S
shangliang Xu 已提交
518
                    self.ema.update()
F
Feng Ni 已提交
519
                iter_tic = time.time()
K
Kaipeng Deng 已提交
520

M
minghaoBD 已提交
521 522
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
523

S
shangliang Xu 已提交
524 525 526 527 528 529 530 531
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
532 533
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
534
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
535 536 537 538 539 540 541
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
542 543 544
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
545 546 547 548
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
549 550 551 552 553 554
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
555

K
Kaipeng Deng 已提交
556
                with paddle.no_grad():
557
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
558 559
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
560 561
            if is_snapshot and self.use_ema:
                # reset original weight
562
                self.model.set_dict(weight)
S
shangliang Xu 已提交
563
                self.status.pop('weight')
564

565 566
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
567
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
568 569 570
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
571 572
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
573
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
574 575 576
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
577
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
578 579 580
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
581 582
            if self.use_amp:
                with paddle.amp.auto_cast(
583 584 585 586
                        enable=self.cfg.use_gpu,
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
S
shangliang Xu 已提交
587 588 589
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
590 591 592 593 594

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
595 596 597 598 599
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
600 601 602 603 604 605 606 607 608
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
609
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
610 611 612
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
613
    def evaluate(self):
614 615
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
616

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    def _eval_with_loader_slice(self,
                                loader,
                                slice_size=[640, 640],
                                overlap_ratio=[0.25, 0.25],
                                combine_method='nms',
                                match_threshold=0.6,
                                match_metric='iou'):
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
        self.status['mode'] = 'eval'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)

        merged_bboxs = []
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            if self.use_amp:
                with paddle.amp.auto_cast(
                        enable=self.cfg.use_gpu,
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)

            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']
                # update metrics
                for metric in self._metrics:
                    metric.update(data, merged_results)

                # multi-scale inputs: all inputs have same im_id
                if isinstance(data, typing.Sequence):
                    sample_num += data[0]['im_id'].numpy().shape[0]
                else:
                    sample_num += data['im_id'].numpy().shape[0]

            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
        self._compose_callback.on_epoch_end(self.status)
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

    def evaluate_slice(self,
                       slice_size=[640, 640],
                       overlap_ratio=[0.25, 0.25],
                       combine_method='nms',
                       match_threshold=0.6,
                       match_metric='iou'):
        with paddle.no_grad():
            self._eval_with_loader_slice(self.loader, slice_size, overlap_ratio,
                                         combine_method, match_threshold,
                                         match_metric)

    def slice_predict(self,
                      images,
                      slice_size=[640, 640],
                      overlap_ratio=[0.25, 0.25],
                      combine_method='nms',
                      match_threshold=0.6,
                      match_metric='iou',
                      draw_threshold=0.5,
                      output_dir='output',
                      save_results=False):
        self.dataset.set_slice_images(images, slice_size, overlap_ratio)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)

        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
        if self.cfg.get('print_flops', False):
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)

        results = []  # all images
        merged_bboxs = []  # single image
        for step_id, data in enumerate(tqdm(loader)):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)

            outs['bbox'] = outs['bbox'].numpy()  # only in test mode
            shift_amount = data['st_pix']
            outs['bbox'][:, 2:4] = outs['bbox'][:, 2:4] + shift_amount.numpy()
            outs['bbox'][:, 4:6] = outs['bbox'][:, 4:6] + shift_amount.numpy()
            merged_bboxs.append(outs['bbox'])

            if data['is_last'] > 0:
                # merge matching predictions
                merged_results = {'bbox': []}
                if combine_method == 'nms':
                    final_boxes = multiclass_nms(
                        np.concatenate(merged_bboxs), self.cfg.num_classes,
                        match_threshold, match_metric)
                    merged_results['bbox'] = np.concatenate(final_boxes)
                elif combine_method == 'concat':
                    merged_results['bbox'] = np.concatenate(merged_bboxs)
                else:
                    raise ValueError(
                        "Now only support 'nms' or 'concat' to fuse detection results."
                    )
                merged_results['im_id'] = np.array([[0]])
                merged_results['bbox_num'] = np.array(
                    [len(merged_results['bbox'])])

                merged_bboxs = []
                data['im_id'] = data['ori_im_id']

                for key in ['im_shape', 'scale_factor', 'im_id']:
                    if isinstance(data, typing.Sequence):
                        outs[key] = data[0][key]
                    else:
                        outs[key] = data[key]
                for key, value in merged_results.items():
                    if hasattr(value, 'numpy'):
                        merged_results[key] = value.numpy()
                results.append(merged_results)

        # visualize results
        for outs in results:
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
                image = ImageOps.exif_transpose(image)
                self.status['original_image'] = np.array(image.copy())
                end = start + bbox_num[i]
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res, segm_res, keypoint_res = None, None, None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
                    int(im_id), catid2name, draw_threshold)
                self.status['result_image'] = np.array(image.copy())
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
                start = end

C
cnn 已提交
805 806 807 808
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
wangxinxin08 已提交
809 810 811 812 813
                save_results=False,
                visualize=True):
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

K
Kaipeng Deng 已提交
814 815 816
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
wangxinxin08 已提交
817 818
        imid2path = self.dataset.get_imid2path()

W
Wenyu 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
W
wangxinxin08 已提交
832
            self.cfg['imid2path'] = imid2path
W
Wenyu 已提交
833 834 835 836 837 838 839 840 841 842 843 844
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

W
wangxinxin08 已提交
845 846
            self.cfg.pop('imid2path')

W
Wenyu 已提交
847 848 849 850 851 852 853 854 855 856
            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
857
        anno_file = self.dataset.get_anno()
C
cnn 已提交
858 859
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
860

K
Kaipeng Deng 已提交
861 862 863
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
864
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
865 866
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
867
        results = []
F
Feng Ni 已提交
868
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
869 870 871
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
872

W
Wenyu 已提交
873 874 875
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
876
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
877 878 879 880
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
881
            for key, value in outs.items():
882 883
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
884
            results.append(outs)
W
Wenyu 已提交
885

886 887
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
888 889
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
890

W
Wenyu 已提交
891 892 893 894
        for _m in metrics:
            _m.accumulate()
            _m.reset()

W
wangxinxin08 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
        if visualize:
            for outs in results:
                batch_res = get_infer_results(outs, clsid2catid)
                bbox_num = outs['bbox_num']

                start = 0
                for i, im_id in enumerate(outs['im_id']):
                    image_path = imid2path[int(im_id)]
                    image = Image.open(image_path).convert('RGB')
                    image = ImageOps.exif_transpose(image)
                    self.status['original_image'] = np.array(image.copy())

                    end = start + bbox_num[i]
                    bbox_res = batch_res['bbox'][start:end] \
                            if 'bbox' in batch_res else None
                    mask_res = batch_res['mask'][start:end] \
                            if 'mask' in batch_res else None
                    segm_res = batch_res['segm'][start:end] \
                            if 'segm' in batch_res else None
                    keypoint_res = batch_res['keypoint'][start:end] \
                            if 'keypoint' in batch_res else None
                    image = visualize_results(
                        image, bbox_res, mask_res, segm_res, keypoint_res,
                        int(im_id), catid2name, draw_threshold)
                    self.status['result_image'] = np.array(image.copy())
                    if self._compose_callback:
                        self._compose_callback.on_step_end(self.status)
                    # save image with detection
                    save_name = self._get_save_image_name(output_dir,
                                                          image_path)
                    logger.info("Detection bbox results save in {}".format(
                        save_name))
                    image.save(save_name, quality=95)

                    start = end
K
Kaipeng Deng 已提交
930 931 932 933 934 935 936 937 938

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
939 940 941 942
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
943
        image_shape = None
944 945
        im_shape = [None, 2]
        scale_factor = [None, 2]
946 947 948 949 950 951
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
952
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
953
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
954
        if image_shape is None:
G
Guanghua Yu 已提交
955
            image_shape = [None, 3, -1, -1]
956

G
Guanghua Yu 已提交
957 958
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
959 960 961
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
962

963
        if hasattr(self.model, 'deploy'):
964
            self.model.deploy = True
S
shangliang Xu 已提交
965

966 967 968 969
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
970

971 972 973 974 975 976
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
977 978 979
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
980 981 982 983 984 985
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
986

K
Kaipeng Deng 已提交
987 988 989 990 991 992 993
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
994
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
995
            "im_shape": InputSpec(
996
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
997
            "scale_factor": InputSpec(
998
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
999
        }]
G
George Ni 已提交
1000 1001 1002 1003 1004
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
1017
        # TODO: Hard code, delete it when support prune input_spec.
1018
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
1019 1020 1021 1022
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
1036

G
Guanghua Yu 已提交
1037 1038 1039 1040
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
1041 1042 1043 1044 1045

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
1046 1047 1048 1049
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
1050

G
Guanghua Yu 已提交
1051 1052
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
1053 1054

        # dy2st and save model
1055
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
1056 1057 1058 1059 1060
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
1061
            self.cfg.slim.save_quantized_model(
1062 1063
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
1064 1065
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
1066

G
Guanghua Yu 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
1079
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
1080
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
1081
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
1082 1083 1084 1085 1086 1087

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
1136 1137 1138
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images