trainer.py 38.2 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51

52 53
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
54
from ppdet.utils.logger import setup_logger
55
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
56 57 58

__all__ = ['Trainer']

59
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
60

K
Kaipeng Deng 已提交
61 62 63 64 65 66 67

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
68
        self.optimizer = None
69
        self.is_loaded_weights = False
S
shangliang Xu 已提交
70 71
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
K
Kaipeng Deng 已提交
72

G
George Ni 已提交
73
        # build data loader
W
wangguanzhong 已提交
74
        capital_mode = self.mode.capitalize()
75
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
76 77
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
78
        else:
W
wangguanzhong 已提交
79 80
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
81 82 83 84 85

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

86 87 88 89
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
90
        if self.mode == 'train':
W
wangguanzhong 已提交
91
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
92 93 94 95
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
96 97
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
98

F
FlyingQianMM 已提交
99
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
100 101
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
102
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
103

K
Kaipeng Deng 已提交
104
        # build model
105 106 107 108 109
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
110

F
Feng Ni 已提交
111 112 113
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
114 115
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
116

117
        #normalize params for deploy
C
Chang Xu 已提交
118 119 120
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
121 122 123 124 125 126 127
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
128 129
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
130

K
Kaipeng Deng 已提交
131 132 133
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
134 135 136 137 138 139 140 141 142 143 144
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
145
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
146 147 148 149 150

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
151
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
152

M
minghaoBD 已提交
153 154 155 156
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170
        if self.use_amp and self.amp_level == 'O2':
            self.model = paddle.amp.decorate(
                models=self.model, level=self.amp_level)
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
                cycle_epoch=cycle_epoch)

W
wangguanzhong 已提交
171 172
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
173

K
Kaipeng Deng 已提交
174 175 176
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
177
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
178 179 180 181 182 183 184 185 186 187 188

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
189
            if self.cfg.get('use_vdl', False):
190
                self._callbacks.append(VisualDLWriter(self))
191 192
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
193 194
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
195 196 197
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
198 199
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
200
            self._compose_callback = ComposeCallback(self._callbacks)
201
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
202 203
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
204 205 206 207
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
208 209
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
210 211
            self._metrics = []
            return
212
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
213
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
214
            # TODO: bias should be unified
W
wangxinxin08 已提交
215
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
216 217
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
218
            save_prediction_only = self.cfg.get('save_prediction_only', False)
219 220 221

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
222 223
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
224 225 226 227 228 229 230

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
231
                dataset = eval_dataset
W
Wenyu 已提交
232 233 234
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
235

236
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
237 238 239 240 241 242 243 244 245 246 247
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
248
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
249 250 251 252 253 254 255 256 257
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
258
                        save_prediction_only=save_prediction_only)
259
                ]
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
289 290 291
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
292
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
293
                    class_num=self.cfg.num_classes,
294 295
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
296
            ]
297 298 299 300 301 302 303 304 305
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
306 307 308 309
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
310
            save_prediction_only = self.cfg.get('save_prediction_only', False)
311
            self._metrics = [
312 313 314 315 316 317
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
318
            ]
Z
zhiboniu 已提交
319 320 321 322
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
323
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
324
            self._metrics = [
325 326 327 328 329 330
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
331
            ]
G
George Ni 已提交
332 333
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
334
        else:
335
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
336
                self.cfg.metric))
K
Kaipeng Deng 已提交
337 338 339 340 341 342 343
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
344
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
358
    def load_weights(self, weights):
359 360
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
361
        self.start_epoch = 0
362
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
363 364
        logger.debug("Load weights {} to start training".format(weights))

365 366 367 368 369 370 371
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
372
    def resume_weights(self, weights):
373 374 375 376 377
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
378 379
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
380
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
381

K
Kaipeng Deng 已提交
382
    def train(self, validate=False):
K
Kaipeng Deng 已提交
383
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
384
        Init_mark = False
W
wangguanzhong 已提交
385
        if validate:
W
wangguanzhong 已提交
386 387
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
388

389
        model = self.model
390
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
391 392
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
393
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
394

395
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
396
        if self.use_amp:
397 398 399 400
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
401
        if self.cfg.get('fleet', False):
402
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
403
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
404
        elif self._nranks > 1:
G
George Ni 已提交
405 406 407
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
408
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
409

K
Kaipeng Deng 已提交
410 411 412 413 414 415 416 417 418 419 420 421
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
422
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
423 424 425
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
426
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
427

428 429
        self._compose_callback.on_train_begin(self.status)

430 431 432
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
433
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
434
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
435 436 437
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
438
            model.train()
K
Kaipeng Deng 已提交
439 440 441 442
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
443
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
444
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
445
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
446

S
shangliang Xu 已提交
447
                if self.use_amp:
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            with amp.auto_cast(
                                    enable=self.cfg.use_gpus,
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        with amp.auto_cast(
                                enable=self.cfg.use_gpu, level=self.amp_level):
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
472 473
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
474

475
                else:
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
493
                    self.optimizer.step()
K
Kaipeng Deng 已提交
494 495
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
496 497
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
498 499 500
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
501
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
502 503 504 505
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
506
                if self.use_ema:
S
shangliang Xu 已提交
507
                    self.ema.update()
F
Feng Ni 已提交
508
                iter_tic = time.time()
K
Kaipeng Deng 已提交
509

M
minghaoBD 已提交
510 511
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
512

S
shangliang Xu 已提交
513 514 515 516 517 518 519 520
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
521 522
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
523
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
524 525 526 527 528 529 530
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
531 532 533
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
534 535 536 537
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
538 539 540 541 542 543
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
544

K
Kaipeng Deng 已提交
545
                with paddle.no_grad():
546
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
547 548
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
549 550
            if is_snapshot and self.use_ema:
                # reset original weight
551
                self.model.set_dict(weight)
S
shangliang Xu 已提交
552
                self.status.pop('weight')
553

554 555
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
556
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
557 558 559
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
560 561
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
562
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
563 564 565
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
566
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
567 568 569
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
570 571 572 573 574 575
            if self.use_amp:
                with paddle.amp.auto_cast(
                        enable=self.cfg.use_gpu, level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
576 577 578 579 580

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
581 582 583 584 585
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
586 587 588 589 590 591 592 593 594
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
595
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
596 597 598
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
599
    def evaluate(self):
600 601
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
602

C
cnn 已提交
603 604 605 606
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
607
                save_results=False):
K
Kaipeng Deng 已提交
608 609 610
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
646 647 648
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
649 650
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
651

K
Kaipeng Deng 已提交
652 653 654
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
655
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
656 657
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
658
        results = []
F
Feng Ni 已提交
659
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
660 661 662
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
663

W
Wenyu 已提交
664 665 666
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
667
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
668 669 670 671
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
672
            for key, value in outs.items():
673 674
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
675
            results.append(outs)
W
Wenyu 已提交
676

677 678
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
679 680
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
681

W
Wenyu 已提交
682 683 684 685
        for _m in metrics:
            _m.accumulate()
            _m.reset()

686
        for outs in results:
K
Kaipeng Deng 已提交
687 688
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
689

K
Kaipeng Deng 已提交
690 691 692 693
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
694
                image = ImageOps.exif_transpose(image)
695
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
696

697
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
698 699 700 701
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
702 703
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
704 705 706 707
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
708
                    int(im_id), catid2name, draw_threshold)
709
                self.status['result_image'] = np.array(image.copy())
710 711
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
712 713 714 715 716
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
717

K
Kaipeng Deng 已提交
718 719 720 721 722 723 724 725 726 727 728 729
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
730 731 732 733
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
734
        image_shape = None
735 736
        im_shape = [None, 2]
        scale_factor = [None, 2]
737 738 739 740 741 742
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
743
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
744
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
745
        if image_shape is None:
G
Guanghua Yu 已提交
746
            image_shape = [None, 3, -1, -1]
747

G
Guanghua Yu 已提交
748 749
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
750 751 752
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
753

754
        if hasattr(self.model, 'deploy'):
755
            self.model.deploy = True
S
shangliang Xu 已提交
756

757 758 759 760
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
761

762 763 764 765 766 767
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
768 769 770
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
771 772 773 774 775 776
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
777

K
Kaipeng Deng 已提交
778 779 780 781 782 783 784
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
785
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
786
            "im_shape": InputSpec(
787
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
788
            "scale_factor": InputSpec(
789
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
790
        }]
G
George Ni 已提交
791 792 793 794 795
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
796 797 798 799 800 801 802 803 804 805 806 807
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
808
        # TODO: Hard code, delete it when support prune input_spec.
809
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
810 811 812 813
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
827

G
Guanghua Yu 已提交
828 829 830 831
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
832 833 834 835 836

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
837 838 839 840
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
841

G
Guanghua Yu 已提交
842 843
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
844 845

        # dy2st and save model
846
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
847 848 849 850 851
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
852
            self.cfg.slim.save_quantized_model(
853 854
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
855 856
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
857

G
Guanghua Yu 已提交
858 859 860 861 862 863 864 865 866 867 868 869
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
870
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
871
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
872
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
873 874 875 876 877 878

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
927 928 929
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images