layers.py 253.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
Q
qijun 已提交
151
]
Z
zhangjinchao01 已提交
152 153 154 155 156 157 158


class LayerType(object):
    """
    Layer type enumerations.
    """

159 160 161 162 163 164 165 166
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
167
    POOLING_AVG = 'average'
168
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
169
    COST = 'cost'
170 171
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
172
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
173
    HSIGMOID = 'hsigmoid'
174 175 176 177 178
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
179
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
180
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
181
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
182 183 184
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
185
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
186 187 188 189
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
190
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
191 192 193 194 195 196 197

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
198
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
199 200 201
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
202
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
203
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
204
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
205
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
217
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
218
    BLOCK_EXPAND = "blockexpand"
219
    MAXOUT = "maxout"
Q
qijun 已提交
220
    SPP_LAYER = "spp"
D
dangqingqing 已提交
221
    PAD_LAYER = "pad"
W
wwhu 已提交
222
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
223
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
224 225 226

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
227 228
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
229
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
230 231 232 233 234

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
235
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
236

237 238 239
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

240 241
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
242
    HUBER_REGRESSION = 'huber_regression'
243
    HUBER_CLASSIFICATION = 'huber_classification'
244 245
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
246
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
247 248 249 250 251 252
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
253
    SWITCH_ORDER_LAYER = 'switch_order'
254
    CROP_LAYER = 'crop'
C
caoying03 已提交
255
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
256
    CLIP_LAYER = 'clip'
257
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
258

259
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
260
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
261

262
    RESIZE = 'resize'
Y
yangyaming 已提交
263
    SUB_SEQ_LAYER = 'subseq'
264

Y
yangyaming 已提交
265
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
287
    """
L
Luo Tao 已提交
288
    PaddlePaddle supports three sequence types:
289 290 291

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
292 293
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
294

L
Luo Tao 已提交
295
    Accordingly, AggregateLevel supports two modes:
296

L
Luo Tao 已提交
297
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
298
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
299 300
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
301
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
302 303 304
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
305 306
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
307 308 309
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
332
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
333 334
    """

Q
qijun 已提交
335 336 337 338 339 340 341 342 343
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
344
                 reverse=None):
Z
zhangjinchao01 已提交
345 346
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
347
        assert size is not None
Z
zhangjinchao01 已提交
348 349
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
350
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
351
        self.layer_type = layer_type
352 353
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
354 355 356 357 358 359 360 361
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
362
        self.reverse = reverse
Z
zhangjinchao01 已提交
363

364 365 366 367 368 369 370 371
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

372 373 374 375
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

376 377 378 379 380 381 382 383
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
384 385 386

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
387
DEVICE = 'device'
Z
zhangjinchao01 已提交
388 389 390


def layer_support(*attrs):
391
    attrs_list = list(attrs)
392
    attrs_list.append(DEVICE)
Q
qijun 已提交
393

Z
zhangjinchao01 已提交
394 395 396
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
397
            for attr in attrs_list:
Z
zhangjinchao01 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
414 415 416 417 418
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
449
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
450 451 452 453 454 455 456 457
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
458 459
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
460 461 462 463
    proj.origin = input
    return proj


464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
485
    :param input: The input of this layer.
486 487 488 489 490 491 492 493
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
494 495
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
496 497 498 499
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
530
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
531 532 533 534 535 536 537 538
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
539 540
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
541 542 543 544
    proj.origin = input
    return proj


545
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
575
    :param input: The input of this layer.
576
    :type input: LayerOutput
Z
zhangjinchao01 已提交
577 578
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
579
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
580 581 582 583 584 585
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
586 587
        if size is None:
            size = input.size - offset
Q
qijun 已提交
588
        proj = IdentityOffsetProjection(
589
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
590 591 592 593
        proj.origin = input
    return proj


594 595
def slice_projection(input, slices):
    """
596 597
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
598 599

    .. math::
600
       output = [input.slices()]
601 602 603 604 605 606 607 608 609

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
610
    :param input: The input of this layer.
611 612 613 614
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
615
    :type slices: pair of int
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
648
    :param input: The input of this layer.
X
xuwei06 已提交
649 650 651 652 653 654
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
655
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
656 657 658 659
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
660
@wrap_param_attr_default()
661
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
662
    """
663
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
677
    :param input: The input of this layer.
678 679 680 681 682 683
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
684 685
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
686
    proj.origin = input
687
    return proj
Z
zhangjinchao01 已提交
688

689 690

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
691 692
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
693

Z
zhangjinchao01 已提交
694
    .. math::
L
Luo Tao 已提交
695
       out.row[i] += scale * (a.row[i] .* b.row[i])
696

Z
zhangjinchao01 已提交
697 698
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
699

Z
zhangjinchao01 已提交
700
    The example usage is:
701

Z
zhangjinchao01 已提交
702
    .. code-block:: python
703

L
Luo Tao 已提交
704
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
705

706 707 708 709
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
710 711
    :param scale: config scalar, default value is one.
    :type scale: float
712 713
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
714
    """
715 716 717
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
718
    a = kwargs.get('x', a)  # For Backward capacity.
719 720 721 722 723 724
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
725
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
726
    op.origin = [a, b]
727
    return op
Z
zhangjinchao01 已提交
728

729

Z
zhangjinchao01 已提交
730
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
731 732 733
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
748
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
749 750 751 752 753 754 755 756 757
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
758
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
759 760 761 762 763 764 765 766 767 768 769
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
770 771 772 773 774 775
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
789
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
790 791 792 793 794 795
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
796
        :param act: Activation type.
Z
zhangjinchao01 已提交
797
        :type act: BaseActivation
R
ranqiu 已提交
798 799 800
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
801
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
802 803 804
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
805 806 807 808 809 810 811
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
812 813 814 815 816
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

817
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
818 819 820 821 822 823 824 825
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
826
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
827
            self.inputs.append(other)
828 829 830 831
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
832 833 834 835 836 837 838 839
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

840
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
841 842
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
843
        assert len(self.inputs) != 0
844
        ml = MixedLayer(
Z
zhangjinchao01 已提交
845 846 847 848 849
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
850
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
851 852 853
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
854
        self.finalized = True
Z
zhangjinchao01 已提交
855 856 857 858 859 860


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
861 862 863 864 865
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
893
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
894
                  then this function will just return layer's name.
895
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
896
    :type act: BaseActivation
R
ranqiu 已提交
897 898 899
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
900
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
901 902 903 904 905 906 907 908 909
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
910 911 912 913 914 915
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
916
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
917 918 919 920 921 922 923 924
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
925 926
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
927 928 929 930 931 932 933
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
934
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
935

R
ranqiu 已提交
936
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
937 938 939
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
940
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
941
    :type height: int | None
L
Luo Tao 已提交
942
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
943
    :type width: int | None
Z
zhangjinchao01 已提交
944 945
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
946
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
947 948
    :rtype: LayerOutput
    """
Q
qijun 已提交
949 950 951 952
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
953
        depth=depth,
L
Luo Tao 已提交
954 955
        height=height,
        width=width,
Q
qijun 已提交
956
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
957

C
chengduoZH 已提交
958 959
    if depth is None:
        depth = 1
960 961
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
962 963
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
964
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
965 966

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
967 968 969 970


@wrap_name_default("embedding")
@wrap_param_attr_default()
971
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
972 973 974 975
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

976
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
977
    :type name: basestring
R
ranqiu 已提交
978
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
979 980 981 982 983
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
984
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
985
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
986
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
987
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
988 989
    :rtype: LayerOutput
    """
Q
qijun 已提交
990 991 992 993 994 995
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
996 997 998 999 1000 1001 1002 1003 1004
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1005 1006 1007 1008 1009 1010 1011
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1024
    which is equal to:
Z
zhangjinchao01 已提交
1025 1026 1027 1028 1029 1030

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1031
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1032
    :type name: basestring
R
ranqiu 已提交
1033 1034
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1035 1036
    :param size: The layer dimension.
    :type size: int
1037
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1038 1039 1040
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1041 1042 1043
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1044
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1045
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1046
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1047
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1048 1049 1050 1051
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1052
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1053 1054
        param_attr = [param_attr]
    else:
1055
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1056 1057
            assert len(input) == len(param_attr)
        else:
1058
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1059
                logger.fatal(
W
wangmeng28 已提交
1060 1061 1062 1063 1064
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1065 1066
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1067
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1068 1069

    Layer(
Q
qijun 已提交
1070 1071 1072
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1073 1074 1075 1076 1077
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1078 1079 1080
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1081

1082

1083
@wrap_name_default("print")
1084
def printer_layer(input, format=None, name=None):
1085 1086
    """
    Print the output value of input layers. This layer is useful for debugging.
1087

1088
    :param name: The name of this layer. It is optional.
1089
    :type name: basestring
R
ranqiu 已提交
1090 1091
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1092
    :return: LayerOutput
1093
    """
1094 1095 1096 1097 1098
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1099 1100 1101

    Layer(
        name=name,
1102
        format=format,
1103
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1104
        inputs=[l.name for l in input], )
1105
    # this layer don't return anything, can not be input of other layer.
1106

X
xuwei06 已提交
1107 1108 1109 1110 1111 1112 1113
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1114

Y
yuan 已提交
1115
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1116
def priorbox_layer(input,
G
gaoyuan 已提交
1117
                   image,
G
gaoyuan 已提交
1118 1119 1120 1121 1122
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1123 1124 1125
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1126
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1127
    :type name: basestring
R
ranqiu 已提交
1128
    :param input: The input of this layer.
Y
yuan 已提交
1129
    :type input: LayerOutput
G
gaoyuan 已提交
1130 1131
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1143
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1144 1145 1146
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1147
        inputs=[input.name, image.name],
Y
yuan 已提交
1148 1149 1150 1151 1152 1153
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1154 1155
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1156
        parents=[input, image],
G
gaoyuan 已提交
1157 1158 1159
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1175
    :param name: The name of this layer. It is optional.
1176
    :type name: basestring
Y
yangyaming 已提交
1177 1178
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1179
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1180
    :type input_conf: LayerOutput | List of LayerOutput
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1202
    input_loc_num = len(input_loc)
1203 1204 1205 1206 1207 1208

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1209
    input_conf_num = len(input_conf)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1247 1248
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1249

1250
    :param name: The name of this layer. It is optional.
1251
    :type name: basestring
Y
yangyaming 已提交
1252 1253
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1254
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1255
    :type input_conf: LayerOutput | List of LayerOutput.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1277
    input_loc_num = len(input_loc)
1278 1279 1280 1281 1282 1283

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1284 1285
    input_conf_num = len(input_conf)

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1314 1315 1316 1317 1318 1319
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1320
                   num_channels=None,
G
guosheng 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1338 1339
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1340 1341
    :return: LayerOutput
    """
G
guosheng 已提交
1342 1343 1344 1345
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1346 1347 1348 1349 1350 1351
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1352 1353
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1354 1355
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1356 1357


1358 1359
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1360 1361 1362 1363 1364
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1365

1366
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1367
    :type name: basestring
R
ranqiu 已提交
1368
    :param input: The input of this layer.
G
gaoyuan 已提交
1369 1370 1371 1372 1373
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1374
    assert input.num_filters is not None
G
gaoyuan 已提交
1375 1376
    Layer(
        name=name,
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1390 1391
    return LayerOutput(
        name,
1392
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1393 1394 1395 1396 1397
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1398 1399 1400 1401
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1402 1403 1404 1405
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1406
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1407
                  stride=-1,
Z
zhangjinchao01 已提交
1408 1409 1410 1411
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1412 1413
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1414 1415 1416
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1417
    operation. Note that for sequence with sub-sequence, the default value
1418 1419
    of stride is -1.

Z
zhangjinchao01 已提交
1420 1421 1422 1423 1424 1425
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1426
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1427

L
Luo Tao 已提交
1428 1429
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1430
    :type agg_level: AggregateLevel
1431
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1432
    :type name: basestring
R
ranqiu 已提交
1433
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1434 1435 1436
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1437
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1438
    :param stride: The step size between successive pooling regions.
1439
    :type stride: Int
R
ranqiu 已提交
1440 1441 1442
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1443
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1444
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1445
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1446
    :return: LayerOutput object.
Y
Yu Yang 已提交
1447
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1448 1449
    """
    extra_dict = dict()
1450
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1451 1452
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1453 1454 1455 1456
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1457 1458
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1459 1460 1461
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1462 1463 1464 1465 1466 1467
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1468
        stride=stride,
Q
qijun 已提交
1469
        **extra_dict)
Z
zhangjinchao01 已提交
1470

Q
qijun 已提交
1471 1472
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474

Z
zhangjinchao01 已提交
1475 1476
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1477
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1478 1479
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1480
@layer_support()
Q
qijun 已提交
1481 1482
def lstmemory(input,
              name=None,
1483
              size=None,
Q
qijun 已提交
1484 1485 1486 1487 1488 1489
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1490 1491 1492 1493 1494 1495 1496 1497
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1498
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1499

L
luotao02 已提交
1500
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1501

L
luotao02 已提交
1502
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1503

L
luotao02 已提交
1504
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1505

L
luotao02 已提交
1506
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1507 1508


C
caoying03 已提交
1509
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1510
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1511 1512 1513 1514
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1515

C
caoying03 已提交
1516
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1517 1518
    to config a simple plain lstm layer.

R
ranqiu 已提交
1519 1520 1521
    Reference:
        `Generating Sequences With Recurrent Neural Networks
        <https://arxiv.org/pdf/1308.0850.pdf>`_
Z
zhangjinchao01 已提交
1522

R
ranqiu 已提交
1523
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1524
    :type name: basestring
R
ranqiu 已提交
1525
    :param size: DEPRECATED. The dimension of the lstm cell.
1526
    :type size: int
R
ranqiu 已提交
1527
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1528
    :type input: LayerOutput
R
ranqiu 已提交
1529
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1530
    :type reverse: bool
1531
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1532
    :type act: BaseActivation
R
ranqiu 已提交
1533 1534
    :param gate_act: Activation type of this layer's gates. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
1535
    :type gate_act: BaseActivation
R
ranqiu 已提交
1536
    :param state_act: Activation type of the state. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1537
    :type state_act: BaseActivation
R
ranqiu 已提交
1538 1539 1540
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1541
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1542 1543 1544 1545
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1546
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1547
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1548 1549 1550 1551 1552 1553
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1554
    assert input.size is not None and input.size % 4 == 0
1555

1556 1557 1558 1559 1560
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1561 1562 1563
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1564

Q
qijun 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1575

Q
qijun 已提交
1576 1577 1578 1579 1580
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1581

Z
zhangjinchao01 已提交
1582 1583 1584

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1585
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1586 1587
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1588
@layer_support()
Q
qijun 已提交
1589
def grumemory(input,
1590
              size=None,
Q
qijun 已提交
1591 1592 1593 1594 1595 1596
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1618 1619
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1620 1621 1622 1623 1624

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1625 1626 1627
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1628 1629 1630 1631 1632

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1633
    NOTE: In PaddlePaddle's implementation, the multiplication operations
R
ranqiu 已提交
1634 1635
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not performed
    in gate_recurrent layer. Consequently, an additional mixed_layer with
C
caoying03 已提交
1636 1637
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1638

R
ranqiu 已提交
1639 1640 1641
    Reference:
        `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
        <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1642 1643 1644 1645 1646 1647 1648

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

R
ranqiu 已提交
1649 1650
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
1651
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1652
    :type input: LayerOutput.
R
ranqiu 已提交
1653
    :param size: DEPRECATED. The dimension of the gru cell.
1654
    :type size: int
R
ranqiu 已提交
1655
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1656
    :type reverse: bool
R
ranqiu 已提交
1657
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1658 1659
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
R
ranqiu 已提交
1660 1661 1662
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation. This activation affects the :math:`z_t`
                     and :math:`r_t`. It is the :math:`\\sigma` in the above formula.
Z
zhangjinchao01 已提交
1663
    :type gate_act: BaseActivation
R
ranqiu 已提交
1664 1665 1666
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1667
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1668 1669 1670 1671
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1672
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1673
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1674 1675 1676 1677
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1678 1679 1680 1681 1682 1683
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1684 1685 1686
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1687

Q
qijun 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1697

Q
qijun 已提交
1698 1699 1700 1701 1702
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1703

Z
zhangjinchao01 已提交
1704 1705 1706

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1707 1708
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1709
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1710
             stride=-1,
Z
zhangjinchao01 已提交
1711 1712 1713 1714
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

R
ranqiu 已提交
1715 1716 1717 1718
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the last value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1719

L
Luo Tao 已提交
1720 1721 1722 1723 1724 1725
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1726
    :param agg_level: Aggregated level
R
ranqiu 已提交
1727
    :type agg_level: AggregateLevel
1728
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1729
    :type name: basestring
R
ranqiu 已提交
1730
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1731
    :type input: LayerOutput
L
Luo Tao 已提交
1732
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1733 1734 1735 1736
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1737
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1738 1739
    :rtype: LayerOutput
    """
1740 1741 1742 1743 1744 1745
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1746
    if agg_level == AggregateLevel.TO_SEQUENCE:
1747 1748
        assert stride == -1

Z
zhangjinchao01 已提交
1749 1750 1751 1752 1753
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1754
        stride=stride,
Q
qijun 已提交
1755 1756 1757 1758 1759 1760
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1761 1762 1763 1764


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1765 1766
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1767
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1768
              stride=-1,
Z
zhangjinchao01 已提交
1769 1770 1771 1772
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

R
ranqiu 已提交
1773 1774 1775 1776
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the first value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1777

L
Luo Tao 已提交
1778 1779 1780 1781 1782 1783
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1784
    :param agg_level: aggregation level
R
ranqiu 已提交
1785
    :type agg_level: AggregateLevel
1786
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1787
    :type name: basestring
R
ranqiu 已提交
1788
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1789
    :type input: LayerOutput
L
Luo Tao 已提交
1790
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1791 1792 1793
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1794
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1795
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1796 1797
    :rtype: LayerOutput
    """
1798 1799 1800 1801 1802 1803 1804

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1805
    if agg_level == AggregateLevel.TO_SEQUENCE:
1806 1807
        assert stride == -1

Z
zhangjinchao01 已提交
1808 1809 1810 1811 1812
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1813
        stride=stride,
Q
qijun 已提交
1814 1815 1816 1817 1818 1819
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1820 1821 1822


class ExpandLevel(object):
1823 1824 1825 1826 1827
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1828 1829
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1830 1831
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1832 1833
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1834 1835
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1836 1837
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1838 1839
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1840

1841

Z
zhangjinchao01 已提交
1842 1843
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1844 1845
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1846 1847
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1848
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1849 1850
                 layer_attr=None):
    """
R
ranqiu 已提交
1851 1852
    A layer for expanding dense data or (sequence data where the length of each
    sequence is one) to sequence data.
Z
zhangjinchao01 已提交
1853 1854 1855 1856 1857 1858 1859

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1860
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1861

R
ranqiu 已提交
1862
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1863
    :type input: LayerOutput
R
ranqiu 已提交
1864 1865 1866
    :param expand_as: Expand the input according to this layer's sequence infomation. And
                      after the operation, the input expanded will have the same number of
                      elememts as this layer.
Z
zhangjinchao01 已提交
1867
    :type expand_as: LayerOutput
1868
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1869
    :type name: basestring
R
ranqiu 已提交
1870 1871 1872
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1873
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1874
    :param expand_level: Whether the input layer is a sequence or the element of a sequence.
Z
zhangjinchao01 已提交
1875
    :type expand_level: ExpandLevel
R
ranqiu 已提交
1876 1877
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1878
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1879
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1889 1890 1891 1892 1893 1894
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1895 1896


X
xuwei06 已提交
1897
@wrap_name_default()
X
xuwei06 已提交
1898
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1899
@layer_support()
X
xuwei06 已提交
1900 1901 1902
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1903
                 act=None,
X
xuwei06 已提交
1904 1905
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1906
    """
X
xuwei06 已提交
1907
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1908

X
xuwei06 已提交
1909
    If as_row_vector:
R
ranqiu 已提交
1910

X
xuwei06 已提交
1911
    .. math::
X
xuwei06 已提交
1912
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
R
ranqiu 已提交
1913

X
xuwei06 已提交
1914
    If not as_row_vector:
R
ranqiu 已提交
1915

X
xuwei06 已提交
1916 1917 1918
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1919 1920 1921 1922 1923

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1924
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1925

R
ranqiu 已提交
1926
    :param input: The input of this layer.
X
xuwei06 已提交
1927
    :type input: LayerOutput
R
ranqiu 已提交
1928
    :param num_repeats: The times of repeating the input.
X
xuwei06 已提交
1929
    :type num_repeats: int
1930
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
1931 1932 1933 1934 1935
    :type name: basestring
    :param as_row_vector: Whether to treat the input as row vectors or not. If
                          the parameter is set to True, the repeating operation
                          will be performed in the column direction. Otherwise,
                          it will be performed in the row direction.
X
xuwei06 已提交
1936
    :type as_row_vector: bool
1937
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1938
    :type act: BaseActivation
R
ranqiu 已提交
1939 1940
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
1941 1942 1943 1944 1945 1946 1947 1948
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1949
        active_type=act.name,
X
xuwei06 已提交
1950
        num_filters=num_repeats,
X
xuwei06 已提交
1951
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1952
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1953 1954 1955 1956 1957
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1958
        activation=act,
Q
qijun 已提交
1959 1960
        parents=[input])

X
xuwei06 已提交
1961

1962 1963 1964
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1965
@layer_support(ERROR_CLIPPING, DROPOUT)
1966 1967 1968 1969 1970 1971 1972 1973
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1974
    the dimension of each instance is M, and the input reshape_size is N, then the
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1985
    :param input: The input of this layer.
1986
    :type input: LayerOutput
R
ranqiu 已提交
1987
    :param reshape_size: The dimension of the reshaped sequence.
1988
    :type reshape_size: int
1989
    :param name: The name of this layer. It is optional.
1990
    :type name: basestring
1991
    :param act: Activation type. IdentityActivation is the default activation.
1992
    :type act: BaseActivation
R
ranqiu 已提交
1993 1994
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
1995
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1996 1997 1998
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1999
    :type bias_attr: ParameterAttribute | None | bool | Any
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2018 2019 2020 2021
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
R
ranqiu 已提交
2022
    This layer performs linear interpolation on two inputs,
Z
zhangjinchao01 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2038 2039
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2040 2041
    :param weight: Weight layer.
    :type weight: LayerOutput
2042
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2043
    :type name: basestring
R
ranqiu 已提交
2044 2045
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2046
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2047
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2048 2049
    :rtype: LayerOutput
    """
2050
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2051
    assert len(input) == 2
2052 2053 2054 2055 2056 2057 2058
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2059 2060 2061 2062
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2063 2064 2065 2066 2067 2068
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2069 2070


L
liaogang 已提交
2071 2072 2073 2074 2075 2076 2077 2078
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
R
ranqiu 已提交
2079
    This layer implements bilinear interpolation on convolutional layer's output.
L
liaogang 已提交
2080 2081 2082 2083 2084 2085 2086

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2087
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2088

R
ranqiu 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
    :param input: The input of this layer.
    :type input: LayerOutput.
    :param out_size_x: The width of the output.
    :type out_size_x: int
    :param out_size_y: The height of the output.
    :type out_size_y: int
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
L
liaogang 已提交
2100
    :return: LayerOutput object.
R
ranqiu 已提交
2101
    :rtype: LayerOutput
L
liaogang 已提交
2102 2103 2104 2105
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2106
    assert input.num_filters is not None
L
liaogang 已提交
2107
    num_channels = input.num_filters
Q
qijun 已提交
2108 2109 2110 2111 2112 2113 2114
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2115
                channels=num_channels)),
Q
qijun 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2125

Z
zhangjinchao01 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

R
ranqiu 已提交
2136 2137
    where :math:`x` is an input vector, :math:`w` is a scalar exponent,
    and :math:`y` is an output vector.
Z
zhangjinchao01 已提交
2138 2139 2140 2141 2142 2143 2144

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2145
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2146
    :type input: LayerOutput
R
ranqiu 已提交
2147
    :param weight: The exponent of the power.
Z
zhangjinchao01 已提交
2148
    :type weight: LayerOutput
2149
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2150
    :type name: basestring
R
ranqiu 已提交
2151 2152
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2153
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2154
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2155 2156
    :rtype: LayerOutput
    """
2157 2158 2159
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2160 2161 2162
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2163
        inputs=[weight.name, input.name],
Q
qijun 已提交
2164 2165 2166
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2167 2168 2169 2170 2171 2172


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2173
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2174 2175

    .. math::
2176
       y  = w x
Z
zhangjinchao01 已提交
2177

2178 2179 2180 2181 2182
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2183 2184 2185 2186 2187 2188 2189

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2190
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2191
    :type input: LayerOutput
R
ranqiu 已提交
2192
    :param weight: The weight of each sample.
Z
zhangjinchao01 已提交
2193
    :type weight: LayerOutput
2194
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2195
    :type name: basestring
R
ranqiu 已提交
2196 2197
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2198
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2199
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2200 2201
    :rtype: LayerOutput
    """
2202 2203 2204
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2205 2206 2207 2208
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2209 2210 2211
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2212 2213 2214 2215 2216 2217


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2218
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2231
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2232
    :type input: LayerOutput
2233
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2234
    :type name: basestring
R
ranqiu 已提交
2235 2236
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2237
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2238
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2239 2240 2241 2242 2243 2244
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2245 2246 2247
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2248 2249


2250 2251
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2252
def rotate_layer(input, height, width, name=None, layer_attr=None):
2253
    """
H
Haonan 已提交
2254 2255
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2256 2257

    .. math::
H
Haonan 已提交
2258
       y(j,i,:) = x(M-i-1,j,:)
2259

H
Haonan 已提交
2260
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2261 2262 2263 2264 2265 2266

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2267 2268
                          height=100,
                          width=100)
2269

R
ranqiu 已提交
2270
    :param input: The input of this layer.
2271
    :type input: LayerOutput
R
ranqiu 已提交
2272
    :param height: The height of the sample matrix.
2273
    :type height: int
R
ranqiu 已提交
2274 2275
    :param width: The width of the sample matrix.
    :type width: int
2276
    :param name: The name of this layer. It is optional.
2277
    :type name: basestring
R
ranqiu 已提交
2278 2279
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2280 2281 2282 2283 2284
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2285 2286 2287
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2288
        width=width,
H
Haonan 已提交
2289 2290 2291 2292 2293 2294 2295 2296
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2297 2298


Z
zhangjinchao01 已提交
2299 2300
@wrap_name_default()
@layer_support()
2301
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2302 2303 2304 2305
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2306
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2307 2308 2309 2310 2311
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2312

2313 2314
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2315

L
Luo Tao 已提交
2316 2317 2318 2319 2320 2321
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2322
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2323
    :type name: basestring
R
ranqiu 已提交
2324
    :param a: The first input of this layer.
Z
zhangjinchao01 已提交
2325
    :type a: LayerOutput
R
ranqiu 已提交
2326
    :param b: The second input of this layer.
Z
zhangjinchao01 已提交
2327
    :type b: LayerOutput
R
ranqiu 已提交
2328
    :param scale: The scale of the cosine similarity. 1 is the default value.
Z
zhangjinchao01 已提交
2329
    :type scale: float
R
ranqiu 已提交
2330
    :param size: The dimension of this layer. NOTE size_a * size should equal size_b.
Z
zhangjinchao01 已提交
2331
    :type size: int
R
ranqiu 已提交
2332
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2333
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2334
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2335 2336
    :rtype: LayerOutput
    """
2337
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2338 2339 2340 2341 2342 2343
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2344
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2345
    else:
2346 2347
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2348 2349 2350 2351 2352 2353
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2354
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2355
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2356

2357

C
caoying03 已提交
2358 2359 2360 2361
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2362
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2363
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2394
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2395 2396 2397
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2398
        inputs=[x.name, y.name],
C
caoying03 已提交
2399 2400 2401 2402
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2403 2404
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2405
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2406
@layer_support()
Q
qijun 已提交
2407 2408
def hsigmoid(input,
             label,
2409
             num_classes=None,
Q
qijun 已提交
2410 2411 2412 2413
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2414 2415 2416
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
R
ranqiu 已提交
2417 2418 2419 2420

    Reference:
        `Hierarchical Probabilistic Neural Network Language Model
        <http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
Z
zhangjinchao01 已提交
2421 2422 2423 2424 2425 2426

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2427
                        label=data_layer)
Z
zhangjinchao01 已提交
2428

R
ranqiu 已提交
2429 2430
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
2431
    :param label: The input label.
Z
zhangjinchao01 已提交
2432
    :type label: LayerOutput
R
ranqiu 已提交
2433 2434 2435 2436
    :param num_classes: The number of classes. And it should be larger than 2. If the parameter
                        is not set or set to None, its actual value will be automatically set to
                        the number of labels.
    :type num_classes: int
2437
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2438
    :type name: basestring
R
ranqiu 已提交
2439 2440 2441
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2442
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2443 2444 2445
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2446
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2447
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2448 2449 2450 2451
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2452 2453 2454 2455 2456 2457 2458 2459 2460
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2461 2462 2463
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2464 2465 2466 2467 2468
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2469 2470
    ipts_for_layer = []
    parents = []
2471
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2472
        assert isinstance(each_input, LayerOutput)
2473
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2474 2475 2476 2477
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2478
    l = Layer(
Z
zhangjinchao01 已提交
2479 2480 2481 2482 2483
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2484 2485 2486
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2487

2488

Z
zhangjinchao01 已提交
2489 2490 2491 2492 2493
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2503
                   dilation=1,
Q
qijun 已提交
2504 2505 2506 2507 2508 2509 2510
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2511
                   dilation_y=None,
2512 2513
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2514
    """
2515
    Convolution layer for image. Paddle can support both square and non-square
2516
    input currently.
Z
zhangjinchao01 已提交
2517 2518 2519 2520

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2521

2522
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2523
    and non-square input currently.
2524

X
xuwei06 已提交
2525
    The details of convolution transpose layer,
2526 2527 2528
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2529 2530 2531 2532
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2533 2534
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2535
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2536 2537 2538
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2539

L
Luo Tao 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2550
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2551
    :type name: basestring
R
ranqiu 已提交
2552
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2553
    :type input: LayerOutput
R
ranqiu 已提交
2554 2555 2556 2557 2558 2559
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2560
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2561 2562 2563
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2564
    :param num_filters: Each filter group's number of filter
2565
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2566
    :type act: BaseActivation
R
ranqiu 已提交
2567
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2568
    :type groups: int
R
ranqiu 已提交
2569 2570 2571 2572 2573
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2574
    :type stride: int | tuple | list
R
ranqiu 已提交
2575
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2576
    :type stride_y: int
R
ranqiu 已提交
2577 2578 2579 2580 2581
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2582
    :type padding: int | tuple | list
R
ranqiu 已提交
2583
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2584
    :type padding_y: int
R
ranqiu 已提交
2585 2586 2587 2588 2589
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2590
    :type dilation: int | tuple | list
R
ranqiu 已提交
2591
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2592
    :type dilation_y: int
R
ranqiu 已提交
2593 2594 2595
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2596
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2597 2598 2599
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2600
    :type num_channels: int
R
ranqiu 已提交
2601 2602
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2603
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2604
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2605
    :type shared_biases: bool
R
ranqiu 已提交
2606 2607
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2608
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2609
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2610
    :type trans: bool
R
ranqiu 已提交
2611 2612 2613 2614 2615
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2616
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2617 2618 2619 2620 2621
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2622

Z
zhangjinchao01 已提交
2623
    if filter_size_y is None:
2624 2625 2626 2627 2628 2629
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2630
    if stride_y is None:
2631 2632 2633 2634 2635 2636
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2637
    if padding_y is None:
2638 2639 2640 2641 2642 2643
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2644 2645 2646 2647 2648 2649 2650
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2651 2652
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2653
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2654 2655 2656 2657
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2658

2659
    if layer_type:
W
wanghaoshuang 已提交
2660
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2661 2662 2663
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2664
        if trans:
2665
            assert layer_type in ["exconvt", "cudnn_convt"]
2666 2667 2668 2669 2670
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2671

X
xuwei06 已提交
2672
    l = Layer(
Z
zhangjinchao01 已提交
2673
        name=name,
Q
qijun 已提交
2674 2675 2676 2677 2678
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2679
                dilation=dilation,
Q
qijun 已提交
2680 2681 2682 2683 2684
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2685
                dilation_y=dilation_y,
Q
qijun 已提交
2686 2687
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2688 2689 2690 2691
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2692
        type=lt,
Q
qijun 已提交
2693 2694 2695 2696 2697 2698 2699 2700
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2701 2702 2703 2704


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2715 2716
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2717 2718 2719
    """
    Image pooling Layer.

R
ranqiu 已提交
2720
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2721 2722 2723

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2752
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2753
    :type padding: int
R
ranqiu 已提交
2754 2755 2756 2757
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2758
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2759
    :type input: LayerOutput
R
ranqiu 已提交
2760
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2761
    :type pool_size: int
R
ranqiu 已提交
2762 2763 2764 2765 2766 2767 2768
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2769
    :type num_channels: int
R
ranqiu 已提交
2770
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2771
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2772
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2773
    :type stride: int
R
ranqiu 已提交
2774 2775 2776 2777 2778
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2779
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2780 2781 2782
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
2783
    :type ceil_mode: bool
D
dangqingqing 已提交
2784 2785
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2796
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2797
                               CudnnMaxPooling], \
X
xzl 已提交
2798
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2799

2800
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2801
        if (
Y
Yu Yang 已提交
2802
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2803
        else pool_type.name
2804 2805 2806 2807
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2808
    l = Layer(
Z
zhangjinchao01 已提交
2809 2810
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2823
                    padding_y=padding_y))
Q
qijun 已提交
2824
        ],
2825
        ceil_mode=ceil_mode,
Q
qijun 已提交
2826 2827 2828 2829 2830 2831 2832
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2833 2834


C
chengduoZH 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2887
    :type padding: int | tuple | list
R
ranqiu 已提交
2888
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2889
    :type name: basestring.
R
ranqiu 已提交
2890
    :param input: The input of this layer.
C
chengduoZH 已提交
2891
    :type input: LayerOutput
R
ranqiu 已提交
2892 2893
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2894
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2895 2896 2897
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2898
    :type num_channels: int
R
ranqiu 已提交
2899
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2900
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2901 2902 2903
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2904
    :type stride: int | tuple | list
R
ranqiu 已提交
2905 2906 2907 2908 2909
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2910
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2911 2912 2913
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2983 2984
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2985 2986 2987 2988 2989 2990
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2991
    """
R
ranqiu 已提交
2992 2993 2994
    A layer performs spatial pyramid pooling.

    Reference:
R
ranqiu 已提交
2995
        `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
R
ranqiu 已提交
2996
        <https://arxiv.org/abs/1406.4729>`_
Q
qijun 已提交
2997

L
Luo Tao 已提交
2998 2999 3000 3001
    The example usage is:

    ..  code-block:: python

3002 3003 3004
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
3005 3006
                        pool_type=MaxPooling())

3007
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
3008
    :type name: basestring
R
ranqiu 已提交
3009
    :param input: The input of this layer.
Q
qijun 已提交
3010
    :type input: LayerOutput
R
ranqiu 已提交
3011 3012 3013
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
3014
    :type num_channels: int
R
ranqiu 已提交
3015
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
3016
    :type scale: BasePoolingType
R
ranqiu 已提交
3017
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
3018
    :type pyramid_height: int
R
ranqiu 已提交
3019 3020
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3038
    l = Layer(
Q
qijun 已提交
3039 3040
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3041 3042 3043 3044 3045
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3046
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3058 3059 3060 3061
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3062
    l = Layer(
Q
qijun 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3082 3083 3084 3085


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3086 3087 3088 3089 3090 3091
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3092
                      layer_attr=None):
Z
zhangjinchao01 已提交
3093
    """
3094
    Response normalization across feature maps.
R
ranqiu 已提交
3095 3096

    Reference:
R
ranqiu 已提交
3097
        `ImageNet Classification with Deep Convolutional Neural Networks
R
ranqiu 已提交
3098
        <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_
Z
zhangjinchao01 已提交
3099

L
Luo Tao 已提交
3100 3101 3102
    The example usage is:

    ..  code-block:: python
3103

L
Luo Tao 已提交
3104 3105
        norm = img_cmrnorm_layer(input=net, size=5)

3106
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3107
    :type name: basestring
R
ranqiu 已提交
3108
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3109
    :type input: LayerOutput
3110
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3111
    :type size: int
D
dangqingqing 已提交
3112
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3113
    :type scale: float
D
dangqingqing 已提交
3114
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3115
    :type power: float
R
ranqiu 已提交
3116 3117 3118 3119 3120
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3121
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3122
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3123 3124 3125
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3126
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3127 3128 3129


@wrap_bias_attr_default()
3130 3131
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3132 3133
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3134
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3135 3136 3137
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3138
                     img3D=False,
Q
qijun 已提交
3139 3140 3141 3142
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3143
                     batch_norm_type=None,
P
peterzhang2029 已提交
3144
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3145
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3146 3147
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3148
    """
R
ranqiu 已提交
3149
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3163
    Reference:
R
ranqiu 已提交
3164
        `Batch Normalization: Accelerating Deep Network Training by Reducing
R
ranqiu 已提交
3165
        Internal Covariate Shift
R
ranqiu 已提交
3166
        <http://arxiv.org/abs/1502.03167>`_
Z
zhangjinchao01 已提交
3167

L
Luo Tao 已提交
3168 3169 3170
    The example usage is:

    ..  code-block:: python
3171

L
Luo Tao 已提交
3172 3173
        norm = batch_norm_layer(input=net, act=ReluActivation())

3174
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3175
    :type name: basestring
R
ranqiu 已提交
3176
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3177
    :type input: LayerOutput
3178 3179 3180 3181 3182
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3183 3184
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3185
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3186 3187 3188
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3189
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3190
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3191
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3192
    :type act: BaseActivation
R
ranqiu 已提交
3193 3194 3195
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3196
    :type num_channels: int
R
ranqiu 已提交
3197 3198 3199 3200
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3201
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3202 3203
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3204
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3205 3206
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3207
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3208 3209 3210 3211 3212 3213
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3214
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3215
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3216
    :type epsilon: float.
R
ranqiu 已提交
3217 3218
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3219
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3220 3221
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3222
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3232
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3233
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3234

X
xuwei06 已提交
3235
    l = Layer(
Z
zhangjinchao01 已提交
3236
        name=name,
C
chengduoZH 已提交
3237
        img3D=img3D,
Q
qijun 已提交
3238 3239
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3240 3241 3242 3243
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3244
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3245 3246
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3247
        mean_var_names=mean_var_names,
Q
qijun 已提交
3248
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3249

Q
qijun 已提交
3250 3251 3252 3253 3254 3255 3256
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3278
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3279
    :type input: LayerOutput
3280
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3281
    :type name: basestring
R
ranqiu 已提交
3282 3283 3284
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3285
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3286 3287 3288 3289 3290 3291
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3292 3293 3294
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3295 3296


G
guosheng 已提交
3297 3298 3299 3300 3301 3302 3303
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
R
ranqiu 已提交
3304
       out[i] = \\frac{in[i]} {\\sqrt{\\sum_{k=1}^N in[k]^{2}}}
G
guosheng 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3315
    :param input: The input of this layer.
G
guosheng 已提交
3316
    :type input: LayerOutput
3317
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3318
    :type name: basestring
R
ranqiu 已提交
3319 3320
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3334 3335 3336
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3337
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3338
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3357 3358 3359
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3360

C
caoying03 已提交
3361 3362 3363
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3364

3365
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3366
    :type name: basestring
R
ranqiu 已提交
3367
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3368
                 LayerOutput.
R
ranqiu 已提交
3369
    :type input: LayerOutput | list | tuple
3370
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3371
    :type act: BaseActivation
R
ranqiu 已提交
3372 3373 3374
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3375
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3376 3377
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3378
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3379
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3380 3381 3382 3383 3384 3385
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3386
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3387 3388 3389 3390 3391 3392 3393
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3394
    l = Layer(
Q
qijun 已提交
3395 3396 3397
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3398 3399
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3400
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3401

Q
qijun 已提交
3402 3403 3404 3405 3406 3407 3408
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3409 3410 3411 3412


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3413
@layer_support(DROPOUT, ERROR_CLIPPING)
3414
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3415
    """
R
ranqiu 已提交
3416 3417
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3418

3419 3420 3421 3422 3423 3424
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3425
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3426
    :type name: basestring
R
ranqiu 已提交
3427
    :param input: The input layers or projections
R
ranqiu 已提交
3428
    :type input: list | tuple | collections.Sequence
3429
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3430
    :type act: BaseActivation
R
ranqiu 已提交
3431 3432
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3433
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3434
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3435 3436 3437 3438 3439 3440 3441 3442
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3443
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3444 3445

    def __is_type__(o, tp):
3446
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3468 3469
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3470

Q
qijun 已提交
3471 3472
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3473

3474 3475
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3476

3477
    layer = Layer(
Q
qijun 已提交
3478 3479
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3480 3481
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3482
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3483
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3484

3485
    sz = layer.config.size
Z
zhangjinchao01 已提交
3486

Q
qijun 已提交
3487 3488 3489 3490 3491 3492 3493 3494
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3495 3496
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3497
@wrap_bias_attr_default(has_bias=False)
3498
@layer_support(DROPOUT, ERROR_CLIPPING)
3499 3500 3501
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3502
    Concatenate sequence a and sequence b.
3503

3504
    Inputs:
X
xuwei06 已提交
3505
      - a = [a1, a2, ..., am]
3506
      - b = [b1, b2, ..., bn]
3507

X
xuwei06 已提交
3508 3509 3510 3511
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3512 3513 3514 3515 3516 3517 3518

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3519
    :param name: The name of this layer. It is optional.
3520
    :type name: basestring
R
ranqiu 已提交
3521
    :param a: The first input sequence layer
3522
    :type a: LayerOutput
R
ranqiu 已提交
3523
    :param b: The second input sequence layer
3524
    :type b: LayerOutput
3525
    :param act: Activation type. IdentityActivation is the default activation.
3526
    :type act: BaseActivation
R
ranqiu 已提交
3527 3528
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3529
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3530 3531 3532
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3533
    :type bias_attr: ParameterAttribute | None | bool | Any
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3555
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3556 3557
def memory(name,
           size,
3558
           memory_name=None,
Q
qijun 已提交
3559 3560 3561 3562
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3563 3564
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3565
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3566

R
ranqiu 已提交
3567
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3568

R
ranqiu 已提交
3569 3570
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3571

R
ranqiu 已提交
3572 3573
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3574

R
ranqiu 已提交
3575
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3576

3577 3578 3579 3580 3581
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3582 3583
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3584 3585

    .. code-block:: python
L
Liu Yiqun 已提交
3586

3587 3588 3589 3590
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3591
    :param name: The name of the layer which this memory remembers.
3592 3593
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3594
    :type name: basestring
R
ranqiu 已提交
3595
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3596
    :type size: int
R
ranqiu 已提交
3597
    :param memory_name: The name of the memory. It is ignored when name is provided.
3598
    :type memory_name: basestring
3599
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3600
    :type is_seq: bool
R
ranqiu 已提交
3601 3602
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3603
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3604 3605 3606 3607
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3608
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3609 3610
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3611
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3612 3613
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3614
    :type boot_with_const_id: int
R
ranqiu 已提交
3615
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3626 3627
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3628

3629 3630 3631 3632 3633 3634 3635 3636
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3637 3638

    lout = LayerOutput(
3639
        name=memory_name,
Q
qijun 已提交
3640 3641 3642
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3643 3644 3645 3646
    return lout


@wrap_bias_attr_default()
3647 3648
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3649 3650 3651
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3652 3653
def lstm_step_layer(input,
                    state,
3654
                    size=None,
Q
qijun 已提交
3655 3656 3657 3658 3659 3660
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3661
    """
3662 3663
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3664 3665 3666

    ..  math::

3667
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3668

3669
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3670

3671
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3672

3673
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3674

L
luotao02 已提交
3675
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3676 3677


L
luotao02 已提交
3678
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3679
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3680
    input vectors.
Z
zhangjinchao01 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3691
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3692
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3693 3694
    :code:`get_output_layer` to extract this output.

3695
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3696
    :type name: basestring
R
ranqiu 已提交
3697 3698
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3699
    :type size: int
R
ranqiu 已提交
3700
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3701
    :type input: LayerOutput
3702
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3703
    :type state: LayerOutput
3704
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3705
    :type act: BaseActivation
3706 3707
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3708
    :type gate_act: BaseActivation
3709 3710
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3711
    :type state_act: BaseActivation
R
ranqiu 已提交
3712 3713 3714
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3715
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3716
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3717
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3718
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3719 3720
    :rtype: LayerOutput
    """
3721 3722 3723

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3724 3725 3726 3727 3728 3729 3730
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3731
        size=state.size,
Q
qijun 已提交
3732 3733
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3734

Q
qijun 已提交
3735 3736 3737 3738 3739 3740 3741
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3742 3743 3744


@wrap_bias_attr_default()
W
wangyang59 已提交
3745
@wrap_param_attr_default()
Q
qijun 已提交
3746
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3747 3748 3749
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3750 3751 3752 3753 3754 3755 3756
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3757
                   param_attr=None,
Q
qijun 已提交
3758
                   layer_attr=None):
Z
zhangjinchao01 已提交
3759 3760
    """

R
ranqiu 已提交
3761
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3762
    :type input: LayerOutput
R
ranqiu 已提交
3763 3764 3765 3766 3767 3768
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3769 3770
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3771
    :type act: BaseActivation
3772
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3773
    :type name: basestring
3774 3775
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3776
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3777 3778 3779 3780
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3781
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3782 3783 3784 3785
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3786
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3787 3788 3789 3790 3791 3792 3793 3794
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3795 3796 3797 3798
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3799
        # backward model compatibility.
3800
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3801 3802 3803 3804
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3805
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3806
    return LayerOutput(
Q
qijun 已提交
3807 3808
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3809
        parents=[input, output_mem],
Q
qijun 已提交
3810 3811
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3812 3813


Y
Yu Yang 已提交
3814 3815 3816 3817
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3818
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3830
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3831 3832
    and DROPOUT.

3833
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3834 3835 3836 3837 3838 3839
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3840
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3841
    :type name: basestring
3842 3843
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3844
    :type act: BaseActivation
3845 3846
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3847
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3848 3849 3850 3851
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3852
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3853 3854 3855 3856 3857
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3858
    :rtype: LayerOutput
Y
Yu Yang 已提交
3859 3860 3861 3862 3863 3864
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3865
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3866 3867 3868 3869
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3870

Y
Yu Yang 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3908 3909 3910 3911
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3912 3913 3914 3915
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3916

3917
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3918
    :type name: basestring
R
ranqiu 已提交
3919
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3920 3921
                   multiple outputs.
    :type input: LayerOutput
3922
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3923
    :type arg_name: basestring
R
ranqiu 已提交
3924 3925
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3926
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3927 3928 3929 3930 3931 3932 3933
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3934 3935 3936 3937 3938 3939 3940
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3941

Q
qijun 已提交
3942 3943 3944 3945 3946
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3947 3948 3949 3950 3951 3952 3953


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3954 3955 3956 3957 3958 3959 3960
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3961
    """
3962 3963
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3964

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3980
    :param input: The input of this layer.
3981
    :type input: LayerOutput
3982
    :param act: Activation type. TanhActivation is the default activation.
3983
    :type act: BaseActivation
C
caoying03 已提交
3984
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
3985 3986 3987
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3988
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3989 3990
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3991
    :type param_attr: ParameterAttribute
3992
    :param name: The name of this layer. It is optional.
3993
    :type name: basestring
R
ranqiu 已提交
3994 3995
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3996
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3997
    :return: LayerOutput object.
3998
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3999
    """
Q
qijun 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
4015 4016 4017 4018 4019


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4020
    and can be a sequence or non-sequence.
4021 4022
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4023
    """
4024

Z
zhangjinchao01 已提交
4025 4026 4027
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4028
        assert input.size is not None
Z
zhangjinchao01 已提交
4029
        if size is not None:
4030
            assert input.size == size
Z
zhangjinchao01 已提交
4031 4032


4033
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4034
    """
4035
    DEPRECATED.
Z
zhangjinchao01 已提交
4036 4037 4038 4039 4040 4041 4042 4043
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4044
    return input
Z
zhangjinchao01 已提交
4045 4046 4047


@wrap_name_default("recurrent_group")
4048
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4049
    """
C
caoying03 已提交
4050 4051 4052
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4053 4054
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4076 4077
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4078

R
ranqiu 已提交
4079 4080 4081
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4082 4083 4084 4085
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4086
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4087 4088 4089 4090 4091 4092 4093
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4094
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4095

R
ranqiu 已提交
4096
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4097

R
ranqiu 已提交
4098
    :param reverse: If reverse is set to True, the recurrent unit will process the
4099
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4100
    :type reverse: bool
4101

4102 4103
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4104 4105 4106 4107 4108 4109 4110

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4111
    :type targetInlink: LayerOutput | SubsequenceInput
4112

D
dangqingqing 已提交
4113
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4114 4115 4116 4117
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4118
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4119
        input = [input]
4120
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4121 4122

    def is_in_links(x):
4123
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4124 4125 4126 4127

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4128
        name=name,
4129 4130
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4131 4132
    in_args = []
    for each_input in input:
4133
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4134
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4135
            mem = memory(
4136
                name=None,
Q
qijun 已提交
4137 4138
                size=each_input.input.size,
                boot_layer=each_input.input)
4139
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4140
            in_args.append(mem)
4141 4142
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4143

Z
zhangjinchao01 已提交
4144 4145 4146 4147 4148
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4149 4150 4151 4152 4153 4154
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4155 4156 4157

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4158
    for layer_out in layer_outs:
4159 4160
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4161 4162
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4163 4164 4165 4166 4167
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4168

Z
zhangjinchao01 已提交
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4197 4198

    def before_real_step(self):
Q
qijun 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4208 4209 4210
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4211
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4229
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4230
    :type input: LayerOutput
4231
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4232
    :type name: basestring
R
ranqiu 已提交
4233 4234
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4235
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4236
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4237 4238 4239 4240
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4251

4252

R
ranqiu 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
R
ranqiu 已提交
4267
    :type input1: LayerOutput
R
ranqiu 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4304
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4305
    :type name: basestring
R
ranqiu 已提交
4306
    :param input1: The first input layer.
H
Haonan 已提交
4307
    :type input: LayerOutput
R
ranqiu 已提交
4308
    :param input2: The second input layer.
H
Haonan 已提交
4309
    :type input2: LayerOutput
R
ranqiu 已提交
4310 4311
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4312 4313 4314 4315 4316 4317 4318
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4329

Z
zhangjinchao01 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4346
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4347
    :type name: basestring
R
ranqiu 已提交
4348
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4349
    :type input: LayerOutput
R
ranqiu 已提交
4350
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4351
    :type eos_id: int
R
ranqiu 已提交
4352 4353
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4354
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4355
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4356 4357
    :rtype: LayerOutput
    """
Q
qijun 已提交
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4369 4370 4371


@wrap_name_default()
Q
qijun 已提交
4372 4373 4374 4375 4376 4377 4378
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4379
                num_results_per_sample=None):
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4391
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4392 4393 4394 4395
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4396 4397 4398 4399 4400
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4401 4402
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4403 4404
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4405 4406
                               bos_id=0,
                               eos_id=1,
4407
                               beam_size=5)
4408 4409 4410 4411 4412 4413

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4414 4415
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4416
    :type name: basestring
4417
    :param step: A callable function that defines the calculation in a time
4418
                 step, and it is applied to sequences with arbitrary length by
4419 4420 4421 4422 4423
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4424 4425
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4426
                  In beam_search, none of the input's type should be LayerOutput.
4427
    :type input: list
4428 4429 4430
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4431
                   symbol is essential, since it is used to initialize the RNN
4432 4433 4434 4435 4436 4437 4438 4439
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4440 4441
    :param max_length: Max generated sequence length.
    :type max_length: int
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4452 4453
    :return: The generated word index.
    :rtype: LayerOutput
4454 4455
    """

Z
zhangjinchao01 已提交
4456 4457 4458 4459 4460
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4461
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4462 4463 4464 4465 4466 4467
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4468 4469 4470
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4471
        if isinstance(each_input, BaseGeneratedInput):
4472 4473
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4474
            generated_input_index = i
4475

Z
zhangjinchao01 已提交
4476 4477 4478
        else:
            real_input.append(each_input)

4479
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4480 4481 4482 4483 4484 4485 4486 4487

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4488 4489 4490 4491 4492 4493
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4494 4495 4496 4497 4498 4499

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4500
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4501 4502
        return predict

4503 4504
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4505

Q
qijun 已提交
4506

4507 4508
def __cost_input__(input, label, weight=None):
    """
4509
    inputs and parents for cost layers.
4510
    """
C
caoying03 已提交
4511 4512 4513 4514 4515 4516
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4517
    if weight is not None:
4518
        assert weight.size == 1
4519 4520 4521
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4522

Z
zhangjinchao01 已提交
4523 4524

@wrap_name_default()
L
luotao1 已提交
4525
@layer_support()
4526 4527 4528 4529 4530 4531
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4532
    """
4533
    sum of square error cost:
L
Luo Tao 已提交
4534 4535 4536

    ..  math::

4537
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4538

4539
    :param name: The name of this layer. It is optional.
4540
    :type name: basestring
R
ranqiu 已提交
4541
    :param input: The first input layer.
4542
    :type input: LayerOutput
R
ranqiu 已提交
4543
    :param label: The input label.
4544
    :type label: LayerOutput
R
ranqiu 已提交
4545 4546
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4547
    :type weight: LayerOutput
R
ranqiu 已提交
4548
    :param coeff: The weight of the gradient in the back propagation.
4549
                  1.0 is the default value.
4550
    :type coeff: float
R
ranqiu 已提交
4551 4552
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4553
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4554
    :return: LayerOutput object.
4555
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4556
    """
4557 4558
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4559 4560 4561 4562
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4563
        coeff=coeff,
Q
qijun 已提交
4564
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4565
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4566 4567


4568
regression_cost = square_error_cost
L
Luo Tao 已提交
4569 4570


Z
zhangjinchao01 已提交
4571
@wrap_name_default("cost")
4572
@layer_support()
Q
qijun 已提交
4573 4574 4575 4576
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4577
                        evaluator=classification_error_evaluator,
4578 4579
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4580 4581 4582
    """
    classification cost Layer.

4583
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4584
    :type name: basestring
R
ranqiu 已提交
4585
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4586
    :type input: LayerOutput
R
ranqiu 已提交
4587
    :param label: The input label.
Z
zhangjinchao01 已提交
4588
    :type label: LayerOutput
R
ranqiu 已提交
4589 4590
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4591
    :type weight: LayerOutput
R
ranqiu 已提交
4592 4593 4594 4595
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4596
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4597
    :param coeff: The weight of the gradient in the back propagation.
4598
                  1.0 is the default value.
4599
    :type coeff: float
D
dangqingqing 已提交
4600
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4601 4602 4603 4604 4605
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4606 4607 4608

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4609 4610 4611 4612
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4613
        coeff=coeff,
Q
qijun 已提交
4614
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4625
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4626

4627
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4628 4629 4630 4631 4632
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4633
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4634

4635

Q
qijun 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4645 4646
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4647 4648 4649 4650
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4651
    supports GPU mode.
Z
zhangjinchao01 已提交
4652 4653 4654 4655 4656

    The example usage is:

    .. code-block:: python

4657 4658
       op = conv_operator(img=input1,
                          filter=input2,
4659
                          filter_size=3,
Z
zhangjinchao01 已提交
4660 4661 4662
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4663
    :param img: The input image.
4664
    :type img: LayerOutput
R
ranqiu 已提交
4665
    :param filter: The input filter.
4666
    :type filter: LayerOutput
R
ranqiu 已提交
4667
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4668
    :type filter_size: int
R
ranqiu 已提交
4669 4670 4671
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4672
    :type filter_size_y: int
R
ranqiu 已提交
4673
    :param num_filters: The number of the output channels.
4674
    :type num_filters: int
R
ranqiu 已提交
4675 4676 4677
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4678
    :type num_channels: int
R
ranqiu 已提交
4679
    :param stride: The stride on the x axis.
L
luotao02 已提交
4680
    :type stride: int
R
ranqiu 已提交
4681 4682
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4683
    :type stride_y: int
R
ranqiu 已提交
4684
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4685
    :type padding: int
R
ranqiu 已提交
4686 4687
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4698

4699 4700
    if num_channels is None:
        num_channels = img.num_filters
4701 4702

    assert isinstance(filter, LayerOutput)
4703
    assert filter.size is not None
4704

4705 4706 4707
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4719

4720
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4721 4722
    return op

Q
qijun 已提交
4723

4724
@wrap_param_attr_default()
Q
qijun 已提交
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4735 4736
                    param_attr=None,
                    trans=False):
4737
    """
R
ranqiu 已提交
4738 4739 4740
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4741 4742 4743 4744 4745

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4746
       proj = conv_projection(input=input1,
4747 4748 4749 4750
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4751
    :param input: The input of this layer.
4752
    :type input: LayerOutput
R
ranqiu 已提交
4753 4754 4755 4756 4757
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4758
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4759 4760 4761
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4762
    :type filter_size_y: int
R
ranqiu 已提交
4763
    :param num_filters: The number of filters.
4764
    :type num_filters: int
R
ranqiu 已提交
4765
    :param num_channels: The number of the input channels.
4766
    :type num_channels: int
R
ranqiu 已提交
4767 4768 4769 4770 4771 4772 4773
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4774
    :type stride_y: int
R
ranqiu 已提交
4775 4776 4777 4778 4779 4780 4781
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4782 4783 4784
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4785 4786
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4787
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4788
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4789
    :type trans: bool
R
ranqiu 已提交
4790 4791
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4820
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4821 4822 4823 4824 4825
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4826 4827 4828
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4841 4842 4843 4844

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4845

D
dangqingqing 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4856 4857
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4858

R
ranqiu 已提交
4859 4860 4861 4862
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4863

D
dangqingqing 已提交
4864
    For example,
4865

4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4887 4888

    The simply usage is:
D
dangqingqing 已提交
4889 4890 4891 4892 4893 4894 4895 4896

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4897
    :param input: The input of this layer.
D
dangqingqing 已提交
4898
    :type input: LayerOutput
R
ranqiu 已提交
4899
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4900
    :type pad_c: list | None
R
ranqiu 已提交
4901
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4902
    :type pad_h: list | None
R
ranqiu 已提交
4903
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4904
    :type pad_w: list | None
R
ranqiu 已提交
4905 4906
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4907
    :type layer_attr: ExtraLayerAttribute
4908
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4951
@wrap_name_default()
L
luotao1 已提交
4952 4953
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4954
    """
R
ranqiu 已提交
4955
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4956 4957 4958 4959 4960 4961 4962 4963
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4964
    In this formula:
4965 4966 4967 4968
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4969 4970 4971 4972 4973

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4974
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4975

4976
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4977
    :type name: basestring
R
ranqiu 已提交
4978
    :param a: The first input of this layer.
4979
    :type a: LayerOutput
R
ranqiu 已提交
4980
    :param b: The second input of this layer.
4981
    :type b: LayerOutput
R
ranqiu 已提交
4982 4983
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4984
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4985
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4986 4987
    :rtype: LayerOutput
    """
4988 4989
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4990 4991 4992
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4993
        inputs=[a.name, b.name],
Q
qijun 已提交
4994
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4995

Q
qijun 已提交
4996 4997
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4998 4999 5000 5001 5002


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
5003
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
5004
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
5005 5006 5007 5008 5009 5010 5011 5012
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
5013
    """
R
ranqiu 已提交
5014 5015
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
5016 5017

    .. math::
5018
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
5019 5020

    In this formular:
5021 5022
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5023 5024
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5025
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5026 5027 5028 5029 5030

    The simple usage is:

    .. code-block:: python

5031
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5032

5033
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5034
    :type name: basestring
R
ranqiu 已提交
5035
    :param a: The first input of this layer.
5036
    :type a: LayerOutput
R
ranqiu 已提交
5037
    :param b: The second input of this layer.
5038
    :type b: LayerOutput
R
ranqiu 已提交
5039 5040
    :param size: The dimension of this layer.
    :type size: int
5041
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5042
    :type act: BaseActivation
R
ranqiu 已提交
5043 5044
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5045
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5046 5047 5048 5049
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5050
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5051 5052
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5053
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5054
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5055 5056
    :rtype: LayerOutput
    """
5057
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5058 5059 5060 5061 5062 5063
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5064 5065 5066 5067
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5068 5069 5070 5071 5072 5073


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5074
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5075 5076
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5077
                       select=None,
Q
qijun 已提交
5078 5079
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5080 5081 5082
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5083 5084 5085
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5086 5087
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5088
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5089 5090 5091 5092 5093 5094 5095
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5096
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5097

5098
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5099
    :type name: basestring
R
ranqiu 已提交
5100 5101
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5102 5103 5104 5105
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5106
    :type select: LayerOutput
R
ranqiu 已提交
5107 5108
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5109
    :type size: int
5110
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5111
    :type act: BaseActivation
R
ranqiu 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5122
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5123 5124 5125 5126
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5127
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5128 5129
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5130
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5131
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5132 5133 5134 5135
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5136
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5137 5138
        param_attr = [param_attr]
    else:
5139
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5140 5141
            assert len(input) == len(param_attr)
        else:
5142
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5143
                logger.fatal(
W
wangmeng28 已提交
5144 5145 5146 5147 5148
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5149 5150
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5151 5152 5153 5154
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5155
    Layer(
Q
qijun 已提交
5156 5157 5158
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5159 5160 5161
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5162
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5163 5164 5165 5166
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5167 5168 5169 5170 5171 5172 5173
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5174 5175 5176


@wrap_name_default()
L
luotao1 已提交
5177 5178
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5179
    """
R
ranqiu 已提交
5180
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5181 5182 5183 5184 5185 5186 5187 5188
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5189
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5190
    :type input: LayerOutput
5191
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5192
    :type name: basestring
R
ranqiu 已提交
5193 5194 5195
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5196
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5197 5198
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5199
    l = Layer(
Z
zhangjinchao01 已提交
5200 5201 5202
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5203 5204 5205
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5206 5207 5208


@wrap_name_default()
L
luotao1 已提交
5209
@layer_support()
Q
qijun 已提交
5210 5211 5212 5213
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5214
                          layer_attr=None):
Z
zhangjinchao01 已提交
5215
    """
R
ranqiu 已提交
5216
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5227
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5228
    :type input: LayerOutput
5229
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5230
    :type name: basestring
R
ranqiu 已提交
5231 5232 5233 5234 5235 5236 5237
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5238
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5239 5240 5241 5242 5243 5244 5245 5246
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5247 5248 5249
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5250 5251 5252


@wrap_name_default()
L
luotao1 已提交
5253
@layer_support()
Q
qijun 已提交
5254
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5255
    """
5256 5257 5258 5259
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5260 5261 5262

    .. math::

5263
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5264

5265 5266 5267 5268 5269
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5270

5271
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5272 5273

    In this formular:
5274 5275 5276 5277 5278 5279
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5280 5281 5282 5283 5284

    The simple usage is:

    .. code-block:: python

5285
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5286 5287
                                       size=elem_dim)

5288 5289 5290 5291
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5292
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5293
    :type size: int
5294
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5295
    :type name: basestring
R
ranqiu 已提交
5296 5297 5298
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5299
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5300 5301
    :rtype: LayerOutput
    """
5302 5303 5304 5305
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5306
            size = vectors.size / weights.size
5307 5308
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5309 5310
    Layer(
        name=name,
5311
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5312
        size=size,
5313
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5314 5315 5316
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5317

5318

5319
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5320

5321

Z
zhangjinchao01 已提交
5322
@wrap_name_default()
L
luotao1 已提交
5323
@layer_support()
Z
zhangjinchao01 已提交
5324 5325 5326 5327 5328 5329 5330
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5331
                       num_channels=None,
L
luotao1 已提交
5332 5333
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5334 5335
    """
    Expand feature map to minibatch matrix.
5336
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5337
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5338 5339 5340 5341 5342 5343 5344

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5345
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5346
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5347
    The number of time steps is outputH * outputW and the dimension of each
5348
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5349
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5350

5351 5352 5353 5354
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5355
       block_expand = block_expand_layer(input=layer,
5356
                                         num_channels=128,
5357 5358 5359 5360 5361
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5362
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5363
    :type input: LayerOutput
R
ranqiu 已提交
5364 5365 5366 5367
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5380
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5381 5382 5383 5384
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5385
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5386 5387
    :rtype: LayerOutput
    """
5388 5389 5390
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5408 5409


5410 5411
@wrap_name_default()
@layer_support()
5412
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5413
    """
R
ranqiu 已提交
5414 5415 5416 5417
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5418

5419
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5420 5421 5422
    to be devided by groups.

    Reference:
R
ranqiu 已提交
5423
        `Maxout Networks
R
ranqiu 已提交
5424
        <http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf>`_
R
ranqiu 已提交
5425
        `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
R
ranqiu 已提交
5426
        <https://arxiv.org/pdf/1312.6082v4.pdf>`_
5427

X
xuwei06 已提交
5428 5429 5430 5431 5432 5433 5434 5435
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5436 5437 5438 5439 5440 5441 5442 5443
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5444
    :param input: The input of this layer.
5445
    :type input: LayerOutput
R
ranqiu 已提交
5446 5447 5448 5449
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5450 5451
    :param groups: The group number of input layer.
    :type groups: int
5452
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5453 5454 5455
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5466 5467 5468 5469 5470 5471 5472 5473 5474
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5475 5476


Z
zhangjinchao01 已提交
5477
@wrap_name_default()
L
luotao1 已提交
5478
@layer_support()
Q
qijun 已提交
5479 5480 5481 5482 5483
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5484
              layer_attr=None):
Z
zhangjinchao01 已提交
5485 5486
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5487
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5488 5489
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5490
    Reference:
R
ranqiu 已提交
5491
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5492
        with Recurrent Neural Networks
R
ranqiu 已提交
5493
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5494 5495

    Note:
R
ranqiu 已提交
5496 5497 5498 5499 5500
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5501

C
caoying03 已提交
5502
    The example usage is:
Z
zhangjinchao01 已提交
5503 5504 5505 5506 5507 5508 5509 5510

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5511
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5512
    :type input: LayerOutput
R
ranqiu 已提交
5513
    :param label: The input label.
Z
zhangjinchao01 已提交
5514
    :type label: LayerOutput
R
ranqiu 已提交
5515
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5516
    :type size: int
5517
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5518 5519
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5520
    :type norm_by_times: bool
R
ranqiu 已提交
5521 5522 5523
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5524
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5525 5526 5527 5528
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5529 5530 5531 5532 5533
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5534
    Layer(
5535 5536 5537 5538
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5539
        inputs=[input.name, label.name],
Q
qijun 已提交
5540
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5541 5542
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5543

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5555
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5556
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5557 5558 5559 5560 5561 5562 5563
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5564
    Reference:
R
ranqiu 已提交
5565
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5566
        with Recurrent Neural Networks
R
ranqiu 已提交
5567
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5568 5569

    Note:
R
ranqiu 已提交
5570 5571 5572
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5573
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5574
          should be consistent with those used in your labels.
5575
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5576
          'linear' activation is expected to be used instead in the 'input' layer.
5577

C
caoying03 已提交
5578
    The example usage is:
5579 5580 5581 5582 5583 5584 5585 5586 5587

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5588
    :param input: The input of this layer.
5589
    :type input: LayerOutput
R
ranqiu 已提交
5590
    :param label: The input label.
5591
    :type label: LayerOutput
R
ranqiu 已提交
5592
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5593
    :type size: int
5594
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5595 5596
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5597
    :type blank: int
R
ranqiu 已提交
5598
    :param norm_by_times: Whether to do normalization by times. False is the default.
5599
    :type norm_by_times: bool
R
ranqiu 已提交
5600 5601 5602
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5625
@wrap_name_default()
5626
@wrap_param_attr_default()
L
luotao1 已提交
5627
@layer_support()
Q
qijun 已提交
5628 5629 5630 5631 5632 5633
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5634
              coeff=1.0,
L
luotao1 已提交
5635
              layer_attr=None):
Z
zhangjinchao01 已提交
5636 5637 5638 5639
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5640
    The example usage is:
Z
zhangjinchao01 已提交
5641 5642 5643 5644 5645 5646 5647

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5648
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5649
    :type input: LayerOutput
R
ranqiu 已提交
5650
    :param label: The input label.
5651
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5652 5653
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5654 5655
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5656
    :type weight: LayerOutput
R
ranqiu 已提交
5657 5658
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5659
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5660
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5661 5662
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5663
                  1.0 is the default value.
5664
    :type coeff: float
R
ranqiu 已提交
5665 5666 5667
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5668
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5669 5670 5671 5672 5673
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5674 5675 5676 5677 5678 5679
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5680

Q
qijun 已提交
5681
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5682 5683 5684 5685
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5686 5687 5688 5689
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5690
        coeff=coeff,
Q
qijun 已提交
5691
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5692 5693 5694
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5695 5696 5697 5698
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5699

5700

Z
zhangjinchao01 已提交
5701
@wrap_name_default()
5702
@wrap_param_attr_default()
L
luotao1 已提交
5703
@layer_support()
Q
qijun 已提交
5704 5705 5706 5707 5708
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5709
                       layer_attr=None):
Z
zhangjinchao01 已提交
5710 5711 5712
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5713 5714 5715
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5716

C
caoying03 已提交
5717
    The example usage is:
L
Luo Tao 已提交
5718 5719 5720 5721 5722 5723

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5724 5725
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5726
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5727
    :type size: int
R
ranqiu 已提交
5728 5729 5730 5731
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5732
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5733
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5734 5735 5736 5737
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5738
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5739 5740 5741 5742 5743 5744
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5745
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5746 5747 5748 5749
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5750 5751 5752 5753
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5754
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5755 5756 5757
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5758 5759 5760 5761
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5762

Q
qijun 已提交
5763

C
caoying03 已提交
5764 5765 5766 5767 5768
"""
Following are cost Layers.
"""


5769
@wrap_bias_attr_default(has_bias=True)
5770
@wrap_param_attr_default()
5771 5772
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5773 5774
def nce_layer(input,
              label,
C
caoying03 已提交
5775
              num_classes=None,
5776
              param_attr=None,
Q
qijun 已提交
5777 5778 5779 5780 5781 5782
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5783 5784
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5785 5786

    Reference:
R
ranqiu 已提交
5787
        `A fast and simple algorithm for training neural probabilistic language
R
ranqiu 已提交
5788
        models. <https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf>`_
5789 5790 5791 5792 5793

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5794 5795
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5796 5797
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5798
    :param name: The name of this layer. It is optional.
5799
    :type name: basestring
R
ranqiu 已提交
5800
    :param input: The first input of this layer.
R
ranqiu 已提交
5801
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5802
    :param label: The input label.
5803
    :type label: LayerOutput
C
caoying03 已提交
5804
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5805
                   mini-batch. It is optional.
5806
    :type weight: LayerOutput
R
ranqiu 已提交
5807
    :param num_classes: The number of classes.
5808
    :type num_classes: int
5809
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5810
    :type act: BaseActivation
R
ranqiu 已提交
5811 5812
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5813
    :type param_attr: ParameterAttribute
5814 5815
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5816
    :type num_neg_samples: int
C
caoying03 已提交
5817 5818 5819
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5820
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5821 5822 5823
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5824
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5825 5826 5827 5828
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5829
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5830 5831
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5832
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5833
    :return: LayerOutput object.
5834 5835 5836 5837
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5838 5839 5840 5841 5842 5843 5844 5845
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5846
    assert isinstance(input, collections.Sequence)
5847

5848 5849
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5850 5851
    if num_classes is None:
        num_classes = label.size
5852 5853 5854
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5855
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5856

5857 5858
    ipts_for_layer = []
    parents = []
5859
    for each_input, attr in zip(input, param_attr):
5860
        assert isinstance(each_input, LayerOutput)
5861
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5872
    l = Layer(
5873 5874 5875 5876
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5877
        active_type=SigmoidActivation().name,
5878 5879 5880
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5881 5882
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5883 5884 5885 5886
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5887
        activation=SigmoidActivation())
5888 5889


Z
zhangjinchao01 已提交
5890
@wrap_name_default()
L
luotao1 已提交
5891
@layer_support()
Q
qijun 已提交
5892 5893 5894 5895 5896 5897 5898
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5899
    """
R
ranqiu 已提交
5900 5901 5902
    A cost Layer for learning to rank using gradient descent.

    Reference:
R
ranqiu 已提交
5903
        `Learning to Rank using Gradient Descent
R
ranqiu 已提交
5904
        <http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf>`_
Z
zhangjinchao01 已提交
5905 5906 5907

    .. math::

L
luotao02 已提交
5908
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5909

L
luotao02 已提交
5910
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5911

L
luotao02 已提交
5912
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5913 5914 5915 5916 5917 5918 5919 5920

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5921
    The example usage is:
Z
zhangjinchao01 已提交
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5935 5936
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5937
    :type weight: LayerOutput
R
ranqiu 已提交
5938
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5939 5940
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5941
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5942
    :type coeff: float
R
ranqiu 已提交
5943 5944
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5945
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5946
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5959 5960 5961 5962 5963 5964
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5965

X
xuwei06 已提交
5966
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5967

5968

Z
zhangjinchao01 已提交
5969
@wrap_name_default()
L
luotao1 已提交
5970
@layer_support()
Q
qijun 已提交
5971 5972 5973 5974 5975 5976
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5977 5978 5979
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5980
    The example usage is:
Z
zhangjinchao01 已提交
5981 5982 5983 5984 5985 5986 5987 5988

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5989 5990
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5991
    :type input: LayerOutput
R
ranqiu 已提交
5992
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5993 5994
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5995
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5996
                     minimum size of the list.
Z
zhangjinchao01 已提交
5997
    :type NDCG_num: int
R
ranqiu 已提交
5998 5999 6000 6001 6002
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
6003
    :type max_sort_size: int
R
ranqiu 已提交
6004
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6005 6006 6007
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6008
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6009
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6010 6011
    :rtype: LayerOutput
    """
6012 6013 6014
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
6015 6016 6017 6018 6019 6020 6021
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6022

Q
qijun 已提交
6023 6024
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6025

6026

Z
zhangjinchao01 已提交
6027
@wrap_name_default()
L
luotao1 已提交
6028
@layer_support()
6029 6030 6031 6032 6033 6034
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6035 6036 6037
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6038 6039
    The example usage is:

Z
zhangjinchao01 已提交
6040 6041
    .. code-block:: python

X
xuwei06 已提交
6042
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6043
                            label=label_layer)
Z
zhangjinchao01 已提交
6044 6045 6046 6047

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6048
    :type input: LayerOutput
R
ranqiu 已提交
6049
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6050 6051
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6052
                  1.0 is the default value.
R
ranqiu 已提交
6053
    :type coeff: float
R
ranqiu 已提交
6054 6055
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6056
    :type weight: LayerOutout
R
ranqiu 已提交
6057 6058
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6059
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6060
    :return: LayerOutput object.
R
ranqiu 已提交
6061
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6062 6063
    """

6064
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6065 6066 6067
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6068
        inputs=ipts,
Q
qijun 已提交
6069 6070
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6071
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6072

6073

Z
zhangjinchao01 已提交
6074
@wrap_name_default()
L
luotao1 已提交
6075
@layer_support()
Q
qijun 已提交
6076 6077 6078 6079
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6080 6081
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6082 6083
    """
    A loss layer for multi class entropy with selfnorm.
6084
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6085

C
caoying03 已提交
6086 6087
    The example usage is:

Z
zhangjinchao01 已提交
6088 6089
    .. code-block:: python

X
xuwei06 已提交
6090
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6091
                                          label=label_layer)
Z
zhangjinchao01 已提交
6092 6093

    :param input: The first input layer.
R
ranqiu 已提交
6094
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6095
    :param label: The input label.
R
ranqiu 已提交
6096
    :type input: LayerOutput
R
ranqiu 已提交
6097
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6098 6099
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6100
                  1.0 is the default value.
R
ranqiu 已提交
6101
    :type coeff: float
Z
zhangjinchao01 已提交
6102
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6103 6104 6105
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6106
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6107
    :return: LayerOutput object.
R
ranqiu 已提交
6108
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6109
    """
Q
qijun 已提交
6110 6111 6112 6113 6114 6115 6116
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6117

Q
qijun 已提交
6118 6119 6120 6121 6122
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6123

6124

X
xuwei06 已提交
6125 6126 6127 6128
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6129
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6130

C
caoying03 已提交
6131 6132
    The example usage is:

X
xuwei06 已提交
6133 6134
    .. code-block:: python

L
Luo Tao 已提交
6135
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6136

R
ranqiu 已提交
6137
    :param input: The input of this layer.
R
ranqiu 已提交
6138
    :type input: LayerOutput
R
ranqiu 已提交
6139
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6140 6141 6142
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6143 6144 6145 6146
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6147
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6148 6149 6150 6151 6152
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6153

Q
qijun 已提交
6154
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6155 6156


Z
zhangjinchao01 已提交
6157
@wrap_name_default()
L
luotao1 已提交
6158
@layer_support()
L
Luo Tao 已提交
6159 6160 6161 6162 6163 6164
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6165
    """
6166 6167 6168
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6169 6170
    is defined as:

R
ranqiu 已提交
6171 6172 6173 6174 6175
    .. math::

       loss = 0.5*(y-f(x))^{2}, | y-f(x) | < \delta

       loss = \delta | y-f(x) | - 0.5 \delta ^2, otherwise
Z
zhangjinchao01 已提交
6176

C
caoying03 已提交
6177 6178
    The example usage is:

Z
zhangjinchao01 已提交
6179 6180
    .. code-block:: python

L
Luo Tao 已提交
6181
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6182 6183

    :param input: The first input layer.
R
ranqiu 已提交
6184
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6185
    :param label: The input label.
R
ranqiu 已提交
6186
    :type input: LayerOutput
R
ranqiu 已提交
6187
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6188
    :type name: basestring
L
Luo Tao 已提交
6189
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6190 6191
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6192
                  1.0 is the default value.
R
ranqiu 已提交
6193 6194 6195
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6196
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6197
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6198 6199
    :rtype: LayerOutput.
    """
6200
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6212
@wrap_name_default()
L
luotao1 已提交
6213
@layer_support()
6214 6215 6216 6217 6218
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6219
    """
6220 6221
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
R
ranqiu 已提交
6222
    a true binary class label :math:`y\in \{-1, 1 \}`, the modified Huber
6223 6224 6225
    loss is defined as:

    .. math:
R
ranqiu 已提交
6226 6227 6228 6229

       loss = \max ( 0, 1-yf(x) )^2, yf(x) \geq -1

       loss = -4yf(x), otherwise
Z
zhangjinchao01 已提交
6230

C
caoying03 已提交
6231 6232
    The example usage is:

Z
zhangjinchao01 已提交
6233 6234
    .. code-block:: python

6235
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6236 6237

    :param input: The first input layer.
R
ranqiu 已提交
6238
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6239
    :param label: The input label.
R
ranqiu 已提交
6240
    :type input: LayerOutput
R
ranqiu 已提交
6241
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6242 6243
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6244
                  1.0 is the default value.
R
ranqiu 已提交
6245 6246 6247
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6248
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6249
    :return: LayerOutput object.
R
ranqiu 已提交
6250
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6251
    """
6252 6253 6254
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6255 6256
    Layer(
        name=name,
6257
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6258 6259 6260
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6261 6262
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6263

6264

Z
zhangjinchao01 已提交
6265
@wrap_name_default()
L
luotao1 已提交
6266
@layer_support()
Q
qijun 已提交
6267 6268 6269 6270
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6271
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6272 6273 6274
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6275 6276
    The example usage is:

Z
zhangjinchao01 已提交
6277 6278
    .. code-block:: python

X
xuwei06 已提交
6279
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6280
                                               label=label_layer)
Z
zhangjinchao01 已提交
6281 6282 6283 6284 6285

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6286
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6287 6288
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6289
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6290
    :type coeff: float
R
ranqiu 已提交
6291 6292
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6293
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6294
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6295 6296 6297
    :rtype: LayerOutput
    """

6298 6299
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6300 6301 6302 6303
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6316 6317


C
caoying03 已提交
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6340 6341
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6342
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6343
    """
C
caoying03 已提交
6344 6345 6346
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6347

C
caoying03 已提交
6348 6349 6350 6351 6352
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6353

C
caoying03 已提交
6354 6355 6356 6357 6358
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6359

C
caoying03 已提交
6360 6361 6362
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6363

C
caoying03 已提交
6364 6365 6366 6367
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6368

C
caoying03 已提交
6369 6370 6371
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6372
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6373 6374
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6375

D
dangqingqing 已提交
6376

C
caoying03 已提交
6377 6378
    The example usage is:

D
dangqingqing 已提交
6379 6380
    .. code-block:: python

C
caoying03 已提交
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6393
    :param input: Input beams for this layer.
C
caoying03 已提交
6394
    :type input: BeamInput
R
ranqiu 已提交
6395
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6422 6423 6424
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6425 6426
@wrap_name_default()
@layer_support()
6427
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6428 6429
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6430
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6440
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6441

R
ranqiu 已提交
6442
    Reference:
R
ranqiu 已提交
6443
        `Fast R-CNN
R
ranqiu 已提交
6444
        <https://arxiv.org/pdf/1504.08083v2.pdf>`_
D
dangqingqing 已提交
6445

C
caoying03 已提交
6446 6447
    The example usage is:

D
dangqingqing 已提交
6448 6449
    .. code-block:: python

6450 6451
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6452 6453 6454 6455 6456

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6457
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6458
    :type name: basestring
R
ranqiu 已提交
6459
    :param coeff: The weight of the gradient in the back propagation.
6460
                  1.0 is the default value.
6461
    :type coeff: float
R
ranqiu 已提交
6462 6463
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6476
        coeff=coeff,
D
dangqingqing 已提交
6477 6478 6479
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6480 6481 6482 6483 6484


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6485 6486 6487
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6488
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6489 6490
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6491 6492 6493 6494 6495 6496 6497 6498

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6499 6500
    The example usage is:

W
wwhu 已提交
6501 6502 6503 6504 6505 6506
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6507
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6508
    :type name: basestring
R
ranqiu 已提交
6509 6510
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6534 6535


6536 6537 6538 6539
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6540 6541 6542 6543 6544 6545
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6546
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6547
    :type name: basestring
R
ranqiu 已提交
6548
    :param input: The input of this layer.
R
ranqiu 已提交
6549 6550 6551 6552 6553
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6554 6555 6556 6557 6558 6559 6560
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6561 6562


D
dangqingqing 已提交
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6576
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6577 6578 6579 6580 6581 6582 6583
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6584
    efficient manner to improve unidirectional RNNs.
6585

R
ranqiu 已提交
6586
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6587 6588 6589 6590
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6591

D
dangqingqing 已提交
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6607
    :param input: The input of this layer.
D
dangqingqing 已提交
6608 6609 6610 6611
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6612
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6613
    :type act: BaseActivation
R
ranqiu 已提交
6614 6615
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6616
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6617 6618
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6619
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6635 6636


6637 6638 6639 6640 6641
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6642 6643
                channel_shared=None,
                num_channels=None,
6644 6645 6646
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6647
    The Parametric Relu activation that actives outputs with a learnable weight.
6648 6649

    Reference:
R
ranqiu 已提交
6650
        `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
R
ranqiu 已提交
6651
        ImageNet Classification <http://arxiv.org/pdf/1502.01852v1.pdf>`_
6652 6653 6654 6655 6656

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6657 6658 6659 6660 6661 6662
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6663
    :param name: The name of this layer. It is optional.
6664
    :type name: basestring
R
ranqiu 已提交
6665
    :param input: The input of this layer.
6666
    :type input: LayerOutput
R
ranqiu 已提交
6667
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6668 6669

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6670 6671
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6672 6673

    :type partial_sum: int
6674
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6675

6676 6677
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6678

6679
    :type channel_shared: bool
6680 6681
    :param num_channels: number of input channel.
    :type num_channels: int
6682
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6683 6684 6685
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6686
    :type layer_attr: ExtraLayerAttribute | None
6687 6688 6689 6690
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6691
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6692

6693
    if not param_attr:
X
xzl 已提交
6694
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6695 6696 6697 6698
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6699 6700
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6701 6702 6703 6704
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6705 6706
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6707 6708 6709 6710
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6711 6712 6713

    l = Layer(
        name=name,
C
caoying03 已提交
6714
        type=LayerType.PRELU,
C
caoying03 已提交
6715
        inputs=Input(input.name, **param_attr.attr),
6716 6717 6718 6719 6720 6721
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6722
        num_filters=num_channels,
6723
        size=l.config.size)
6724 6725


6726
@wrap_name_default()
C
caoying03 已提交
6727
@layer_support(ERROR_CLIPPING, DROPOUT)
6728 6729 6730 6731 6732 6733 6734
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6735 6736
                     gate_bias_attr=True,
                     inproj_attr=None,
6737 6738 6739 6740 6741 6742 6743
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6744
    product between :match:`X'` and :math:`\sigma` is finally returned.
6745 6746

    Reference:
R
ranqiu 已提交
6747
        `Language Modeling with Gated Convolutional Networks
R
ranqiu 已提交
6748
        <https://arxiv.org/abs/1612.08083>`_
6749 6750 6751 6752 6753 6754 6755 6756 6757

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6758
    :param input: The input of this layer.
6759
    :type input: LayerOutput
R
ranqiu 已提交
6760
    :param size: The dimension of this layer's output.
6761
    :type size: int
6762 6763
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6764
    :type act: BaseActivation
6765
    :param name: The name of this layer. It is optional.
6766
    :type name: basestring
R
ranqiu 已提交
6767 6768
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6769
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6770 6771 6772
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6773
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6774
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6775
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6776 6777 6778
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6779
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6780 6781 6782
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6783
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6784
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6785
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6786 6787 6788
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6789
    :type layer_attr: ExtraLayerAttribute | None
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6802
        layer_attr=inproj_attr,
6803 6804 6805 6806 6807 6808 6809 6810 6811
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6812
        param_attr=gate_param_attr,
6813 6814 6815 6816 6817
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6818 6819


6820
@layer_support()
6821
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6822 6823
def switch_order_layer(input,
                       name=None,
6824
                       reshape_axis=None,
W
wanghaoshuang 已提交
6825 6826
                       act=None,
                       layer_attr=None):
6827
    """
6828
    This layer switch dimension order of image input.
6829 6830
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6831 6832 6833 6834

    The example usage is:

    .. code-block:: python
6835 6836
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6837
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6838

R
ranqiu 已提交
6839
    :param input: The input of this layer.
6840
    :type input: LayerOutput
6841
    :param name: The name of this layer. It is optional.
6842
    :type name: basestring
R
ranqiu 已提交
6843 6844
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6845 6846 6847
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6848
    assert isinstance(input, LayerOutput)
6849 6850 6851 6852 6853
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6854 6855
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6856
        inputs=input.name,
6857 6858
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6859
        active_type=act.name,
6860 6861 6862
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6863
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6864
        activation=act,
6865 6866
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6867 6868


6869 6870
@wrap_name_default()
@layer_support()
6871
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6872
    """
R
ranqiu 已提交
6873 6874 6875
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6876

6877 6878 6879
    The example usage is:

    .. code-block:: python
W
whs 已提交
6880
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6881

R
ranqiu 已提交
6882 6883
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6884 6885
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6886
    :type offset: Sequence
R
ranqiu 已提交
6887
    :param axis: The start axis to be cropped. For image input layer:
6888 6889 6890 6891
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6892 6893
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6894
    :type shape: Sequence | None
6895
    :param name: The name of this layer. It is optional.
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6917 6918


C
caoying03 已提交
6919 6920
@wrap_name_default()
@layer_support()
6921
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6922
    """
6923
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6924
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6925

C
caoying03 已提交
6926 6927 6928
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6929 6930 6931 6932

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6933

R
ranqiu 已提交
6934
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6935

C
caoying03 已提交
6936

R
ranqiu 已提交
6937
    :param input: The input of this layer. It is a nested sequence.
6938
    :type input: LayerOutput
R
ranqiu 已提交
6939
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6940
    :type input: LayerOutput
6941
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6942 6943 6944 6945
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6946

6947 6948 6949 6950 6951 6952 6953
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6954
    l = Layer(
6955 6956
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6957 6958 6959 6960 6961 6962 6963
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6964 6965


G
guosheng 已提交
6966
@wrap_name_default("clip")
6967
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6968 6969 6970 6971 6972
    """
    A layer for clipping the input value by the threshold.

    .. math::

R
ranqiu 已提交
6973
        out[i] = \min (\max (in[i],p_{1} ),p_{2} )
G
guosheng 已提交
6974 6975 6976

    .. code-block:: python

6977
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6978

6979
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6980
    :type name: basestring
R
ranqiu 已提交
6981
    :param input: The input of this layer.
G
guosheng 已提交
6982
    :type input: LayerOutput.
6983
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6984
    :type min: float
6985
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6986
    :type max: float
6987 6988
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6989 6990 6991 6992 6993
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6994 6995
        min=min,
        max=max)
G
guosheng 已提交
6996 6997
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6998 6999


7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7024
    :param name: The name of this layer. It is optional.
7025
    :type name: basestring
R
ranqiu 已提交
7026
    :param input: The input of this layer, which should be a sequence.
7027
    :type input: LayerOutput
R
ranqiu 已提交
7028
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7029
    :type starts: LayerOutput | None
R
ranqiu 已提交
7030
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7031
    :type ends: LayerOutput | None
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7063 7064


7065 7066
@wrap_name_default()
@layer_support()
7067
def kmax_seq_score_layer(input, name=None, beam_size=1):
7068
    """
R
ranqiu 已提交
7069
    This layer accepts one input which is scores over a sequence or a nested
7070 7071 7072 7073
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7074
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7075 7076


7077
    :param name: The name of this layer. It is optional.
7078
    :type name: basestring
R
ranqiu 已提交
7079 7080
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7081
    :type input: LayerOutput
R
ranqiu 已提交
7082 7083
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7084 7085 7086
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7087
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7088
                                            "accepts only one input.")
7089
    assert input.size == 1, (
7090
        "input of kmax_seq_score_layer is a score "
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7101 7102


7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7129
        conv = img_conv3d_layer(input=data, filter_size=1,
7130 7131 7132 7133 7134
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7135
    :param name: The name of this layer. It is optional.
7136
    :type name: basestring
R
ranqiu 已提交
7137
    :param input: The input of this layer.
7138
    :type input: LayerOutput
R
ranqiu 已提交
7139 7140
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7141
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7142 7143
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7144
    :param act: Activation type. ReluActivation is the default activation.
7145
    :type act: BaseActivation
R
ranqiu 已提交
7146
    :param groups: The number of the filter groups.
7147
    :type groups: int
R
ranqiu 已提交
7148 7149
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7150
    :type stride: int | tuple | list
R
ranqiu 已提交
7151 7152
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7153
    :type padding: int | tuple | list
R
ranqiu 已提交
7154 7155 7156
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7157
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7158
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7159 7160
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7161
    :type num_channels: int
R
ranqiu 已提交
7162 7163
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7164
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7165
    :param shared_biases: Whether biases will be shared between filters or not.
7166
    :type shared_biases: bool
R
ranqiu 已提交
7167 7168
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7169
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7170
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7171
    :type trans: bool
R
ranqiu 已提交
7172
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7173 7174 7175
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7176 7177 7178 7179 7180 7181 7182
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7183 7184 7185 7186 7187 7188
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7189

C
chengduoZH 已提交
7190 7191 7192 7193 7194 7195
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7196

C
chengduoZH 已提交
7197 7198 7199 7200 7201 7202
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7249 7250


G
guosheng 已提交
7251 7252 7253 7254 7255
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7256
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7257
    the input matrix. For each element, the layer first re-scales it and then
7258 7259
    adds a bias to it.

X
xuwei06 已提交
7260
    This layer is very like the SlopeInterceptLayer, except the scale and
7261 7262
    bias are trainable.

G
guosheng 已提交
7263 7264 7265 7266 7267 7268 7269 7270
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7271
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7272
    :type name: basestring
R
ranqiu 已提交
7273 7274
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7275 7276
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7277
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7278 7279 7280
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7281
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7292 7293 7294 7295 7296 7297 7298 7299 7300


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7301
    :param input: The input of this layer.
7302 7303 7304
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7305
    :param size: The resized output dimension of this layer.
7306 7307 7308 7309 7310 7311
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7331 7332
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7333
    :type offsets: LayerOutput
R
ranqiu 已提交
7334
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7335
    :type sizes: LayerOutput
7336
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7337
    :type act: BaseActivation.
R
ranqiu 已提交
7338 7339 7340
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7366 7367


Y
yangyaming 已提交
7368 7369
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7370
    """
Y
yangyaming 已提交
7371 7372 7373 7374 7375 7376
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7377 7378 7379

    .. code-block:: python

Y
yangyaming 已提交
7380 7381 7382
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7398 7399
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7400 7401 7402 7403 7404 7405 7406
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7407
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7408 7409 7410 7411 7412
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7413
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7414
        parents=[input, indices],
Y
yangyaming 已提交
7415
        num_filters=input.num_filters,
Y
yangyaming 已提交
7416
        size=input.size)