Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
85e6906f
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
85e6906f
编写于
11月 28, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the doc of layers.py
上级
d4c2f2f2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
12 addition
and
12 deletion
+12
-12
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+12
-12
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
85e6906f
...
...
@@ -2986,7 +2986,7 @@ def spp_layer(input,
Reference:
`Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
https://arxiv.org/abs/1406.4729
`_
<https://arxiv.org/abs/1406.4729>
`_
The example usage is:
...
...
@@ -3088,7 +3088,7 @@ def img_cmrnorm_layer(input,
Reference:
`ImageNet Classification with Deep Convolutional Neural Networks
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
`_
<http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>
`_
The example usage is:
...
...
@@ -3156,7 +3156,7 @@ def batch_norm_layer(input,
Reference:
`Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift
http://arxiv.org/abs/1502.03167
`_
<http://arxiv.org/abs/1502.03167>
`_
The example usage is:
...
...
@@ -5414,9 +5414,9 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
Reference:
`Maxout Networks
http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
`_
<http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf>
`_
`Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
https://arxiv.org/pdf/1312.6082v4.pdf
`_
<https://arxiv.org/pdf/1312.6082v4.pdf>
`_
.. math::
y_{si+j} = \max_k x_{gsi + sk + j}
...
...
@@ -5483,7 +5483,7 @@ def ctc_layer(input,
Reference:
`Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
<http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>
`_
Note:
Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
...
...
@@ -5557,7 +5557,7 @@ def warp_ctc_layer(input,
Reference:
`Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
`_
<http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>
`_
Note:
- Let num_classes represents the category number. Considering the 'blank'
...
...
@@ -5778,7 +5778,7 @@ def nce_layer(input,
Reference:
`A fast and simple algorithm for training neural probabilistic language
models.
https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
`_
models.
<https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf>
`_
The example usage is:
...
...
@@ -5894,7 +5894,7 @@ def rank_cost(left,
Reference:
`Learning to Rank using Gradient Descent
http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
`_
<http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf>
`_
.. math::
...
...
@@ -6430,7 +6430,7 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Reference:
`Fast R-CNN
https://arxiv.org/pdf/1504.08083v2.pdf
`_
<https://arxiv.org/pdf/1504.08083v2.pdf>
`_
The example usage is:
...
...
@@ -6637,7 +6637,7 @@ def prelu_layer(input,
Reference:
`Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification
http://arxiv.org/pdf/1502.01852v1.pdf
`_
ImageNet Classification
<http://arxiv.org/pdf/1502.01852v1.pdf>
`_
.. math::
z_i &
\\
quad if
\\
quad z_i > 0
\\\\
...
...
@@ -6734,7 +6734,7 @@ def gated_unit_layer(input,
Reference:
`Language Modeling with Gated Convolutional Networks
https://arxiv.org/abs/1612.08083
`_
<https://arxiv.org/abs/1612.08083>
`_
.. math::
y=
\\
text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录