layers.py 228.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
23 24
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
56
    'square_error_cost',
57
    'regression_cost',
Q
qijun 已提交
58
    'classification_cost',
59
    'LayerOutput',
Q
qijun 已提交
60 61 62 63 64 65
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
66
    'seq_concat_layer',
Q
qijun 已提交
67 68 69 70 71 72
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
73
    'scaling_projection',
Q
qijun 已提交
74 75 76 77
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
78
    'rotate_layer',
Q
qijun 已提交
79
    'sum_to_one_norm_layer',
G
guosheng 已提交
80
    'row_l2_norm_layer',
Q
qijun 已提交
81 82 83 84 85 86 87 88
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
89
    'gru_step_naive_layer',
Q
qijun 已提交
90 91 92 93 94 95 96 97 98 99 100 101
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
102
    'warp_ctc_layer',
Q
qijun 已提交
103 104 105 106 107
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
108
    'BeamInput',
C
caoying03 已提交
109
    'cross_entropy_over_beam',
Q
qijun 已提交
110 111 112 113
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
114
    'huber_regression_cost',
115
    'huber_classification_cost',
Q
qijun 已提交
116 117 118
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
X
xuwei06 已提交
119
    'printer_layer',
Q
qijun 已提交
120
    'print_layer',
Y
yuan 已提交
121
    'priorbox_layer',
122
    'cross_channel_norm_layer',
123 124
    'multibox_loss_layer',
    'detection_output_layer',
Q
qijun 已提交
125
    'spp_layer',
D
dangqingqing 已提交
126
    'pad_layer',
L
Luo Tao 已提交
127
    'eos_layer',
128
    'smooth_l1_cost',
129
    'layer_support',
W
wwhu 已提交
130
    'multiplex_layer',
D
dangqingqing 已提交
131
    'row_conv_layer',
132
    'dropout_layer',
133
    'prelu_layer',
134
    'switch_order_layer',
135
    'gated_unit_layer',
136
    'crop_layer',
137
    'sub_nested_seq_layer',
138
    'clip_layer',
139
    'slice_projection',
140
    'seq_slice_layer',
141
    'kmax_seq_score_layer',
C
chengduoZH 已提交
142
    'img_pool3d_layer',
G
guosheng 已提交
143
    'scale_shift_layer',
C
chengduoZH 已提交
144
    'img_conv3d_layer',
145
    'resize_layer',
Q
qijun 已提交
146
]
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153


class LayerType(object):
    """
    Layer type enumerations.
    """

154 155 156 157 158 159 160 161
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
162
    POOLING_AVG = 'average'
163
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
164
    COST = 'cost'
165 166
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
167
    HSIGMOID = 'hsigmoid'
168 169 170 171 172
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
173
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
174
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
175
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
176 177 178
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
179
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
180 181 182 183
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
184
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
185 186 187 188 189 190 191

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
192
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
193 194 195
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
196
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
197
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
198
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
199 200 201 202 203 204 205 206 207 208 209

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
210
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
211
    BLOCK_EXPAND = "blockexpand"
212
    MAXOUT = "maxout"
Q
qijun 已提交
213
    SPP_LAYER = "spp"
D
dangqingqing 已提交
214
    PAD_LAYER = "pad"
W
wwhu 已提交
215
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
216
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
217 218 219

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
220 221
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
222 223 224 225 226

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
227
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
228

229 230 231
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

232 233
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
234
    HUBER_REGRESSION = 'huber_regression'
235
    HUBER_CLASSIFICATION = 'huber_classification'
236 237
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
238
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
239 240 241 242 243 244
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
245
    SWITCH_ORDER_LAYER = 'switch_order'
246
    CROP_LAYER = 'crop'
C
caoying03 已提交
247
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
248
    CLIP_LAYER = 'clip'
249
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
250

251
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
252
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
253

254 255
    RESIZE = 'resize'

Z
zhangjinchao01 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
276
    """
L
Luo Tao 已提交
277
    PaddlePaddle supports three sequence types:
278 279 280

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
281 282
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
283

L
Luo Tao 已提交
284
    Accordingly, AggregateLevel supports two modes:
285

L
Luo Tao 已提交
286
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
287
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
288 289
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
290
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
291 292 293
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
294 295
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
296 297 298
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
321
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
322 323
    """

Q
qijun 已提交
324 325 326 327 328 329 330 331 332
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
333
                 reverse=None):
Z
zhangjinchao01 已提交
334 335
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
336
        assert size is not None
Z
zhangjinchao01 已提交
337 338
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
339
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
340
        self.layer_type = layer_type
341 342
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
343 344 345 346 347 348 349 350
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
351
        self.reverse = reverse
Z
zhangjinchao01 已提交
352

353 354 355 356 357 358 359 360
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

361 362 363 364
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

365 366 367 368 369 370 371 372
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
373 374 375

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
376
DEVICE = 'device'
Z
zhangjinchao01 已提交
377 378 379


def layer_support(*attrs):
380
    attrs_list = list(attrs)
381
    attrs_list.append(DEVICE)
Q
qijun 已提交
382

Z
zhangjinchao01 已提交
383 384 385
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
386
            for attr in attrs_list:
Z
zhangjinchao01 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
403 404 405 406 407
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
438
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
439 440 441 442 443 444 445 446
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
447 448
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
449 450 451 452
    proj.origin = input
    return proj


453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
474
    :param input: The input of this layer.
475 476 477 478 479 480 481 482
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
483 484
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
485 486 487 488
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
519
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
520 521 522 523 524 525 526 527
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
528 529
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
530 531 532 533
    proj.origin = input
    return proj


534
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
564
    :param input: The input of this layer.
565
    :type input: LayerOutput
Z
zhangjinchao01 已提交
566 567
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
568
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
569 570 571 572 573 574
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
575 576
        if size is None:
            size = input.size - offset
Q
qijun 已提交
577
        proj = IdentityOffsetProjection(
578
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
579 580 581 582
        proj.origin = input
    return proj


583 584
def slice_projection(input, slices):
    """
585 586
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
587 588

    .. math::
589
       output = [input.slices()]
590 591 592 593 594 595 596 597 598

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
599
    :param input: The input of this layer.
600 601 602 603
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
604
    :type slices: pair of int
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
637
    :param input: The input of this layer.
X
xuwei06 已提交
638 639 640 641 642 643
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
644
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
645 646 647 648
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
649
@wrap_param_attr_default()
650
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
651
    """
652
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
666
    :param input: The input of this layer.
667 668 669 670 671 672
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
673 674
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
675
    proj.origin = input
676
    return proj
Z
zhangjinchao01 已提交
677

678 679

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
680 681
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
682

Z
zhangjinchao01 已提交
683
    .. math::
L
Luo Tao 已提交
684
       out.row[i] += scale * (a.row[i] .* b.row[i])
685

Z
zhangjinchao01 已提交
686 687
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
688

Z
zhangjinchao01 已提交
689
    The example usage is:
690

Z
zhangjinchao01 已提交
691
    .. code-block:: python
692

L
Luo Tao 已提交
693
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
694

695 696 697 698
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
699 700
    :param scale: config scalar, default value is one.
    :type scale: float
701 702
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
703
    """
704 705 706
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
707
    a = kwargs.get('x', a)  # For Backward capacity.
708 709 710 711 712 713
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
714
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
715
    op.origin = [a, b]
716
    return op
Z
zhangjinchao01 已提交
717

718

Z
zhangjinchao01 已提交
719
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
720 721 722
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
737
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
738 739 740 741 742 743 744 745 746
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
747
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
748 749 750 751 752 753 754 755 756 757 758
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
759 760 761 762 763 764
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
778
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
779 780 781 782 783 784
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
785
        :param act: Activation type.
Z
zhangjinchao01 已提交
786
        :type act: BaseActivation
787 788 789 790
        :param bias_attr: The Bias Attribute. If the parameter is set to
                          False or something not type of ParameterAttribute,
                          no bias is defined. If the parameter is set to
                          True, the bias is initialized to zero.
R
ranqiu 已提交
791
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
792 793 794
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
795 796 797 798 799 800 801
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
802 803 804 805 806
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

807
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
808 809 810 811 812 813 814 815
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
816
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
817
            self.inputs.append(other)
818 819 820 821
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
822 823 824 825 826 827 828 829
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

830
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
831 832
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
833
        assert len(self.inputs) != 0
834
        ml = MixedLayer(
Z
zhangjinchao01 已提交
835 836 837 838 839
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
840
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
841 842 843
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
844
        self.finalized = True
Z
zhangjinchao01 已提交
845 846 847 848 849 850


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
851 852 853 854 855
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
883
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
884
                  then this function will just return layer's name.
R
ranqiu 已提交
885
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
886
    :type act: BaseActivation
887 888 889 890
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
891
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
892 893 894 895 896 897 898 899 900
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
901 902 903 904 905 906
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
907
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
908 909 910 911 912 913 914 915
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
916 917
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
918 919 920 921 922 923 924
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
925
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
926

R
ranqiu 已提交
927
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
928 929 930
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
931
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
932
    :type height: int | None
L
Luo Tao 已提交
933
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
934
    :type width: int | None
Z
zhangjinchao01 已提交
935 936
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
937
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
938 939
    :rtype: LayerOutput
    """
Q
qijun 已提交
940 941 942 943
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
944
        depth=depth,
L
Luo Tao 已提交
945 946
        height=height,
        width=width,
Q
qijun 已提交
947
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
948

C
chengduoZH 已提交
949 950
    if depth is None:
        depth = 1
951 952
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
953 954
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
955
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
956 957

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
958 959 960 961


@wrap_name_default("embedding")
@wrap_param_attr_default()
962
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
963 964 965 966
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

967
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
968
    :type name: basestring
R
ranqiu 已提交
969
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
970 971 972 973 974
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
975
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
976
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
977
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
978
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
979 980
    :rtype: LayerOutput
    """
Q
qijun 已提交
981 982 983 984 985 986
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
987 988 989 990 991 992 993 994 995
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
996 997 998 999 1000 1001 1002
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1015
    which is equal to:
Z
zhangjinchao01 已提交
1016 1017 1018 1019 1020 1021

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1022
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1023
    :type name: basestring
R
ranqiu 已提交
1024 1025
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1026 1027
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
1028
    :param act: Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
1029 1030 1031
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
1032 1033 1034 1035
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1036
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1037
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1038
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1039
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1040 1041 1042 1043
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1044
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1045 1046
        param_attr = [param_attr]
    else:
1047
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1048 1049 1050 1051
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1052
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1053 1054

    Layer(
Q
qijun 已提交
1055 1056 1057
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1058 1059 1060 1061 1062
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1063 1064 1065
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1066

1067

1068
@wrap_name_default("print")
1069
def printer_layer(input, format=None, name=None):
1070 1071
    """
    Print the output value of input layers. This layer is useful for debugging.
1072

1073
    :param name: The name of this layer. It is optional.
1074
    :type name: basestring
R
ranqiu 已提交
1075 1076
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1077
    :return: LayerOutput
1078
    """
1079 1080 1081 1082 1083
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1084 1085 1086

    Layer(
        name=name,
1087
        format=format,
1088
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1089
        inputs=[l.name for l in input], )
1090
    # this layer don't return anything, can not be input of other layer.
1091

X
xuwei06 已提交
1092 1093 1094 1095 1096 1097 1098
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1099

Y
yuan 已提交
1100
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1101
def priorbox_layer(input,
G
gaoyuan 已提交
1102
                   image,
G
gaoyuan 已提交
1103 1104 1105 1106 1107
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1108 1109 1110
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1111
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1112
    :type name: basestring
R
ranqiu 已提交
1113
    :param input: The input of this layer.
Y
yuan 已提交
1114
    :type input: LayerOutput
G
gaoyuan 已提交
1115 1116
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1128
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1129 1130 1131
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1132
        inputs=[input.name, image.name],
Y
yuan 已提交
1133 1134 1135 1136 1137 1138
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1139 1140
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1141
        parents=[input, image],
G
gaoyuan 已提交
1142 1143 1144
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1160
    :param name: The name of this layer. It is optional.
1161
    :type name: basestring
Y
yangyaming 已提交
1162 1163
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1164
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1165
    :type input_conf: LayerOutput | List of LayerOutput
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1187
    input_loc_num = len(input_loc)
1188 1189 1190 1191 1192 1193

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1194
    input_conf_num = len(input_conf)
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1232 1233
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1234

1235
    :param name: The name of this layer. It is optional.
1236
    :type name: basestring
Y
yangyaming 已提交
1237 1238
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1239
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1240
    :type input_conf: LayerOutput | List of LayerOutput.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1262
    input_loc_num = len(input_loc)
1263 1264 1265 1266 1267 1268

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1269 1270
    input_conf_num = len(input_conf)

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1299 1300
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1301 1302 1303 1304 1305
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1306

1307
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1308
    :type name: basestring
R
ranqiu 已提交
1309
    :param input: The input of this layer.
G
gaoyuan 已提交
1310 1311 1312 1313 1314
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1315
    assert input.num_filters is not None
G
gaoyuan 已提交
1316 1317
    Layer(
        name=name,
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1331 1332
    return LayerOutput(
        name,
1333
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1334 1335 1336 1337 1338
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1339 1340 1341 1342
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1343 1344 1345 1346
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1347
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1348
                  stride=-1,
Z
zhangjinchao01 已提交
1349 1350 1351 1352
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1353 1354
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1355 1356 1357
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1358
    operation. Note that for sequence with sub-sequence, the default value
1359 1360
    of stride is -1.

Z
zhangjinchao01 已提交
1361 1362 1363 1364 1365 1366
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1367
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1368

L
Luo Tao 已提交
1369 1370
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1371
    :type agg_level: AggregateLevel
1372
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1373
    :type name: basestring
R
ranqiu 已提交
1374
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1375 1376 1377
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1378
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1379
    :param stride: The step size between successive pooling regions.
1380
    :type stride: Int
1381 1382 1383 1384
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1385
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1386
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1387
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1388
    :return: LayerOutput object.
Y
Yu Yang 已提交
1389
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1390 1391
    """
    extra_dict = dict()
1392
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1393 1394
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1395 1396 1397 1398
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1399 1400
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1401 1402 1403
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1404 1405 1406 1407 1408 1409
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1410
        stride=stride,
Q
qijun 已提交
1411
        **extra_dict)
Z
zhangjinchao01 已提交
1412

Q
qijun 已提交
1413 1414
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1415

Q
qijun 已提交
1416

Z
zhangjinchao01 已提交
1417 1418
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1419
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1420 1421
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1422
@layer_support()
Q
qijun 已提交
1423 1424
def lstmemory(input,
              name=None,
1425
              size=None,
Q
qijun 已提交
1426 1427 1428 1429 1430 1431
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1432 1433 1434 1435 1436 1437 1438 1439
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1440
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1441

L
luotao02 已提交
1442
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1443

L
luotao02 已提交
1444
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1445

L
luotao02 已提交
1446
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1447

L
luotao02 已提交
1448
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1449 1450


C
caoying03 已提交
1451
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1452
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1453 1454 1455 1456
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1457

C
caoying03 已提交
1458
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1459 1460
    to config a simple plain lstm layer.

C
caoying03 已提交
1461 1462 1463 1464
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1465 1466 1467 1468 1469

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1470 1471
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1472
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1473 1474 1475
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
R
ranqiu 已提交
1476
    :param act: Activation type. TanhActivation is the default. :math:`h_t`
Z
zhangjinchao01 已提交
1477 1478 1479 1480 1481
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
1482 1483 1484 1485
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1486
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1487
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1488
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1489
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1490
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1491
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1492 1493 1494 1495 1496 1497
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1498
    assert input.size is not None and input.size % 4 == 0
1499

1500 1501 1502 1503 1504
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1505 1506 1507
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1508

Q
qijun 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1519

Q
qijun 已提交
1520 1521 1522 1523 1524
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1525

Z
zhangjinchao01 已提交
1526 1527 1528

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1529
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1530 1531
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1532
@layer_support()
Q
qijun 已提交
1533
def grumemory(input,
1534
              size=None,
Q
qijun 已提交
1535 1536 1537 1538 1539 1540
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1562 1563
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1564 1565 1566 1567 1568

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1569 1570 1571
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1572 1573 1574 1575 1576

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1577
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1578
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1579 1580 1581
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1582

C
caoying03 已提交
1583 1584 1585
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1586 1587 1588 1589 1590 1591 1592 1593

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1594 1595
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1596
    :type input: LayerOutput.
1597 1598
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1599
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1600
    :type reverse: bool
R
ranqiu 已提交
1601
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1602 1603 1604 1605 1606 1607
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
1608 1609 1610 1611
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1612
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1613
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1614
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1615
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1616
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1617
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1618 1619 1620 1621
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1622 1623 1624 1625 1626 1627
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1628 1629 1630
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1631

Q
qijun 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1641

Q
qijun 已提交
1642 1643 1644 1645 1646
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1647

Z
zhangjinchao01 已提交
1648 1649 1650

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1651 1652
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1653
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1654
             stride=-1,
Z
zhangjinchao01 已提交
1655 1656 1657 1658
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1659 1660 1661
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1662
    of stride is -1.
1663

L
Luo Tao 已提交
1664 1665 1666 1667 1668 1669
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1670
    :param agg_level: Aggregated level
1671
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1672
    :type name: basestring
R
ranqiu 已提交
1673
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1674
    :type input: LayerOutput
L
Luo Tao 已提交
1675
    :param stride: The step size between successive pooling regions.
1676
    :type stride: Int
Z
zhangjinchao01 已提交
1677 1678
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1679
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1680 1681
    :rtype: LayerOutput
    """
1682 1683 1684 1685 1686 1687
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1688
    if agg_level == AggregateLevel.TO_SEQUENCE:
1689 1690
        assert stride == -1

Z
zhangjinchao01 已提交
1691 1692 1693 1694 1695
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1696
        stride=stride,
Q
qijun 已提交
1697 1698 1699 1700 1701 1702
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1703 1704 1705 1706


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1707 1708
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1709
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1710
              stride=-1,
Z
zhangjinchao01 已提交
1711 1712 1713 1714
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1715 1716 1717
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1718
    of stride is -1.
1719

L
Luo Tao 已提交
1720 1721 1722 1723 1724 1725
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1726
    :param agg_level: aggregation level
1727
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1728
    :type name: basestring
R
ranqiu 已提交
1729
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1730
    :type input: LayerOutput
L
Luo Tao 已提交
1731
    :param stride: The step size between successive pooling regions.
1732
    :type stride: Int
Z
zhangjinchao01 已提交
1733 1734
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1735
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1736 1737
    :rtype: LayerOutput
    """
1738 1739 1740 1741 1742 1743 1744

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1745
    if agg_level == AggregateLevel.TO_SEQUENCE:
1746 1747
        assert stride == -1

Z
zhangjinchao01 已提交
1748 1749 1750 1751 1752
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1753
        stride=stride,
Q
qijun 已提交
1754 1755 1756 1757 1758 1759
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1760 1761 1762


class ExpandLevel(object):
1763 1764 1765 1766 1767
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1768 1769
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1770 1771
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1772 1773
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1774 1775
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1776 1777
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1778 1779
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1780

1781

Z
zhangjinchao01 已提交
1782 1783
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1784 1785
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1786 1787
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1788
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1800
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1801

R
ranqiu 已提交
1802
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1803 1804 1805
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1806
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1807
    :type name: basestring
1808 1809 1810 1811
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1812
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1813 1814 1815 1816
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1817
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1827 1828 1829 1830 1831 1832
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1833 1834


X
xuwei06 已提交
1835
@wrap_name_default()
X
xuwei06 已提交
1836
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1837
@layer_support()
X
xuwei06 已提交
1838 1839 1840
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1841
                 act=None,
X
xuwei06 已提交
1842 1843
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1844
    """
X
xuwei06 已提交
1845
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1846

X
xuwei06 已提交
1847
    If as_row_vector:
X
xuwei06 已提交
1848
    .. math::
X
xuwei06 已提交
1849 1850 1851 1852 1853
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1854 1855 1856 1857 1858

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1859
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1860

R
ranqiu 已提交
1861
    :param input: The input of this layer.
X
xuwei06 已提交
1862 1863 1864
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1865
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1866 1867 1868 1869 1870 1871
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
R
ranqiu 已提交
1872
    :param act: Activation type. IdentityActivation is the default.
X
xuwei06 已提交
1873
    :type act: BaseActivation
X
xuwei06 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1884
        active_type=act.name,
X
xuwei06 已提交
1885
        num_filters=num_repeats,
X
xuwei06 已提交
1886
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1887
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1888 1889 1890 1891 1892
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1893
        activation=act,
Q
qijun 已提交
1894 1895
        parents=[input])

X
xuwei06 已提交
1896

1897 1898 1899
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1900
@layer_support(ERROR_CLIPPING, DROPOUT)
1901 1902 1903 1904 1905 1906 1907 1908
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1909
    the dimension of each instance is M, and the input reshape_size is N, then the
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1920
    :param input: The input of this layer.
1921 1922 1923
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1924
    :param name: The name of this layer. It is optional.
1925
    :type name: basestring
R
ranqiu 已提交
1926
    :param act: Activation type. IdentityActivation is the default.
1927 1928 1929
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
1930 1931 1932 1933
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
1934
    :type bias_attr: ParameterAttribute | None | bool | Any
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
1973 1974
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
1975 1976
    :param weight: Weight layer.
    :type weight: LayerOutput
1977
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1978 1979 1980
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1981
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1982 1983
    :rtype: LayerOutput
    """
1984
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1985
    assert len(input) == 2
1986 1987 1988 1989 1990 1991 1992
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1993 1994 1995 1996
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1997 1998 1999 2000 2001 2002
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2003 2004


L
liaogang 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2021
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2022

L
liaogang 已提交
2023
    :param   input:        A input layer.
L
liaogang 已提交
2024
    :type    input:        LayerOutput.
L
liaogang 已提交
2025
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2026
    :type    out_size_x:   int | None
L
liaogang 已提交
2027
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2028
    :type    out_size_y:   int | None
L
liaogang 已提交
2029
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2030
    :type    name:         None | basestring
L
liaogang 已提交
2031
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2032 2033 2034 2035 2036 2037 2038
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2039
    assert input.num_filters is not None
L
liaogang 已提交
2040
    num_channels = input.num_filters
Q
qijun 已提交
2041 2042 2043 2044 2045 2046 2047
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2048
                channels=num_channels)),
Q
qijun 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2058

Z
zhangjinchao01 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2078
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2079 2080 2081
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2082
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2083 2084 2085
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2086
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2087 2088
    :rtype: LayerOutput
    """
2089 2090 2091
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2092 2093 2094
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2095
        inputs=[weight.name, input.name],
Q
qijun 已提交
2096 2097 2098
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2099 2100 2101 2102 2103 2104


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2105
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2106 2107

    .. math::
2108
       y  = w x
Z
zhangjinchao01 已提交
2109

2110 2111 2112 2113 2114
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2115 2116 2117 2118 2119 2120 2121

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2122
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2123 2124 2125
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2126
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2127 2128 2129
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2130
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2131 2132
    :rtype: LayerOutput
    """
2133 2134 2135
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2136 2137 2138 2139
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2140 2141 2142
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2143 2144 2145 2146 2147 2148


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2149
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2162
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2163
    :type input: LayerOutput
2164
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2165 2166 2167
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2168
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2169 2170 2171 2172 2173 2174
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2175 2176 2177
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2178 2179


2180 2181
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2182
def rotate_layer(input, height, width, name=None, layer_attr=None):
2183
    """
H
Haonan 已提交
2184 2185
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2186 2187

    .. math::
H
Haonan 已提交
2188
       y(j,i,:) = x(M-i-1,j,:)
2189

H
Haonan 已提交
2190
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2191 2192 2193 2194 2195 2196

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2197 2198
                          height=100,
                          width=100)
2199

R
ranqiu 已提交
2200
    :param input: The input of this layer.
2201 2202 2203
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2204
    :param name: The name of this layer. It is optional.
2205 2206 2207 2208 2209 2210 2211
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2212 2213 2214
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2215
        width=width,
H
Haonan 已提交
2216 2217 2218 2219 2220 2221 2222 2223
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2224 2225


Z
zhangjinchao01 已提交
2226 2227
@wrap_name_default()
@layer_support()
2228
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2229 2230 2231 2232
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2233
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2234 2235 2236 2237 2238
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2239

2240 2241
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2242

L
Luo Tao 已提交
2243 2244 2245 2246 2247 2248
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2249
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2261
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2262 2263
    :rtype: LayerOutput
    """
2264
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2265 2266 2267 2268 2269 2270
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2271
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2272
    else:
2273 2274
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2275 2276 2277 2278 2279 2280
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2281
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2282
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2283

2284

Z
zhangjinchao01 已提交
2285 2286
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2287
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2288
@layer_support()
Q
qijun 已提交
2289 2290
def hsigmoid(input,
             label,
2291
             num_classes=None,
Q
qijun 已提交
2292 2293 2294 2295
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2307
                        label=data_layer)
Z
zhangjinchao01 已提交
2308

R
ranqiu 已提交
2309 2310
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2311 2312 2313
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2314
    :type num_classes: int | None
2315
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2316
    :type name: basestring
2317 2318 2319 2320
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2321
    :type bias_attr: ParameterAttribute | None | bool | Any
2322
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2323
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2324 2325
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2326
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2327 2328 2329 2330
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2331 2332 2333 2334 2335 2336 2337 2338 2339
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2340 2341 2342
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2343 2344 2345 2346 2347
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2348 2349
    ipts_for_layer = []
    parents = []
2350
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2351
        assert isinstance(each_input, LayerOutput)
2352
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2353 2354 2355 2356
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2357
    l = Layer(
Z
zhangjinchao01 已提交
2358 2359 2360 2361 2362
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2363 2364 2365
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2366

2367

Z
zhangjinchao01 已提交
2368 2369 2370 2371 2372
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2382
                   dilation=1,
Q
qijun 已提交
2383 2384 2385 2386 2387 2388 2389
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2390
                   dilation_y=None,
2391 2392
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2393
    """
2394
    Convolution layer for image. Paddle can support both square and non-square
2395
    input currently.
Z
zhangjinchao01 已提交
2396 2397 2398 2399

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2400

2401
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2402
    and non-square input currently.
2403

X
xuwei06 已提交
2404
    The details of convolution transpose layer,
2405 2406 2407
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2408 2409 2410 2411
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2412 2413 2414
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2415
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2416 2417
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2418

L
Luo Tao 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2429
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2430
    :type name: basestring
R
ranqiu 已提交
2431
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2432
    :type input: LayerOutput
2433 2434
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
R
ranqiu 已提交
2435
    :type filter_size: int | tuple | list
C
caoying03 已提交
2436 2437 2438
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
R
ranqiu 已提交
2439
    :type filter_size_y: int | None
Z
zhangjinchao01 已提交
2440
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
2441
    :param act: Activation type. ReluActivation is the default.
Z
zhangjinchao01 已提交
2442 2443 2444
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2445 2446
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
2447
    :type stride: int | tuple | list
Z
zhangjinchao01 已提交
2448 2449
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2450 2451
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2452
    :type padding: int | tuple | list
Z
zhangjinchao01 已提交
2453 2454
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2455 2456
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
2457
    :type dilation: int | tuple | list
W
wanghaoshuang 已提交
2458 2459
    :param dilation_y: The y dimension of the dilation.
    :type dilation_y: int
2460 2461 2462 2463
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
2464
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
2465 2466 2467 2468 2469 2470 2471 2472 2473
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2474 2475
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2476
    :param layer_type: specify the layer_type, default is None. If trans=True,
2477 2478
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2479
                       "cudnn_conv"
2480
    :type layer_type: String
D
dangqingqing 已提交
2481
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2482 2483 2484 2485 2486
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2487

Z
zhangjinchao01 已提交
2488
    if filter_size_y is None:
2489 2490 2491 2492 2493 2494
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2495
    if stride_y is None:
2496 2497 2498 2499 2500 2501
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2502
    if padding_y is None:
2503 2504 2505 2506 2507 2508
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2509 2510 2511 2512 2513 2514 2515
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2516 2517
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2518
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2519 2520 2521 2522
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2523

2524
    if layer_type:
W
wanghaoshuang 已提交
2525 2526
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2527
        if trans:
2528
            assert layer_type in ["exconvt", "cudnn_convt"]
2529 2530 2531 2532 2533
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2534

X
xuwei06 已提交
2535
    l = Layer(
Z
zhangjinchao01 已提交
2536
        name=name,
Q
qijun 已提交
2537 2538 2539 2540 2541
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2542
                dilation=dilation,
Q
qijun 已提交
2543 2544 2545 2546 2547
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2548
                dilation_y=dilation_y,
Q
qijun 已提交
2549 2550
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2551 2552 2553 2554
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2555
        type=lt,
Q
qijun 已提交
2556 2557 2558 2559 2560 2561 2562 2563
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2564 2565 2566 2567


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2578 2579
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2580 2581 2582 2583 2584 2585 2586
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2615
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2616
    :type padding: int
2617
    :param padding_y: pooling padding height. It's equal to padding by default.
R
ranqiu 已提交
2618
    :type padding_y: int | None
Z
zhangjinchao01 已提交
2619 2620
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2621
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2622
    :type input: LayerOutput
2623
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2624
    :type pool_size: int
2625
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
R
ranqiu 已提交
2626
    :type pool_size_y: int | None
Z
zhangjinchao01 已提交
2627 2628
    :param num_channels: number of input channel.
    :type num_channels: int
2629
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2630 2631
                      MaxPooling.
    :type pool_type: BasePoolingType
2632
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2633
    :type stride: int
2634
    :param stride_y: stride height of pooling. It is equal to stride by default.
R
ranqiu 已提交
2635
    :type stride_y: int | None
Z
zhangjinchao01 已提交
2636 2637
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2638 2639 2640 2641
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2642 2643
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

W
wanghaoshuang 已提交
2654 2655 2656 2657
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"

2658
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2659
        if (
Y
Yu Yang 已提交
2660
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2661
        else pool_type.name
2662 2663 2664 2665
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2666
    l = Layer(
Z
zhangjinchao01 已提交
2667 2668
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2681
                    padding_y=padding_y))
Q
qijun 已提交
2682
        ],
2683
        ceil_mode=ceil_mode,
Q
qijun 已提交
2684 2685 2686 2687 2688 2689 2690
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2691 2692


C
chengduoZH 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2745
    :type padding: int | tuple | list
C
chengduoZH 已提交
2746 2747
    :param name: name of pooling layer
    :type name: basestring.
R
ranqiu 已提交
2748
    :param input: The input of this layer.
C
chengduoZH 已提交
2749 2750
    :type input: LayerOutput
    :param pool_size: pooling window width
R
ranqiu 已提交
2751
    :type pool_size: int | tuple | list
C
chengduoZH 已提交
2752 2753 2754 2755 2756 2757
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
                      MaxPooling.
    :type pool_type: BasePoolingType
    :param stride: stride width of pooling.
R
ranqiu 已提交
2758
    :type stride: int | tuple | list
C
chengduoZH 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2833 2834
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2835 2836 2837 2838 2839 2840
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2841 2842 2843 2844 2845
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2846 2847 2848 2849
    The example usage is:

    ..  code-block:: python

2850 2851 2852
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2853 2854
                        pool_type=MaxPooling())

2855
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2856
    :type name: basestring
R
ranqiu 已提交
2857
    :param input: The input of this layer.
Q
qijun 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2883
    l = Layer(
Q
qijun 已提交
2884 2885
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2886 2887 2888 2889 2890
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2891
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2903 2904 2905 2906
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2907
    l = Layer(
Q
qijun 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2927 2928 2929 2930


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2931 2932 2933 2934 2935 2936
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2937
                      layer_attr=None):
Z
zhangjinchao01 已提交
2938
    """
2939
    Response normalization across feature maps.
D
dangqingqing 已提交
2940 2941
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2942

L
Luo Tao 已提交
2943 2944 2945
    The example usage is:

    ..  code-block:: python
2946

L
Luo Tao 已提交
2947 2948
        norm = img_cmrnorm_layer(input=net, size=5)

2949
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
2950 2951
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2952
    :type input: LayerOutput
2953
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2954
    :type size: int
D
dangqingqing 已提交
2955
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2956
    :type scale: float
D
dangqingqing 已提交
2957
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2958 2959 2960 2961 2962
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2963
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2964 2965 2966
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2967
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2968 2969 2970


@wrap_bias_attr_default()
2971 2972
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2973 2974
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2975
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2976 2977 2978
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
2979
                     img3D=False,
Q
qijun 已提交
2980 2981 2982 2983
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2984 2985
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
2986 2987
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
3006 3007 3008
    The example usage is:

    ..  code-block:: python
3009

L
Luo Tao 已提交
3010 3011
        norm = batch_norm_layer(input=net, act=ReluActivation())

3012
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
R
ranqiu 已提交
3026
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
R
ranqiu 已提交
3036
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
R
ranqiu 已提交
3048
    :type use_global_stats: bool | None.
Z
zhangjinchao01 已提交
3049 3050 3051 3052 3053
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3054 3055
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3056
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3067
    l = Layer(
Z
zhangjinchao01 已提交
3068
        name=name,
C
chengduoZH 已提交
3069
        img3D=img3D,
Q
qijun 已提交
3070 3071
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3072 3073 3074 3075 3076 3077
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3078
        mean_var_names=mean_var_names,
Q
qijun 已提交
3079
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3080

Q
qijun 已提交
3081 3082 3083 3084 3085 3086 3087
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3109
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3110
    :type input: LayerOutput
3111
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3112 3113 3114
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3115
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3116 3117 3118 3119 3120 3121
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3122 3123 3124
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3125 3126


G
guosheng 已提交
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3145
    :param input: The input of this layer.
G
guosheng 已提交
3146
    :type input: LayerOutput
3147
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3163 3164 3165
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3166
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3167
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3190 3191 3192
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3193 3194

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3195 3196
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3197 3198
    Please refer to dropout_layer for details.

3199
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3200 3201 3202
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
R
ranqiu 已提交
3203 3204
    :type input: LayerOutput | list | tuple
    :param act: Activation Type. LinearActivation is the default.
Z
zhangjinchao01 已提交
3205
    :type act: BaseActivation
3206 3207 3208 3209
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3210
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3211 3212
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3213
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3214 3215 3216 3217 3218 3219
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3220
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3221 3222 3223 3224 3225 3226 3227
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3228
    l = Layer(
Q
qijun 已提交
3229 3230 3231
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3232 3233
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3234
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3235

Q
qijun 已提交
3236 3237 3238 3239 3240 3241 3242
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3243 3244 3245 3246


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3247
@layer_support(DROPOUT, ERROR_CLIPPING)
3248
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3249 3250 3251 3252
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3253 3254 3255 3256 3257 3258
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3259
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3260 3261
    :type name: basestring
    :param input: input layers or projections
R
ranqiu 已提交
3262 3263
    :type input: list | tuple | collections.Sequence
    :param act: Activation type. IdentityActivation is the default.
Z
zhangjinchao01 已提交
3264 3265 3266
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3267
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3268 3269 3270 3271 3272 3273 3274 3275
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3276
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3277 3278

    def __is_type__(o, tp):
3279
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3301 3302
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3303

Q
qijun 已提交
3304 3305
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3306

3307 3308
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3309

3310
    layer = Layer(
Q
qijun 已提交
3311 3312
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3313 3314
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3315
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3316
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3317

3318
    sz = layer.config.size
Z
zhangjinchao01 已提交
3319

Q
qijun 已提交
3320 3321 3322 3323 3324 3325 3326 3327
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3328 3329
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3330
@wrap_bias_attr_default(has_bias=False)
3331
@layer_support(DROPOUT, ERROR_CLIPPING)
3332 3333 3334 3335
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3336

3337
    Inputs:
X
xuwei06 已提交
3338
      - a = [a1, a2, ..., am]
3339
      - b = [b1, b2, ..., bn]
3340

X
xuwei06 已提交
3341 3342 3343 3344
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3345 3346 3347 3348 3349 3350 3351

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3352
    :param name: The name of this layer. It is optional.
3353 3354 3355 3356 3357
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
R
ranqiu 已提交
3358
    :param act: Activation type. IdentityActivation is the default.
3359 3360 3361
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3362 3363 3364 3365
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3366
    :type bias_attr: ParameterAttribute | None | bool | Any
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3388
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3389 3390
def memory(name,
           size,
3391
           memory_name=None,
Q
qijun 已提交
3392 3393 3394 3395
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3416 3417 3418 3419 3420 3421 3422 3423 3424
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3425

3426 3427 3428 3429 3430 3431 3432
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3433 3434 3435
    :type name: basestring
    :param size: size of memory.
    :type size: int
3436 3437 3438
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3439
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3440 3441
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
R
ranqiu 已提交
3442
    :type boot_layer: LayerOutput | None
Z
zhangjinchao01 已提交
3443
    :param boot_bias: boot layer's bias
R
ranqiu 已提交
3444
    :type boot_bias: ParameterAttribute | None
Z
zhangjinchao01 已提交
3445 3446 3447 3448
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3449
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3460 3461
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3462

3463 3464 3465 3466 3467 3468 3469 3470
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3471 3472

    lout = LayerOutput(
3473
        name=memory_name,
Q
qijun 已提交
3474 3475 3476
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3477 3478 3479 3480
    return lout


@wrap_bias_attr_default()
3481 3482
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3483 3484 3485
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3486 3487
def lstm_step_layer(input,
                    state,
3488
                    size=None,
Q
qijun 已提交
3489 3490 3491 3492 3493 3494
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3495
    """
3496 3497
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3498 3499 3500

    ..  math::

3501
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3502

3503
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3504

3505
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3506

3507
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3508

L
luotao02 已提交
3509
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3510 3511


L
luotao02 已提交
3512
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3513
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3514
    input vectors.
Z
zhangjinchao01 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3525 3526
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3527 3528
    :code:`get_output_layer` to extract this output.

3529
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3530
    :type name: basestring
3531 3532
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3533 3534 3535 3536 3537 3538
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
R
ranqiu 已提交
3539
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3540
    :type act: BaseActivation
R
ranqiu 已提交
3541
    :param gate_act: Gate Activation Type. SigmoidActivation is the default.
Z
zhangjinchao01 已提交
3542
    :type gate_act: BaseActivation
R
ranqiu 已提交
3543
    :param state_act: State Activation Type. TanhActivation is the default.
Z
zhangjinchao01 已提交
3544
    :type state_act: BaseActivation
3545 3546 3547 3548
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3549
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
3550 3551
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3552
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3553 3554
    :rtype: LayerOutput
    """
3555 3556 3557

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3558 3559 3560 3561 3562 3563 3564
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3565
        size=state.size,
Q
qijun 已提交
3566 3567
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3568

Q
qijun 已提交
3569 3570 3571 3572 3573 3574 3575
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3576 3577 3578


@wrap_bias_attr_default()
W
wangyang59 已提交
3579
@wrap_param_attr_default()
Q
qijun 已提交
3580
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3581 3582 3583
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3584 3585 3586 3587 3588 3589 3590
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3591
                   param_attr=None,
Q
qijun 已提交
3592
                   layer_attr=None):
Z
zhangjinchao01 已提交
3593 3594 3595 3596 3597 3598 3599
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
R
ranqiu 已提交
3600
    :type act: BaseActivation
3601
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3602 3603
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3604 3605 3606 3607
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3608
    :type bias_attr: ParameterAttribute | None | bool | Any
3609 3610
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3611
    :param layer_attr:
D
dangqingqing 已提交
3612
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3613 3614 3615 3616 3617 3618 3619 3620
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3621 3622 3623 3624
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3625
        # backward model compatibility.
3626
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3627 3628 3629 3630
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3631
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3632
    return LayerOutput(
Q
qijun 已提交
3633 3634
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3635
        parents=[input, output_mem],
Q
qijun 已提交
3636 3637
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3638 3639


Y
Yu Yang 已提交
3640 3641 3642 3643
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3644
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
3662
    :param name: The name of this layer. It is optional.
Y
Yu Yang 已提交
3663
    :param act:
R
ranqiu 已提交
3664 3665 3666
    :type act: BaseActivation
    :param gate_act: Activation type of this layer's two gates. Default is Sigmoid.
    :type gate_act: BaseActivation
3667 3668 3669 3670
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3671
    :type bias_attr: ParameterAttribute | None | bool | Any
Y
Yu Yang 已提交
3672 3673 3674
    :param param_attr:
    :param layer_attr:
    :return:
R
ranqiu 已提交
3675
    :rtype: LayerOutput
Y
Yu Yang 已提交
3676 3677 3678 3679 3680 3681
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3682 3683 3684 3685 3686
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
        raise ValueError("You should not specify the name of bias parameters. "
                         "Otherwise, the three bias will share the same "
                         "parameter matrix.")

Y
Yu Yang 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3724 3725 3726 3727
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3728 3729 3730 3731
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3732

3733
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3734 3735 3736 3737 3738 3739 3740
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3741
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3742 3743 3744 3745 3746 3747 3748
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3749 3750 3751 3752 3753 3754 3755
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3756

Q
qijun 已提交
3757 3758 3759 3760 3761
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3762 3763 3764 3765 3766 3767 3768


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3769 3770 3771 3772 3773 3774 3775
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3776
    """
3777 3778
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3779

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3795
    :param input: The input of this layer.
3796
    :type input: LayerOutput
R
ranqiu 已提交
3797
    :param act: Activation type. TanhActivation is the default.
3798
    :type act: BaseActivation
3799 3800 3801 3802
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
3803
    :type bias_attr: ParameterAttribute | None | bool | Any
3804 3805
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
3806
    :param name: The name of this layer. It is optional.
3807 3808 3809
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3810
    :return: LayerOutput object.
3811
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3812
    """
Q
qijun 已提交
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3828 3829 3830 3831 3832 3833


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3834 3835
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3836
    """
3837

Z
zhangjinchao01 已提交
3838 3839 3840
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3841
        assert input.size is not None
Z
zhangjinchao01 已提交
3842
        if size is not None:
3843
            assert input.size == size
Z
zhangjinchao01 已提交
3844 3845


3846
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3847
    """
3848
    DEPRECATED.
Z
zhangjinchao01 已提交
3849 3850 3851 3852 3853 3854 3855 3856
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3857
    return input
Z
zhangjinchao01 已提交
3858 3859 3860


@wrap_name_default("recurrent_group")
3861
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3862
    """
C
caoying03 已提交
3863 3864 3865 3866 3867
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

R
ranqiu 已提交
3910
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
3911

3912 3913
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3914
    :type reverse: bool
3915

3916 3917
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3918 3919 3920 3921 3922 3923 3924

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
3925
    :type targetInlink: LayerOutput | SubsequenceInput
3926

D
dangqingqing 已提交
3927
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3928 3929 3930 3931
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3932
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3933
        input = [input]
3934
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3935 3936

    def is_in_links(x):
3937
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3938 3939 3940 3941

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3942
        name=name,
3943 3944
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3945 3946
    in_args = []
    for each_input in input:
3947
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3948
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3949
            mem = memory(
3950
                name=None,
Q
qijun 已提交
3951 3952
                size=each_input.input.size,
                boot_layer=each_input.input)
3953
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3954
            in_args.append(mem)
3955 3956
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3957

Z
zhangjinchao01 已提交
3958 3959 3960 3961 3962
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3963 3964 3965 3966 3967 3968
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3969 3970 3971

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3972
    for layer_out in layer_outs:
3973 3974
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3975 3976
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3977 3978 3979 3980 3981
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3982

Z
zhangjinchao01 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4011 4012

    def before_real_step(self):
Q
qijun 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4022 4023 4024
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4025
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4043
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4044
    :type input: LayerOutput
4045
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4046 4047 4048
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4049
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4050 4051 4052 4053
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4064

4065

H
Haonan 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4078
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4102

Z
zhangjinchao01 已提交
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4119
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4120
    :type name: basestring
R
ranqiu 已提交
4121
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4122 4123 4124 4125 4126
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4127
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4128 4129
    :rtype: LayerOutput
    """
Q
qijun 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4141 4142 4143


@wrap_name_default()
Q
qijun 已提交
4144 4145 4146 4147 4148 4149 4150
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4151
                num_results_per_sample=None):
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4163
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4164 4165 4166 4167
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4168 4169 4170 4171 4172
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4173 4174
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4175 4176
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4177 4178
                               bos_id=0,
                               eos_id=1,
4179
                               beam_size=5)
4180 4181 4182 4183 4184 4185 4186 4187 4188

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
4189
                 step, and it is applied to sequences with arbitrary length by
4190 4191 4192 4193 4194
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4195 4196
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4197
                  In beam_search, none of the input's type should be LayerOutput.
4198
    :type input: list
4199 4200 4201
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4202
                   symbol is essential, since it is used to initialize the RNN
4203 4204 4205 4206 4207 4208 4209 4210
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4211 4212
    :param max_length: Max generated sequence length.
    :type max_length: int
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4223 4224
    :return: The generated word index.
    :rtype: LayerOutput
4225 4226
    """

Z
zhangjinchao01 已提交
4227 4228 4229 4230 4231
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4232
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4233 4234 4235 4236 4237 4238
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4239 4240 4241
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4242
        if isinstance(each_input, BaseGeneratedInput):
4243 4244
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4245
            generated_input_index = i
4246

Z
zhangjinchao01 已提交
4247 4248 4249
        else:
            real_input.append(each_input)

4250
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4251 4252 4253 4254 4255 4256 4257 4258

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4259 4260 4261 4262 4263 4264
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4265 4266 4267 4268 4269 4270

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4271
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4272 4273
        return predict

4274 4275
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4276

Q
qijun 已提交
4277

4278 4279
def __cost_input__(input, label, weight=None):
    """
4280
    inputs and parents for cost layers.
4281
    """
C
caoying03 已提交
4282 4283 4284 4285 4286 4287
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4288
    if weight is not None:
4289
        assert weight.size == 1
4290 4291 4292
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4293

Z
zhangjinchao01 已提交
4294 4295

@wrap_name_default()
L
luotao1 已提交
4296
@layer_support()
4297 4298 4299 4300 4301 4302
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4303
    """
4304
    sum of square error cost:
L
Luo Tao 已提交
4305 4306 4307

    ..  math::

4308
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4309

4310
    :param name: The name of this layer. It is optional.
4311
    :type name: basestring
Z
zhangjinchao01 已提交
4312
    :param input: Network prediction.
4313
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4314
    :param label: Data label.
4315 4316 4317 4318
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4319 4320
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4321 4322
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4323
    :return: LayerOutput object.
4324
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4325
    """
4326 4327
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4328 4329 4330 4331
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4332
        coeff=coeff,
Q
qijun 已提交
4333
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4334
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4335 4336


4337
regression_cost = square_error_cost
L
Luo Tao 已提交
4338 4339


Z
zhangjinchao01 已提交
4340
@wrap_name_default("cost")
4341
@layer_support()
Q
qijun 已提交
4342 4343 4344 4345
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4346
                        evaluator=classification_error_evaluator,
4347 4348
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4349 4350 4351
    """
    classification cost Layer.

4352
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4353 4354 4355 4356 4357
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4358 4359 4360
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4361
    :param evaluator: Evaluator method.
4362 4363
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4364 4365
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4366
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4367 4368 4369 4370 4371
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4372 4373 4374

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4375 4376 4377 4378
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4379
        coeff=coeff,
Q
qijun 已提交
4380
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4391
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4392

4393
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4394 4395 4396 4397 4398
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4399
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4400

4401

Q
qijun 已提交
4402 4403 4404 4405 4406 4407 4408 4409 4410
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4411 4412
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4423 4424
       op = conv_operator(img=input1,
                          filter=input2,
4425
                          filter_size=3,
Z
zhangjinchao01 已提交
4426 4427 4428
                          num_filters=64,
                          num_channels=64)

4429 4430 4431 4432
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4433 4434
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4435 4436 4437
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4438
    :type filter_size_y: int
4439 4440
    :param num_filters: channel of output data.
    :type num_filters: int
4441 4442
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4443
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4444
    :type stride: int
Z
zhangjinchao01 已提交
4445
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4446
    :type stride_y: int
Z
zhangjinchao01 已提交
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4460

4461 4462
    if num_channels is None:
        num_channels = img.num_filters
4463 4464

    assert isinstance(filter, LayerOutput)
4465
    assert filter.size is not None
4466

4467 4468 4469
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4481

4482
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4483 4484
    return op

Q
qijun 已提交
4485

4486
@wrap_param_attr_default()
Q
qijun 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4497 4498
                    param_attr=None,
                    trans=False):
4499 4500 4501 4502 4503 4504 4505 4506 4507
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4508
       proj = conv_projection(input=input1,
4509 4510 4511 4512
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4513
    :param input: The input of this layer.
4514 4515 4516 4517 4518 4519 4520 4521 4522
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4523 4524
    :param num_channels: channel of input data.
    :type num_channels: int
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4537
    :param trans: whether it is convTrans or conv
R
ranqiu 已提交
4538
    :type trans: bool
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4569
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4570 4571 4572 4573 4574
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4575 4576 4577
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4590 4591 4592 4593

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4594

D
dangqingqing 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4612

D
dangqingqing 已提交
4613
    For example,
4614

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4636 4637

    The simply usage is:
D
dangqingqing 已提交
4638 4639 4640 4641 4642 4643 4644 4645

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4646
    :param input: The input of this layer.
D
dangqingqing 已提交
4647 4648
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
R
ranqiu 已提交
4649
    :type pad_c: list | None
D
dangqingqing 已提交
4650
    :param pad_h: padding size in height dimension.
R
ranqiu 已提交
4651
    :type pad_h: list | None
D
dangqingqing 已提交
4652
    :param pad_w: padding size in width dimension.
R
ranqiu 已提交
4653
    :type pad_w: list | None
D
dangqingqing 已提交
4654 4655
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
4656
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4699
@wrap_name_default()
L
luotao1 已提交
4700 4701
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4713 4714 4715 4716
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4717 4718 4719 4720 4721

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4722
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4723

4724
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4725
    :type name: basestring
4726 4727
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4728
    :param b: input layer b.
4729
    :type b: LayerOutput
L
luotao1 已提交
4730 4731
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4732
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4733 4734
    :rtype: LayerOutput
    """
4735 4736
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4737 4738 4739
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4740
        inputs=[a.name, b.name],
Q
qijun 已提交
4741
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4742

Q
qijun 已提交
4743 4744
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4745 4746 4747 4748 4749


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4750
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4751
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4752 4753 4754 4755 4756 4757 4758 4759
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4760 4761 4762 4763 4764
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4765
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4766 4767

    In this formular:
4768 4769
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4770 4771
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4772
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4773 4774 4775 4776 4777

    The simple usage is:

    .. code-block:: python

4778
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4779

4780
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4781
    :type name: basestring
4782 4783 4784 4785
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4786
    :param size: the layer dimension.
L
luotao02 已提交
4787
    :type size: int.
R
ranqiu 已提交
4788
    :param act: Activation type. LinearActivation is the default.
Z
zhangjinchao01 已提交
4789 4790
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4791
    :type param_attr: ParameterAttribute
4792 4793 4794 4795
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4796
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4797
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4798
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4799
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4800 4801
    :rtype: LayerOutput
    """
4802
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4803 4804 4805 4806 4807 4808
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4809 4810 4811 4812
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4813 4814 4815 4816 4817 4818


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4819
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4820 4821
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4822
                       select=None,
Q
qijun 已提交
4823 4824
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4825 4826 4827
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4828 4829 4830
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4841
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4842

4843
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4844
    :type name: basestring
R
ranqiu 已提交
4845 4846
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
4847 4848
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4849
                   If is None, acts exactly like fc_layer.
4850
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4851 4852
    :param size: The layer dimension.
    :type size: int
R
ranqiu 已提交
4853
    :param act: Activation type. TanhActivation is the default.
Z
zhangjinchao01 已提交
4854 4855 4856
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
4857 4858 4859 4860
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
4861
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
4862
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4863
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4864
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4865 4866 4867 4868
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4869
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4870 4871
        param_attr = [param_attr]
    else:
4872
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4873 4874 4875 4876
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4877 4878 4879 4880
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4881
    Layer(
Q
qijun 已提交
4882 4883 4884
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4885 4886 4887
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4888
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4889 4890 4891 4892
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4893 4894 4895 4896 4897 4898 4899
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4900 4901 4902


@wrap_name_default()
L
luotao1 已提交
4903 4904
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
4915
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4916
    :type input: LayerOutput
4917
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4918
    :type name: basestring
L
luotao1 已提交
4919
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4920
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4921
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4922 4923
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4924
    l = Layer(
Z
zhangjinchao01 已提交
4925 4926 4927
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4928 4929 4930
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4931 4932 4933


@wrap_name_default()
L
luotao1 已提交
4934
@layer_support()
Q
qijun 已提交
4935 4936 4937 4938
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4939
                          layer_attr=None):
Z
zhangjinchao01 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
4953
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4954
    :type input: LayerOutput
4955
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4956 4957 4958 4959 4960
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4961
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
4962
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
4963
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4964 4965 4966 4967 4968 4969 4970 4971
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4972 4973 4974
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4975 4976 4977


@wrap_name_default()
L
luotao1 已提交
4978
@layer_support()
Q
qijun 已提交
4979
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4980
    """
4981 4982 4983 4984
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4985 4986 4987

    .. math::

4988
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4989

4990 4991 4992 4993 4994
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4995

4996
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4997 4998

    In this formular:
4999 5000 5001 5002 5003 5004
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5005 5006 5007 5008 5009

    The simple usage is:

    .. code-block:: python

5010
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5011 5012
                                       size=elem_dim)

5013 5014 5015 5016
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
5017 5018
    :param size: the dimension of this layer.
    :type size: int
5019
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5020
    :type name: basestring
L
luotao1 已提交
5021
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5022
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5023
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5024 5025
    :rtype: LayerOutput
    """
5026 5027 5028 5029
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5030
            size = vectors.size / weights.size
5031 5032
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5033 5034
    Layer(
        name=name,
5035
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5036
        size=size,
5037
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5038 5039 5040
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5041

5042

5043
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5044

5045

Z
zhangjinchao01 已提交
5046
@wrap_name_default()
L
luotao1 已提交
5047
@layer_support()
Z
zhangjinchao01 已提交
5048 5049 5050 5051 5052 5053 5054
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5055
                       num_channels=None,
L
luotao1 已提交
5056 5057
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5058 5059
    """
    Expand feature map to minibatch matrix.
5060
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5061
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
5072
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
5073 5074
    convolution neural network, and before recurrent neural network.

5075 5076 5077 5078
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5079
       block_expand = block_expand_layer(input=layer,
5080
                                         num_channels=128,
5081 5082 5083 5084 5085
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5086
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5087
    :type input: LayerOutput
5088
    :param num_channels: The channel number of input layer.
R
ranqiu 已提交
5089
    :type num_channels: int | None
Z
zhangjinchao01 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5102
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5103
    :type name: None | basestring.
L
luotao1 已提交
5104
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5105
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5106
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5107 5108
    :rtype: LayerOutput
    """
5109 5110 5111
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5129 5130


5131 5132
@wrap_name_default()
@layer_support()
5133
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5134 5135 5136 5137 5138
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

5139
    So groups should be larger than 1, and the num of channels should be able
5140 5141
    to devided by groups.

X
xuwei06 已提交
5142 5143 5144 5145 5146 5147 5148 5149
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5150
    Please refer to Paper:
5151 5152 5153 5154
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
5155

5156 5157 5158 5159 5160 5161 5162 5163
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5164
    :param input: The input of this layer.
5165 5166 5167
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
R
ranqiu 已提交
5168
    :type num_channels: int | None
5169 5170
    :param groups: The group number of input layer.
    :type groups: int
5171
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5172
    :type name: None | basestring.
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5193 5194


Z
zhangjinchao01 已提交
5195
@wrap_name_default()
L
luotao1 已提交
5196
@layer_support()
Q
qijun 已提交
5197 5198 5199 5200 5201
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5202
              layer_attr=None):
Z
zhangjinchao01 已提交
5203 5204 5205 5206 5207
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

5208 5209
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
5210 5211
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
5212 5213 5214 5215 5216 5217 5218 5219

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
5220
    The example usage is:
Z
zhangjinchao01 已提交
5221 5222 5223 5224 5225 5226 5227 5228

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5229
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5230 5231 5232
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5233
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5234
    :type size: int
5235
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5236
    :type name: basestring | None
Z
zhangjinchao01 已提交
5237 5238
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5239
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5240
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5241
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5242 5243 5244 5245
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5246 5247 5248 5249 5250
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5251
    Layer(
5252 5253 5254 5255
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5256
        inputs=[input.name, label.name],
Q
qijun 已提交
5257
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5258 5259
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5260

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5272
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5273
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5274 5275 5276 5277 5278 5279 5280
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

5281 5282 5283
    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5284
    icml2006_GravesFGS06.pdf>`_.
5285 5286 5287

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5288 5289 5290
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5291 5292
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5293
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5294
          'linear' activation is expected instead in the 'input' layer.
5295

C
caoying03 已提交
5296
    The example usage is:
5297 5298 5299 5300 5301 5302 5303 5304 5305

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5306
    :param input: The input of this layer.
5307 5308 5309 5310 5311
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
5312
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5313
    :type name: basestring | None
5314 5315 5316 5317 5318
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5319
    :type layer_attr: ExtraLayerAttribute | None
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5342
@wrap_name_default()
5343
@wrap_param_attr_default()
L
luotao1 已提交
5344
@layer_support()
Q
qijun 已提交
5345 5346 5347 5348 5349 5350
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5351
              coeff=1.0,
L
luotao1 已提交
5352
              layer_attr=None):
Z
zhangjinchao01 已提交
5353 5354 5355 5356
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5357
    The example usage is:
Z
zhangjinchao01 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5368
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5369 5370 5371 5372 5373 5374 5375
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5376
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5377
    :type name: None | basestring
5378 5379
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5380
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5381
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5382
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5383 5384 5385 5386 5387
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5388 5389 5390 5391 5392 5393
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5394

Q
qijun 已提交
5395
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5396 5397 5398 5399
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5400 5401 5402 5403
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5404
        coeff=coeff,
Q
qijun 已提交
5405
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5406 5407 5408
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5409 5410 5411 5412
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5413

5414

Z
zhangjinchao01 已提交
5415
@wrap_name_default()
5416
@wrap_param_attr_default()
L
luotao1 已提交
5417
@layer_support()
Q
qijun 已提交
5418 5419 5420 5421 5422
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5423
                       layer_attr=None):
Z
zhangjinchao01 已提交
5424 5425 5426 5427 5428 5429 5430
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5431
    The example usage is:
L
Luo Tao 已提交
5432 5433 5434 5435 5436 5437

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5438 5439 5440 5441 5442 5443 5444 5445
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5446
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5447
    :type name: None | basestring
L
luotao1 已提交
5448
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
5449
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5450
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5451 5452 5453 5454 5455 5456
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5457
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5458 5459 5460 5461
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5462 5463 5464 5465
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5466
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5467 5468 5469
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5470 5471 5472 5473
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5474

Q
qijun 已提交
5475

Y
Yu Yang 已提交
5476
@wrap_act_default(act=SigmoidActivation())
5477
@wrap_bias_attr_default(has_bias=True)
5478
@wrap_param_attr_default()
5479 5480
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5481 5482
def nce_layer(input,
              label,
C
caoying03 已提交
5483
              num_classes=None,
Y
Yu Yang 已提交
5484
              act=None,
5485
              param_attr=None,
Q
qijun 已提交
5486 5487 5488 5489 5490 5491
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5492 5493 5494 5495 5496 5497 5498 5499 5500
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5501 5502
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5503 5504
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5505
    :param name: The name of this layer. It is optional.
5506
    :type name: basestring
R
ranqiu 已提交
5507
    :param input: The input layers. It could be a LayerOutput of list/tuple of LayerOutput.
R
ranqiu 已提交
5508
    :type input: LayerOutput | list | tuple | collections.Sequence
5509 5510 5511 5512 5513
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5514
    :type num_classes: int
R
ranqiu 已提交
5515
    :param act: Activation type. SigmoidActivation is the default.
Y
Yu Yang 已提交
5516
    :type act: BaseActivation
5517 5518
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5519
    :param num_neg_samples: number of negative samples. Default is 10.
5520
    :type num_neg_samples: int
5521 5522 5523
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
R
ranqiu 已提交
5524
    :type neg_distribution: list | tuple | collections.Sequence | None
5525 5526 5527 5528
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
5529
    :type bias_attr: ParameterAttribute | None | bool | Any
5530 5531 5532 5533 5534 5535 5536
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5537 5538 5539 5540 5541 5542 5543 5544
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5545
    assert isinstance(input, collections.Sequence)
5546

5547 5548
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5549 5550
    if num_classes is None:
        num_classes = label.size
5551 5552 5553
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5554
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5555 5556
    if not isinstance(act, BaseActivation):
        raise TypeError()
5557

5558 5559
    ipts_for_layer = []
    parents = []
5560
    for each_input, attr in zip(input, param_attr):
5561
        assert isinstance(each_input, LayerOutput)
5562
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5573
    l = Layer(
5574 5575 5576 5577
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5578
        active_type=act.name,
5579 5580 5581
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5582 5583
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5584 5585 5586 5587 5588
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5589

5590

Z
zhangjinchao01 已提交
5591 5592 5593
"""
following are cost Layers.
"""
5594 5595


Z
zhangjinchao01 已提交
5596
@wrap_name_default()
L
luotao1 已提交
5597
@layer_support()
Q
qijun 已提交
5598 5599 5600 5601 5602 5603 5604
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5605
    """
5606
    A cost Layer for learning to rank using gradient descent. Details can refer
5607 5608
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5609 5610 5611 5612 5613
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5614
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5615

L
luotao02 已提交
5616
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5617

L
luotao02 已提交
5618
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5619 5620 5621 5622 5623 5624 5625 5626

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5627
    The example usage is:
Z
zhangjinchao01 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
R
ranqiu 已提交
5644
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5645
    :type name: None | basestring
Z
zhangjinchao01 已提交
5646 5647
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5648 5649
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5650
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5663 5664 5665 5666 5667 5668
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5669

X
xuwei06 已提交
5670
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5671

5672

Z
zhangjinchao01 已提交
5673
@wrap_name_default()
L
luotao1 已提交
5674
@layer_support()
Q
qijun 已提交
5675 5676 5677 5678 5679 5680
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5681 5682 5683
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5684
    The example usage is:
Z
zhangjinchao01 已提交
5685 5686 5687 5688 5689 5690 5691 5692

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5693
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5694 5695 5696 5697
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5698
                     e.g., 5 for NDCG@5. It must be less than or equal to the
Z
zhangjinchao01 已提交
5699 5700 5701 5702 5703 5704
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5705 5706 5707
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5708
    :type max_sort_size: int
R
ranqiu 已提交
5709
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5710
    :type name: None | basestring
L
luotao1 已提交
5711 5712
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5713
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5714 5715
    :rtype: LayerOutput
    """
5716 5717 5718
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5719 5720 5721 5722 5723 5724 5725
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5726

Q
qijun 已提交
5727 5728
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5729

5730

Z
zhangjinchao01 已提交
5731
@wrap_name_default()
L
luotao1 已提交
5732
@layer_support()
5733 5734 5735 5736 5737 5738
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5739 5740 5741
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5742 5743
    The example usage is:

Z
zhangjinchao01 已提交
5744 5745
    .. code-block:: python

X
xuwei06 已提交
5746
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5747
                            label=label_layer)
Z
zhangjinchao01 已提交
5748 5749 5750 5751 5752

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5753
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5754
    :type name: None | basestring.
5755 5756
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5757
    :type coeff: float.
5758 5759 5760 5761
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5762 5763
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5764
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5765 5766 5767
    :rtype: LayerOutput.
    """

5768
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5769 5770 5771
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5772
        inputs=ipts,
Q
qijun 已提交
5773 5774
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5775
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5776

5777

Z
zhangjinchao01 已提交
5778
@wrap_name_default()
L
luotao1 已提交
5779
@layer_support()
Q
qijun 已提交
5780 5781 5782 5783
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5784 5785
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5786 5787
    """
    A loss layer for multi class entropy with selfnorm.
5788
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5789

C
caoying03 已提交
5790 5791
    The example usage is:

Z
zhangjinchao01 已提交
5792 5793
    .. code-block:: python

X
xuwei06 已提交
5794
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5795
                                          label=label_layer)
Z
zhangjinchao01 已提交
5796 5797 5798 5799 5800

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5801
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5802
    :type name: None | basestring.
Z
zhangjinchao01 已提交
5803 5804 5805 5806
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5807 5808
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5809
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5810 5811
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5812 5813 5814 5815 5816 5817 5818
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5819

Q
qijun 已提交
5820 5821 5822 5823 5824
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5825

5826

X
xuwei06 已提交
5827 5828 5829 5830 5831 5832
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5833 5834
    The example usage is:

X
xuwei06 已提交
5835 5836
    .. code-block:: python

L
Luo Tao 已提交
5837
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5838

R
ranqiu 已提交
5839
    :param input: The input of this layer.
X
xuwei06 已提交
5840
    :type input: LayerOutput.
R
ranqiu 已提交
5841
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5842
    :type name: None | basestring.
X
xuwei06 已提交
5843 5844 5845 5846 5847
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5848
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5849 5850 5851 5852 5853
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5854

Q
qijun 已提交
5855
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5856 5857


Z
zhangjinchao01 已提交
5858
@wrap_name_default()
L
luotao1 已提交
5859
@layer_support()
L
Luo Tao 已提交
5860 5861 5862 5863 5864 5865
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
5866
    """
5867 5868 5869
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
5870 5871 5872 5873 5874
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
5875

C
caoying03 已提交
5876 5877
    The example usage is:

Z
zhangjinchao01 已提交
5878 5879
    .. code-block:: python

L
Luo Tao 已提交
5880 5881 5882 5883 5884 5885
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5886
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5887
    :type name: None | basestring.
L
Luo Tao 已提交
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
    :param delta: The difference between the observed and predicted values.
    :type delta: float.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
5909
@wrap_name_default()
L
luotao1 已提交
5910
@layer_support()
5911 5912 5913 5914 5915
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
5916
    """
5917 5918 5919
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
5920 5921 5922
    loss is defined as:

    .. math:
5923
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
5924
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
5925

C
caoying03 已提交
5926 5927
    The example usage is:

Z
zhangjinchao01 已提交
5928 5929
    .. code-block:: python

5930
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
5931 5932 5933 5934 5935

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
R
ranqiu 已提交
5936
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5937
    :type name: None | basestring.
Z
zhangjinchao01 已提交
5938 5939
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5940 5941
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5942
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5943 5944
    :rtype: LayerOutput.
    """
5945 5946 5947
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5948 5949
    Layer(
        name=name,
5950
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
5951 5952 5953
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5954 5955
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5956

5957

Z
zhangjinchao01 已提交
5958
@wrap_name_default()
L
luotao1 已提交
5959
@layer_support()
Q
qijun 已提交
5960 5961 5962 5963
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5964
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5965 5966 5967
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5968 5969
    The example usage is:

Z
zhangjinchao01 已提交
5970 5971
    .. code-block:: python

X
xuwei06 已提交
5972
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5973
                                               label=label_layer)
Z
zhangjinchao01 已提交
5974 5975 5976 5977 5978

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
5979
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5980
    :type name: None | basestring
Z
zhangjinchao01 已提交
5981 5982
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5983 5984
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5985
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5986 5987 5988
    :rtype: LayerOutput
    """

5989 5990
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
5991 5992 5993 5994
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6007 6008


C
caoying03 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6031 6032
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6033
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6034
    """
C
caoying03 已提交
6035 6036 6037
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6038

C
caoying03 已提交
6039 6040 6041 6042 6043
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6044

C
caoying03 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6063
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6084
    :param input: Input beams for this layer.
C
caoying03 已提交
6085
    :type input: BeamInput
R
ranqiu 已提交
6086
    :param name: The name of this layer.
C
caoying03 已提交
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6113 6114 6115
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6116 6117
@wrap_name_default()
@layer_support()
6118
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6119 6120
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
6121
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6131
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6132

D
dangqingqing 已提交
6133 6134 6135
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
6136 6137
    The example usage is:

D
dangqingqing 已提交
6138 6139
    .. code-block:: python

6140 6141
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6142 6143 6144 6145 6146

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6147
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6148
    :type name: None | basestring
6149 6150
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6164
        coeff=coeff,
D
dangqingqing 已提交
6165 6166 6167
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6187 6188
    The example usage is:

W
wwhu 已提交
6189 6190 6191 6192 6193 6194
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6195
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6221 6222


6223 6224 6225 6226
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6227 6228 6229 6230 6231 6232
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6233
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6234
    :type name: basestring
R
ranqiu 已提交
6235
    :param input: The input of this layer.
R
ranqiu 已提交
6236 6237 6238 6239 6240
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6241 6242 6243 6244 6245 6246 6247
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6248 6249


D
dangqingqing 已提交
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6263
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6264 6265 6266 6267 6268 6269 6270
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6271
    efficient manner to improve unidirectional RNNs.
6272

R
ranqiu 已提交
6273
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6274 6275 6276 6277
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6278

D
dangqingqing 已提交
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6294
    :param input: The input of this layer.
D
dangqingqing 已提交
6295 6296 6297 6298
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
R
ranqiu 已提交
6299
    :param act: Activation Type. LinearActivation is the default.
D
dangqingqing 已提交
6300 6301
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
R
ranqiu 已提交
6302
                       initialized smartly. It's better to set it by yourself.
D
dangqingqing 已提交
6303 6304
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
6305
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6322 6323


6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6343 6344 6345 6346 6347 6348
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6349
    :param name: The name of this layer. It is optional.
6350
    :type name: basestring
R
ranqiu 已提交
6351
    :param input: The input of this layer.
6352 6353
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
6354 6355 6356 6357 6358 6359

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
6360
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6361
    :type param_attr: ParameterAttribute | None
6362
    :param layer_attr: Extra layer configurations. Default is None.
R
ranqiu 已提交
6363
    :type layer_attr: ExtraLayerAttribute | None
6364 6365 6366 6367
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6368
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
6369
    assert isinstance(param_attr, ParameterAttribute)
6370 6371 6372

    l = Layer(
        name=name,
C
caoying03 已提交
6373
        type=LayerType.PRELU,
C
caoying03 已提交
6374
        inputs=Input(input.name, **param_attr.attr),
6375 6376 6377 6378 6379 6380 6381
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
6382 6383


6384
@wrap_name_default()
C
caoying03 已提交
6385
@layer_support(ERROR_CLIPPING, DROPOUT)
6386 6387 6388 6389 6390 6391 6392
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6393 6394
                     gate_bias_attr=True,
                     inproj_attr=None,
6395 6396 6397 6398 6399 6400 6401
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6402
    product between :match:`X'` and :math:`\sigma` is finally returned.
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6416
    :param input: The input of this layer.
6417 6418 6419
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
R
ranqiu 已提交
6420
    :param act: Activation type of the projected input. LinearActivation is the default.
6421
    :type act: BaseActivation
6422
    :param name: The name of this layer. It is optional.
6423 6424 6425 6426
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
R
ranqiu 已提交
6427
    :type gate_attr: ExtraLayerAttribute | None
6428 6429
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
R
ranqiu 已提交
6430
    :type gate_param_attr: ParameterAttribute | None
C
caoying03 已提交
6431
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
R
ranqiu 已提交
6432
    :type gate_bias_attr: ParameterAttribute | None
C
caoying03 已提交
6433 6434 6435
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
R
ranqiu 已提交
6436
    :type inproj_attr: ExtraLayerAttribute | None
6437 6438
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
R
ranqiu 已提交
6439
    :type inproj_param_attr: ParameterAttribute | None
6440 6441
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
R
ranqiu 已提交
6442
    :type inproj_bias_attr: ParameterAttribute | None
6443 6444 6445
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
R
ranqiu 已提交
6446
    :type layer_attr: ExtraLayerAttribute | None
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6459
        layer_attr=inproj_attr,
6460 6461 6462 6463 6464 6465 6466 6467 6468
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6469
        param_attr=gate_param_attr,
6470 6471 6472 6473 6474
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6475 6476


6477
@layer_support()
6478
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6479 6480
def switch_order_layer(input,
                       name=None,
6481
                       reshape_axis=None,
W
wanghaoshuang 已提交
6482 6483
                       act=None,
                       layer_attr=None):
6484
    """
6485
    This layer switch dimension order of image input.
6486 6487
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6488 6489 6490 6491

    The example usage is:

    .. code-block:: python
6492 6493
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6494
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6495

R
ranqiu 已提交
6496
    :param input: The input of this layer.
6497
    :type input: LayerOutput
6498
    :param name: The name of this layer. It is optional.
6499
    :type name: basestring
R
ranqiu 已提交
6500 6501
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6502 6503 6504
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6505
    assert isinstance(input, LayerOutput)
6506 6507 6508 6509 6510
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6511 6512
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6513
        inputs=input.name,
6514 6515
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6516
        active_type=act.name,
6517 6518 6519
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6520
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6521
        activation=act,
6522 6523
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6524 6525


6526 6527
@wrap_name_default()
@layer_support()
6528
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6529
    """
R
ranqiu 已提交
6530
    This layer crops images by offset and shape. User can set crop shape by
6531
    args 'shape' explicitly or by reference input layer.
6532

6533 6534 6535
    The example usage is:

    .. code-block:: python
W
whs 已提交
6536
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6537

R
ranqiu 已提交
6538 6539 6540 6541
    :param input: The input of this layer. If two inputs are given, the second input
                  will be regarded as reference input.
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6542
    :type offset: Sequence
6543 6544 6545 6546 6547 6548 6549
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6550
    :type shape: Sequence | None
6551
    :param name: The name of this layer. It is optional.
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6573 6574


C
caoying03 已提交
6575 6576
@wrap_name_default()
@layer_support()
6577
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6578
    """
6579
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6580
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6581

C
caoying03 已提交
6582 6583 6584
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6585 6586 6587 6588

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6589

R
ranqiu 已提交
6590
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6591

C
caoying03 已提交
6592

R
ranqiu 已提交
6593
    :param input: The input of this layer. It is a nested sequence.
6594
    :type input: LayerOutput
R
ranqiu 已提交
6595
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6596
    :type input: LayerOutput
6597
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6598 6599 6600 6601
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6602

6603 6604 6605 6606 6607 6608 6609
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6610
    l = Layer(
6611 6612
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6613 6614 6615 6616 6617 6618 6619
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6620 6621


G
guosheng 已提交
6622
@wrap_name_default("clip")
6623
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6624 6625 6626 6627 6628 6629 6630 6631 6632
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6633
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6634

6635
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6636
    :type name: basestring
R
ranqiu 已提交
6637
    :param input: The input of this layer.
G
guosheng 已提交
6638
    :type input: LayerOutput.
6639 6640 6641 6642
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6643 6644
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6645 6646 6647 6648 6649
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6650 6651
        min=min,
        max=max)
G
guosheng 已提交
6652 6653
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6654 6655


6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6680
    :param name: The name of this layer. It is optional.
6681
    :type name: basestring
R
ranqiu 已提交
6682
    :param input: The input of this layer, which should be a sequence.
6683 6684
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
R
ranqiu 已提交
6685
    :type starts: LayerOutput | None
6686
    :param ends: end indices to slice the input sequence.
R
ranqiu 已提交
6687
    :type ends: LayerOutput | None
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6720 6721


6722 6723
@wrap_name_default()
@layer_support()
6724
def kmax_seq_score_layer(input, name=None, beam_size=1):
6725
    """
C
caoying03 已提交
6726
    This layer accepts one input which are scores over a sequence or a nested
6727 6728 6729 6730
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

6731
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
6732 6733


6734
    :param name: The name of this layer. It is optional.
6735
    :type name: basestring
R
ranqiu 已提交
6736
    :param input: The input of this layer. It stores scores over a sequence or a nested
6737
        sequence and its size must be 1.
R
ranqiu 已提交
6738
    :type input: LayerOutput
R
ranqiu 已提交
6739
    :param beam_size: sequence indices with top beam_size scores are returned.
6740 6741 6742 6743
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6744
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
6745
                                            "accepts only one input.")
6746
    assert input.size == 1, (
6747
        "input of kmax_seq_score_layer is a score "
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6758 6759


6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
6786
        conv = img_conv3d_layer(input=data, filter_size=1,
6787 6788 6789 6790 6791
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

6792
    :param name: The name of this layer. It is optional.
6793
    :type name: basestring
R
ranqiu 已提交
6794
    :param input: The input of this layer.
6795
    :type input: LayerOutput
C
chengduoZH 已提交
6796
    :param filter_size: The x dimension of a filter kernel. Or input a list.
R
ranqiu 已提交
6797
    :type filter_size: int | tuple | list
6798
    :param num_filters: Each filter group's number of filter
R
ranqiu 已提交
6799
    :param act: Activation type. ReluActivation is the default.
6800 6801 6802 6803 6804
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
R
ranqiu 已提交
6805
    :type stride: int | tuple | list
6806 6807
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
R
ranqiu 已提交
6808
    :type padding: int | tuple | list
6809 6810
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
R
ranqiu 已提交
6811
    :type bias_attr: ParameterAttribute | None | bool | Any
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
    :param layer_type: specify the layer_type, default is None. If trans=True,
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
                       "cudnn_conv"
    :type layer_type: String
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
6835 6836 6837 6838 6839 6840
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
6841

C
chengduoZH 已提交
6842 6843 6844 6845 6846 6847
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
6848

C
chengduoZH 已提交
6849 6850 6851 6852 6853 6854
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
6901 6902


G
guosheng 已提交
6903 6904 6905 6906 6907
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6908 6909
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6910 6911
    adds a bias to it.

X
xuwei06 已提交
6912
    This layer is very like the SlopeInterceptLayer, except the scale and
6913 6914
    bias are trainable.

G
guosheng 已提交
6915 6916 6917 6918 6919 6920 6921 6922
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

6923
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6924
    :type name: basestring
R
ranqiu 已提交
6925 6926
    :param input: The input of this layer.
    :type input: LayerOutput
G
guosheng 已提交
6927 6928
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
6929 6930 6931 6932
    :param bias_attr: The Bias Attribute. If the parameter is set to
                      False or something not type of ParameterAttribute,
                      no bias is defined. If the parameter is set to
                      True, the bias is initialized to zero.
R
ranqiu 已提交
6933
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
6944 6945 6946 6947 6948 6949 6950 6951 6952


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
6953
    :param input: The input of this layer.
6954 6955 6956
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
6957
    :param size: The resized output dimension of this layer.
6958 6959 6960 6961 6962 6963
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)