layers.py 203.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
Z
zhangjinchao01 已提交
18

19
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
20 21
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
22
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
23
from .evaluators import *
24 25
from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
26 27
from .attrs import *
from .default_decorators import *
28

Z
zhangjinchao01 已提交
29 30 31 32 33 34
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
    'classification_cost',
    'LayerOutput',
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
    'seq_concat_layer',
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
    'scaling_projection',
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
    'rotate_layer',
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
    'gru_step_naive_layer',
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
    'warp_ctc_layer',
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
    'printer_layer',
    'print_layer',
    'priorbox_layer',
    'cross_channel_norm_layer',
    'multibox_loss_layer',
    'detection_output_layer',
    'spp_layer',
    'pad_layer',
    'eos_layer',
    'smooth_l1_cost',
    'layer_support',
    'multiplex_layer',
    'row_conv_layer',
    'dropout_layer',
    'prelu_layer',
    'gated_unit_layer',
    'crop_layer',
134
    'sub_nested_seq_layer',
135
    'clip_layer',
136
    'slice_projection',
137
    'seq_slice_layer',
138
    'kmax_sequence_score_layer',
G
guosheng 已提交
139
    'scale_shift_layer',
Q
qijun 已提交
140
]
Z
zhangjinchao01 已提交
141 142 143 144 145 146 147


class LayerType(object):
    """
    Layer type enumerations.
    """

148 149 150 151 152 153 154 155
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
156
    POOLING_AVG = 'average'
157
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
158
    COST = 'cost'
159 160
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
Z
zhangjinchao01 已提交
161
    HSIGMOID = 'hsigmoid'
162 163 164 165 166 167
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
Z
zhangjinchao01 已提交
168 169 170
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
171
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
172 173 174 175
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
176
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
177 178 179 180 181 182 183

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
184
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
185 186 187
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
188
    ROTATE_LAYER = 'rotate'
H
Haonan 已提交
189
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
190
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
191 192 193 194 195 196 197 198 199 200 201

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
202
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
203
    BLOCK_EXPAND = "blockexpand"
204
    MAXOUT = "maxout"
Q
qijun 已提交
205
    SPP_LAYER = "spp"
D
dangqingqing 已提交
206
    PAD_LAYER = "pad"
W
wwhu 已提交
207
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
208
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
209 210 211

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
212 213
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
D
dangqingqing 已提交
214 215 216 217 218

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
219
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
220

221 222 223 224 225 226 227 228 229 230 231
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
232
    CROP_LAYER = 'crop'
C
caoying03 已提交
233
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
234
    CLIP_LAYER = 'clip'
235
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
236

237
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
238
    SCALE_SHIFT_LAYER = 'scale_shift'
239

Z
zhangjinchao01 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
260
    """
L
Luo Tao 已提交
261
    PaddlePaddle supports three sequence types:
262 263 264

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
265 266
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
267

L
Luo Tao 已提交
268
    Accordingly, AggregateLevel supports two modes:
269

L
Luo Tao 已提交
270
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
271
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
272 273
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
274
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
275 276 277
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
278 279
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
280 281 282
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
305
    :type parents: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
306 307
    """

Q
qijun 已提交
308 309 310 311 312 313 314 315 316
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
317
                 reverse=None):
Z
zhangjinchao01 已提交
318 319
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
320
        assert size is not None
Z
zhangjinchao01 已提交
321 322
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
323
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
324
        self.layer_type = layer_type
325 326
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
327 328 329 330 331 332 333 334
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
335
        self.reverse = reverse
Z
zhangjinchao01 已提交
336

337 338 339 340 341 342 343 344
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

345 346 347 348 349 350 351 352
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
353 354 355

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
356
DEVICE = 'device'
Z
zhangjinchao01 已提交
357 358 359


def layer_support(*attrs):
360
    attrs_list = list(attrs)
361
    attrs_list.append(DEVICE)
Q
qijun 已提交
362

Z
zhangjinchao01 已提交
363 364 365
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
366
            for attr in attrs_list:
Z
zhangjinchao01 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
383 384 385 386 387
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
427 428
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
429 430 431 432
    proj.origin = input
    return proj


433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
463 464
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
465 466 467 468
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
508 509
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
510 511 512 513
    proj.origin = input
    return proj


514
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
545
    :type input: LayerOutput
Z
zhangjinchao01 已提交
546 547
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
548
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
549 550 551 552 553 554
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
555 556
        if size is None:
            size = input.size - offset
Q
qijun 已提交
557
        proj = IdentityOffsetProjection(
558
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
559 560 561 562
        proj.origin = input
    return proj


563 564
def slice_projection(input, slices):
    """
565 566
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
567 568

    .. math::
569
       output = [input.slices()]
570 571 572 573 574 575 576 577 578 579 580 581 582 583

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

    :param input: Input Layer.
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
584
    :type slices: pair of int
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
624
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
625 626 627 628
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
629
@wrap_param_attr_default()
630
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
631
    """
632
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

646 647 648 649 650 651 652
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
653 654
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
655
    proj.origin = input
656
    return proj
Z
zhangjinchao01 已提交
657

658 659

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
660 661
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
662

Z
zhangjinchao01 已提交
663
    .. math::
L
Luo Tao 已提交
664
       out.row[i] += scale * (a.row[i] .* b.row[i])
665

Z
zhangjinchao01 已提交
666 667
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
668

Z
zhangjinchao01 已提交
669
    The example usage is:
670

Z
zhangjinchao01 已提交
671
    .. code-block:: python
672

L
Luo Tao 已提交
673
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
674

675 676 677 678
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
679 680
    :param scale: config scalar, default value is one.
    :type scale: float
681 682
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
683
    """
684 685 686
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
687
    a = kwargs.get('x', a)  # For Backward capacity.
688 689 690 691 692 693
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
694
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
695
    op.origin = [a, b]
696
    return op
Z
zhangjinchao01 已提交
697

698

Z
zhangjinchao01 已提交
699
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
700 701 702
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
739 740 741 742 743 744
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
758
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
775 776 777 778 779 780 781
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
782 783 784 785 786
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

787
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
788 789 790 791 792 793 794 795
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
796
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
797
            self.inputs.append(other)
798 799 800 801
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
802 803 804 805 806 807 808 809
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

810
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
811 812
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
813
        assert len(self.inputs) != 0
814
        ml = MixedLayer(
Z
zhangjinchao01 已提交
815 816 817 818 819
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
820
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
821 822 823
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
824
        self.finalized = True
Z
zhangjinchao01 已提交
825 826 827 828 829 830


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
831 832 833 834 835
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
880 881 882 883 884 885
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
886
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
887 888 889 890 891 892 893 894
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
L
Luo Tao 已提交
895
def data_layer(name, size, height=None, width=None, layer_attr=None):
Z
zhangjinchao01 已提交
896 897 898 899 900 901 902
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
903
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
904 905 906 907 908

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
909
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
910
    :type height: int|None
L
Luo Tao 已提交
911
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
912
    :type width: int|None
Z
zhangjinchao01 已提交
913 914
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
915
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
916 917
    :rtype: LayerOutput
    """
Q
qijun 已提交
918 919 920 921
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
L
Luo Tao 已提交
922 923
        height=height,
        width=width,
Q
qijun 已提交
924
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
925

926 927 928 929 930 931 932
    num_filters = None
    if height is not None and width is not None:
        num_filters = size / (width * height)
        assert num_filters * width * height == size, \
            "size=%s width=%s height=%s" % (size, width, height)

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
933 934 935 936


@wrap_name_default("embedding")
@wrap_param_attr_default()
937
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
953
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
954 955
    :rtype: LayerOutput
    """
Q
qijun 已提交
956 957 958 959 960 961
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
962 963 964 965 966 967 968 969 970
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
971 972 973 974 975 976 977
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
978 979 980 981 982 983 984 985 986 987 988 989
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
990
    which is equal to:
Z
zhangjinchao01 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1013
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1014 1015 1016 1017
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1018
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1019 1020
        param_attr = [param_attr]
    else:
1021
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1022 1023 1024 1025
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1026
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1027 1028

    Layer(
Q
qijun 已提交
1029 1030 1031
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1032 1033 1034 1035 1036
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1037 1038 1039
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1040

1041

1042
@wrap_name_default("print")
1043
def printer_layer(input, format=None, name=None):
1044 1045
    """
    Print the output value of input layers. This layer is useful for debugging.
1046 1047 1048 1049 1050

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
1051
    :return: LayerOutput
1052
    """
1053 1054 1055 1056 1057
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1058 1059 1060

    Layer(
        name=name,
1061
        format=format,
1062
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1063
        inputs=[l.name for l in input], )
1064
    # this layer don't return anything, can not be input of other layer.
1065

X
xuwei06 已提交
1066 1067 1068 1069 1070 1071 1072
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1073

Y
yuan 已提交
1074
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1075
def priorbox_layer(input,
G
gaoyuan 已提交
1076
                   image,
G
gaoyuan 已提交
1077 1078 1079 1080 1081
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1082 1083 1084 1085 1086 1087 1088
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
G
gaoyuan 已提交
1089 1090
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1102
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1103 1104 1105
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1106
        inputs=[input.name, image.name],
Y
yuan 已提交
1107 1108 1109 1110 1111 1112
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1113 1114
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1115
        parents=[input, image],
G
gaoyuan 已提交
1116 1117 1118
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1136 1137
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1138
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1139
    :type input_conf: LayerOutput | List of LayerOutput
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1161
    input_loc_num = len(input_loc)
1162 1163 1164 1165 1166 1167

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1168
    input_conf_num = len(input_conf)
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
    box location.

    :param name: The Layer Name.
    :type name: basestring
Y
yangyaming 已提交
1210 1211
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1212
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1213
    :type input_conf: LayerOutput | List of LayerOutput.
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1235
    input_loc_num = len(input_loc)
1236 1237 1238 1239 1240 1241

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1242 1243
    input_conf_num = len(input_conf)

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


1272 1273
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1274 1275 1276 1277 1278
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1279

G
gaoyuan 已提交
1280 1281 1282 1283 1284 1285 1286 1287
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1288
    assert input.num_filters is not None
G
gaoyuan 已提交
1289 1290
    Layer(
        name=name,
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1304 1305
    return LayerOutput(
        name,
1306
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1307 1308 1309 1310 1311
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1312 1313 1314 1315
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1316 1317 1318 1319
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1320
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1321
                  stride=-1,
Z
zhangjinchao01 已提交
1322 1323 1324 1325
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1326 1327
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1328 1329 1330
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1331
    operation. Note that for sequence with sub-sequence, the default value
1332 1333
    of stride is -1.

Z
zhangjinchao01 已提交
1334 1335 1336 1337 1338 1339
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1340
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1341

L
Luo Tao 已提交
1342 1343
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1344 1345 1346 1347 1348 1349 1350 1351
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
L
Luo Tao 已提交
1352
    :param stride: The step size between successive pooling regions.
1353
    :type stride: Int
Z
zhangjinchao01 已提交
1354 1355 1356 1357
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1358
    :return: LayerOutput object.
Y
Yu Yang 已提交
1359
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1360 1361
    """
    extra_dict = dict()
1362
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1363 1364
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1365 1366 1367 1368
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1369 1370
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1371 1372 1373
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1374 1375 1376 1377 1378 1379
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1380
        stride=stride,
Q
qijun 已提交
1381
        **extra_dict)
Z
zhangjinchao01 已提交
1382

Q
qijun 已提交
1383 1384
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1385

Q
qijun 已提交
1386

Z
zhangjinchao01 已提交
1387 1388
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1389
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1390 1391
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1392
@layer_support()
Q
qijun 已提交
1393 1394
def lstmemory(input,
              name=None,
1395
              size=None,
Q
qijun 已提交
1396 1397 1398 1399 1400 1401
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1402 1403 1404 1405 1406 1407 1408 1409
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1410
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1411

L
luotao02 已提交
1412
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1413

L
luotao02 已提交
1414
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1415

L
luotao02 已提交
1416
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1417

L
luotao02 已提交
1418
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1419 1420


C
caoying03 已提交
1421
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1422
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1423 1424 1425 1426
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1427

C
caoying03 已提交
1428
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1429 1430
    to config a simple plain lstm layer.

C
caoying03 已提交
1431 1432 1433 1434
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1435 1436 1437 1438 1439

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1440 1441
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
Z
zhangjinchao01 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1460
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1461 1462 1463 1464 1465 1466
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1467
    assert input.size is not None and input.size % 4 == 0
1468

1469 1470 1471 1472 1473
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1474 1475 1476
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1477

Q
qijun 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1488

Q
qijun 已提交
1489 1490 1491 1492 1493
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1494

Z
zhangjinchao01 已提交
1495 1496 1497

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1498
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1499 1500
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1501
@layer_support()
Q
qijun 已提交
1502
def grumemory(input,
1503
              size=None,
Q
qijun 已提交
1504 1505 1506 1507 1508 1509
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1531 1532
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1533 1534 1535 1536 1537

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1538 1539 1540
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1541 1542 1543 1544 1545

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1546
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1547
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1548 1549 1550
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1551

C
caoying03 已提交
1552 1553 1554
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1566 1567
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1568
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1584
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1585 1586 1587 1588
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1589 1590 1591 1592 1593 1594
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1595 1596 1597
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1598

Q
qijun 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1608

Q
qijun 已提交
1609 1610 1611 1612 1613
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1614

Z
zhangjinchao01 已提交
1615 1616 1617

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1618 1619
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1620
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1621
             stride=-1,
Z
zhangjinchao01 已提交
1622 1623 1624 1625
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1626 1627 1628
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1629
    of stride is -1.
1630

L
Luo Tao 已提交
1631 1632 1633 1634 1635 1636
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1637 1638 1639 1640 1641
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1642
    :param stride: The step size between successive pooling regions.
1643
    :type stride: Int
Z
zhangjinchao01 已提交
1644 1645
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1646
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1647 1648
    :rtype: LayerOutput
    """
1649 1650 1651 1652 1653 1654
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1655
    if agg_level == AggregateLevel.TO_SEQUENCE:
1656 1657
        assert stride == -1

Z
zhangjinchao01 已提交
1658 1659 1660 1661 1662
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1663
        stride=stride,
Q
qijun 已提交
1664 1665 1666 1667 1668 1669
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1670 1671 1672 1673


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1674 1675
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1676
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1677
              stride=-1,
Z
zhangjinchao01 已提交
1678 1679 1680 1681
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1682 1683 1684
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1685
    of stride is -1.
1686

L
Luo Tao 已提交
1687 1688 1689 1690 1691 1692
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1693 1694 1695 1696 1697
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
L
Luo Tao 已提交
1698
    :param stride: The step size between successive pooling regions.
1699
    :type stride: Int
Z
zhangjinchao01 已提交
1700 1701
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1702
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1703 1704
    :rtype: LayerOutput
    """
1705 1706 1707 1708 1709 1710 1711

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1712
    if agg_level == AggregateLevel.TO_SEQUENCE:
1713 1714
        assert stride == -1

Z
zhangjinchao01 已提交
1715 1716 1717 1718 1719
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1720
        stride=stride,
Q
qijun 已提交
1721 1722 1723 1724 1725 1726
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1727 1728 1729


class ExpandLevel(object):
1730 1731 1732 1733 1734
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1735 1736
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1737 1738
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1739 1740
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1741 1742
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1743 1744
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1745 1746
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1747

1748

Z
zhangjinchao01 已提交
1749 1750
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1751 1752
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1753 1754
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1755
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1767
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1782
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1792 1793 1794 1795 1796 1797
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1798 1799


X
xuwei06 已提交
1800
@wrap_name_default()
X
xuwei06 已提交
1801
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1802
@layer_support()
X
xuwei06 已提交
1803 1804 1805
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1806
                 act=None,
X
xuwei06 已提交
1807 1808
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1809
    """
X
xuwei06 已提交
1810
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1811

X
xuwei06 已提交
1812
    If as_row_vector:
X
xuwei06 已提交
1813
    .. math::
X
xuwei06 已提交
1814 1815 1816 1817 1818
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1819 1820 1821 1822 1823

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1824
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1825 1826 1827 1828 1829 1830

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
X
xuwei06 已提交
1831 1832 1833 1834 1835 1836
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
X
xuwei06 已提交
1837 1838
    :param act: Activation type.
    :type act: BaseActivation
X
xuwei06 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1849
        active_type=act.name,
X
xuwei06 已提交
1850
        num_filters=num_repeats,
X
xuwei06 已提交
1851
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1852
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1853 1854 1855 1856 1857
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1858
        activation=act,
Q
qijun 已提交
1859 1860
        parents=[input])

X
xuwei06 已提交
1861

1862 1863 1864
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1865
@layer_support(ERROR_CLIPPING, DROPOUT)
1866 1867 1868 1869 1870 1871 1872 1873
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1874
    the dimension of each instance is M, and the input reshape_size is N, then the
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1945
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1946 1947
    :rtype: LayerOutput
    """
1948
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1949
    assert len(input) == 2
1950 1951 1952 1953 1954 1955 1956
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
1957 1958 1959 1960
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
1961 1962 1963 1964 1965 1966
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
1967 1968


L
liaogang 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1985
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1986

L
liaogang 已提交
1987
    :param   input:        A input layer.
L
liaogang 已提交
1988
    :type    input:        LayerOutput.
L
liaogang 已提交
1989
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1990
    :type    out_size_x:   int|None
L
liaogang 已提交
1991
    :param   out_size_y:   bilinear interpolation output height.
L
liaogang 已提交
1992
    :type    out_size_y:   int|None
L
liaogang 已提交
1993
    :param   name:         The layer's name, which cna not be specified.
L
liaogang 已提交
1994
    :type    name:         None|basestring
L
liaogang 已提交
1995
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
1996 1997 1998 1999 2000 2001 2002
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2003
    assert input.num_filters is not None
L
liaogang 已提交
2004
    num_channels = input.num_filters
Q
qijun 已提交
2005 2006 2007 2008 2009 2010 2011
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2012
                channels=num_channels)),
Q
qijun 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2022

Z
zhangjinchao01 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2051 2052
    :rtype: LayerOutput
    """
2053 2054 2055
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2056 2057 2058
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2059
        inputs=[weight.name, input.name],
Q
qijun 已提交
2060 2061 2062
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2063 2064 2065 2066 2067 2068


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2069
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2070 2071

    .. math::
2072
       y  = w x
Z
zhangjinchao01 已提交
2073

2074 2075 2076 2077 2078
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2094
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2095 2096
    :rtype: LayerOutput
    """
2097 2098 2099
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2100 2101 2102 2103
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2104 2105 2106
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2107 2108 2109 2110 2111 2112


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2113
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2132
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2133 2134 2135 2136 2137 2138
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2139 2140 2141
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2142 2143


2144 2145
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2146
def rotate_layer(input, height, width, name=None, layer_attr=None):
2147
    """
H
Haonan 已提交
2148 2149
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2150 2151

    .. math::
H
Haonan 已提交
2152
       y(j,i,:) = x(M-i-1,j,:)
2153

H
Haonan 已提交
2154
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2155 2156 2157 2158 2159 2160

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2161 2162
                          height=100,
                          width=100)
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2176 2177 2178
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2179
        width=width,
H
Haonan 已提交
2180 2181 2182 2183 2184 2185 2186 2187
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2188 2189


Z
zhangjinchao01 已提交
2190 2191
@wrap_name_default()
@layer_support()
2192
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2193 2194 2195 2196
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2197
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2198 2199 2200 2201 2202
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2203

2204 2205
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2206

L
Luo Tao 已提交
2207 2208 2209 2210 2211 2212
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

Z
zhangjinchao01 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2225
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2226 2227
    :rtype: LayerOutput
    """
2228
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2229 2230 2231 2232 2233 2234
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2235
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2236
    else:
2237 2238
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2239 2240 2241 2242 2243 2244
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2245
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2246
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2247

2248

Z
zhangjinchao01 已提交
2249 2250
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2251
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2252
@layer_support()
Q
qijun 已提交
2253 2254
def hsigmoid(input,
             label,
2255
             num_classes=None,
Q
qijun 已提交
2256 2257 2258 2259
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2271
                        label=data_layer)
Z
zhangjinchao01 已提交
2272 2273 2274 2275 2276 2277 2278

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2279
    :type num_classes: int|None
L
luotao02 已提交
2280 2281
    :param name: layer name
    :type name: basestring
Z
zhangjinchao01 已提交
2282 2283 2284
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2285 2286
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
2287 2288
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2289
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2290 2291 2292 2293
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2294 2295 2296 2297 2298 2299 2300 2301 2302
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2303 2304 2305
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2306 2307 2308 2309 2310
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2311 2312
    ipts_for_layer = []
    parents = []
2313
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2314
        assert isinstance(each_input, LayerOutput)
2315
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2316 2317 2318 2319
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2320
    l = Layer(
Z
zhangjinchao01 已提交
2321 2322 2323 2324 2325
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2326 2327 2328
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2329

2330

Z
zhangjinchao01 已提交
2331 2332 2333 2334 2335
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2345
                   dilation=1,
Q
qijun 已提交
2346 2347 2348 2349 2350 2351 2352
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2353
                   dilation_y=None,
2354 2355
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2356
    """
2357
    Convolution layer for image. Paddle can support both square and non-square
2358
    input currently.
Z
zhangjinchao01 已提交
2359 2360 2361 2362

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2363

2364
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2365
    and non-square input currently.
2366

X
xuwei06 已提交
2367
    The details of convolution transpose layer,
2368 2369 2370
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2371 2372 2373 2374
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

C
caoying03 已提交
2375 2376 2377
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
Z
zhangjinchao01 已提交
2378
    32*4 = 128 filters to process inputs. The channels will be split into 4
C
caoying03 已提交
2379 2380
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
Z
zhangjinchao01 已提交
2381

L
Luo Tao 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

Z
zhangjinchao01 已提交
2392 2393 2394 2395
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2396 2397 2398
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
C
caoying03 已提交
2399 2400 2401
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2402
    :type filter_size_y: int|None
Z
zhangjinchao01 已提交
2403 2404 2405 2406 2407
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2408 2409 2410
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
Z
zhangjinchao01 已提交
2411 2412
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2413 2414 2415
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
Z
zhangjinchao01 已提交
2416 2417
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
2418 2419 2420 2421 2422
    :param dilation: The x dimension of the dilation. Or input a tuple for two
                    image dimension
    :type dilation: int|tuple|list
    :param padding_y: The y dimension of the dilation.
    :type padding_y: int
Z
zhangjinchao01 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2435 2436
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2437
    :param layer_type: specify the layer_type, default is None. If trans=True,
2438 2439
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2440
                       "cudnn_conv"
2441
    :type layer_type: String
D
dangqingqing 已提交
2442
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2443 2444 2445 2446 2447
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2448

Z
zhangjinchao01 已提交
2449
    if filter_size_y is None:
2450 2451 2452 2453 2454 2455
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2456
    if stride_y is None:
2457 2458 2459 2460 2461 2462
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2463
    if padding_y is None:
2464 2465 2466 2467 2468 2469
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2470 2471 2472 2473 2474 2475 2476
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2477 2478
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2479
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2480 2481 2482 2483
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2484

2485
    if layer_type:
W
wanghaoshuang 已提交
2486 2487
        if dilation > 1 or dilation_y > 1:
            assert layer_type in ["cudnn_conv", "cudnn_convt"]
2488
        if trans:
2489
            assert layer_type in ["exconvt", "cudnn_convt"]
2490 2491 2492 2493 2494
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2495

X
xuwei06 已提交
2496
    l = Layer(
Z
zhangjinchao01 已提交
2497
        name=name,
Q
qijun 已提交
2498 2499 2500 2501 2502
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2503
                dilation=dilation,
Q
qijun 已提交
2504 2505 2506 2507 2508
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2509
                dilation_y=dilation_y,
Q
qijun 已提交
2510 2511
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2512 2513 2514 2515
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2516
        type=lt,
Q
qijun 已提交
2517 2518 2519 2520 2521 2522 2523 2524
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2525 2526 2527 2528


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2539 2540
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2541 2542 2543 2544 2545 2546 2547
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2576
    :param padding: pooling padding width.
Z
zhangjinchao01 已提交
2577
    :type padding: int
2578 2579
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
Z
zhangjinchao01 已提交
2580 2581 2582 2583
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2584
    :param pool_size: pooling window width
Z
zhangjinchao01 已提交
2585
    :type pool_size: int
2586 2587
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
Z
zhangjinchao01 已提交
2588 2589
    :param num_channels: number of input channel.
    :type num_channels: int
2590
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
Z
zhangjinchao01 已提交
2591 2592
                      MaxPooling.
    :type pool_type: BasePoolingType
2593
    :param stride: stride width of pooling.
Z
zhangjinchao01 已提交
2594
    :type stride: int
2595 2596
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
Z
zhangjinchao01 已提交
2597 2598
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2599 2600 2601 2602
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2603 2604
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2605 2606 2607 2608 2609
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

2610 2611
    assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
                               CudnnMaxPooling], \
X
xuwei06 已提交
2612
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"
2613

Z
zhangjinchao01 已提交
2614 2615 2616 2617 2618
    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2619
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2620
        if (
Y
Yu Yang 已提交
2621
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2622
        else pool_type.name
2623 2624 2625 2626
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2627
    l = Layer(
Z
zhangjinchao01 已提交
2628 2629
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2642
                    padding_y=padding_y))
Q
qijun 已提交
2643
        ],
2644
        ceil_mode=ceil_mode,
Q
qijun 已提交
2645 2646 2647 2648 2649 2650 2651
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2652 2653


Q
qijun 已提交
2654 2655
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2656 2657 2658 2659 2660 2661
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2662 2663 2664 2665 2666
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2667 2668 2669 2670
    The example usage is:

    ..  code-block:: python

2671 2672 2673
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2674 2675
                        pool_type=MaxPooling())

Q
qijun 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
2704
    l = Layer(
Q
qijun 已提交
2705 2706
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
2707 2708 2709 2710 2711
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
2712
                pyramid_height=pyramid_height)),
Q
qijun 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
2724 2725 2726 2727
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
2728
    l = Layer(
Q
qijun 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
2748 2749 2750 2751


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
2752 2753 2754 2755 2756 2757
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2758
                      layer_attr=None):
Z
zhangjinchao01 已提交
2759
    """
2760
    Response normalization across feature maps.
D
dangqingqing 已提交
2761 2762
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
Z
zhangjinchao01 已提交
2763

L
Luo Tao 已提交
2764 2765 2766
    The example usage is:

    ..  code-block:: python
2767

L
Luo Tao 已提交
2768 2769
        norm = img_cmrnorm_layer(input=net, size=5)

Z
zhangjinchao01 已提交
2770
    :param name: layer name.
D
dangqingqing 已提交
2771
    :type name: None|basestring
Z
zhangjinchao01 已提交
2772 2773
    :param input: layer's input.
    :type input: LayerOutput
2774
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
2775
    :type size: int
D
dangqingqing 已提交
2776
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
2777
    :type scale: float
D
dangqingqing 已提交
2778
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
2779 2780 2781 2782 2783
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2784
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2785 2786 2787
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2788
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
2789 2790 2791


@wrap_bias_attr_default()
2792 2793
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
2794 2795
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
2796
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2797 2798 2799 2800 2801 2802 2803
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2825 2826 2827
    The example usage is:

    ..  code-block:: python
2828

L
Luo Tao 已提交
2829 2830
        norm = batch_norm_layer(input=net, act=ReluActivation())

Z
zhangjinchao01 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2845
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
Z
zhangjinchao01 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2873
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
2884
    l = Layer(
Z
zhangjinchao01 已提交
2885
        name=name,
Q
qijun 已提交
2886 2887
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
2888 2889 2890 2891 2892 2893
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
Q
qijun 已提交
2894
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
2895

Q
qijun 已提交
2896 2897 2898 2899 2900 2901 2902
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2930
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2931 2932 2933 2934 2935 2936
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2937 2938 2939
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2940 2941


G
guosheng 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
2978 2979 2980
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
2981
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
2982
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

C
caoying03 已提交
3005 3006 3007
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3008 3009

    It is a very good way to set dropout outside the layers. Since not all
C
caoying03 已提交
3010 3011
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
Z
zhangjinchao01 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3026
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3027 3028 3029 3030 3031 3032
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3033
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3034 3035 3036 3037 3038 3039 3040
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3041
    l = Layer(
Q
qijun 已提交
3042 3043 3044
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3045 3046
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3047
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3048

Q
qijun 已提交
3049 3050 3051 3052 3053 3054 3055
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3056 3057 3058 3059


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3060
@layer_support(DROPOUT, ERROR_CLIPPING)
3061
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3062 3063 3064 3065
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

3066 3067 3068 3069 3070 3071
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

Z
zhangjinchao01 已提交
3072 3073 3074
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
3075
    :type input: list|tuple|collections.Sequence
Z
zhangjinchao01 已提交
3076 3077 3078 3079
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3080
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3081 3082 3083 3084 3085 3086 3087 3088
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3089
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3090 3091

    def __is_type__(o, tp):
3092
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3114 3115
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3116

Q
qijun 已提交
3117 3118
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3119

3120 3121
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3122

3123
    layer = Layer(
Q
qijun 已提交
3124 3125
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3126 3127
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3128
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3129
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3130

3131
    sz = layer.config.size
Z
zhangjinchao01 已提交
3132

Q
qijun 已提交
3133 3134 3135 3136 3137 3138 3139 3140
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3141 3142
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3143
@wrap_bias_attr_default(has_bias=False)
3144
@layer_support(DROPOUT, ERROR_CLIPPING)
3145 3146 3147 3148
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
3149

3150
    Inputs:
X
xuwei06 已提交
3151
      - a = [a1, a2, ..., am]
3152
      - b = [b1, b2, ..., bn]
3153

X
xuwei06 已提交
3154 3155 3156 3157
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
3175 3176 3177 3178
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3200
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3201 3202
def memory(name,
           size,
3203
           memory_name=None,
Q
qijun 已提交
3204 3205 3206 3207
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

3228 3229 3230 3231 3232 3233 3234 3235 3236
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
3237

3238 3239 3240 3241 3242 3243 3244
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3245 3246 3247
    :type name: basestring
    :param size: size of memory.
    :type size: int
3248 3249 3250
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
3251
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
3261
    :return: LayerOutput object which is a memory.
Z
zhangjinchao01 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3272 3273
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3274

3275 3276 3277 3278 3279 3280 3281 3282
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3283 3284

    lout = LayerOutput(
3285
        name=memory_name,
Q
qijun 已提交
3286 3287 3288
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3289 3290 3291 3292
    return lout


@wrap_bias_attr_default()
3293 3294
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3295 3296
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
3297
@layer_support()
Q
qijun 已提交
3298 3299
def lstm_step_layer(input,
                    state,
3300
                    size=None,
Q
qijun 已提交
3301 3302 3303 3304 3305 3306
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3307
    """
3308 3309
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3310 3311 3312

    ..  math::

3313
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3314

3315
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3316

3317
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3318

3319
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3320

L
luotao02 已提交
3321
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3322 3323


L
luotao02 已提交
3324
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3325
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3326
    input vectors.
Z
zhangjinchao01 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3337 3338
    This layer has two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, whose name is 'state' and can use
Z
zhangjinchao01 已提交
3339 3340 3341 3342
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
3343 3344
    :param size: Layer's size. NOTE: lstm layer's size, should be equal to
                 :code:`input.size/4`, and should be equal to
Z
zhangjinchao01 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3363
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3364 3365
    :rtype: LayerOutput
    """
3366 3367 3368

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3369 3370 3371 3372 3373 3374 3375
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3376
        size=state.size,
Q
qijun 已提交
3377 3378
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3379

Q
qijun 已提交
3380 3381 3382 3383 3384 3385 3386
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3387 3388 3389


@wrap_bias_attr_default()
W
wangyang59 已提交
3390
@wrap_param_attr_default()
Q
qijun 已提交
3391
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3392 3393 3394
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3395 3396 3397 3398 3399 3400 3401
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3402
                   param_attr=None,
Q
qijun 已提交
3403
                   layer_attr=None):
Z
zhangjinchao01 已提交
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3414 3415
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
Z
zhangjinchao01 已提交
3416
    :param layer_attr:
D
dangqingqing 已提交
3417
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3418 3419 3420 3421 3422 3423 3424 3425
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3426 3427 3428 3429
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3430
        # backward model compatibility.
3431
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3432 3433 3434 3435
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3436
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3437
    return LayerOutput(
Q
qijun 已提交
3438 3439
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3440
        parents=[input, output_mem],
Q
qijun 已提交
3441 3442
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3443 3444


Y
Yu Yang 已提交
3445 3446 3447 3448
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3449
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3517 3518 3519 3520
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3521 3522 3523 3524
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3534
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3535 3536 3537 3538 3539 3540 3541
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3542 3543 3544 3545 3546 3547 3548
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3549

Q
qijun 已提交
3550 3551 3552 3553 3554
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3555 3556 3557 3558 3559 3560 3561


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3562 3563 3564 3565 3566 3567 3568
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3569
    """
3570 3571
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3600
    :return: LayerOutput object.
3601
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3602
    """
Q
qijun 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3618 3619 3620 3621 3622 3623


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
3624 3625
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3626
    """
3627

Z
zhangjinchao01 已提交
3628 3629 3630
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
3631
        assert input.size is not None
Z
zhangjinchao01 已提交
3632
        if size is not None:
3633
            assert input.size == size
Z
zhangjinchao01 已提交
3634 3635


3636
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
3637
    """
3638
    DEPRECATED.
Z
zhangjinchao01 已提交
3639 3640 3641 3642 3643 3644 3645 3646
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3647
    return input
Z
zhangjinchao01 已提交
3648 3649 3650


@wrap_name_default("recurrent_group")
3651
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
3652
    """
C
caoying03 已提交
3653 3654 3655 3656 3657
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
Z
zhangjinchao01 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3702 3703
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
3704
    :type reverse: bool
3705

3706 3707
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
3708 3709 3710 3711 3712 3713 3714 3715 3716

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

D
dangqingqing 已提交
3717
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3718 3719 3720 3721
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

3722
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
3723
        input = [input]
3724
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3725 3726

    def is_in_links(x):
3727
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
3728 3729 3730 3731

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
3732
        name=name,
3733 3734
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
3735 3736
    in_args = []
    for each_input in input:
3737
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
3738
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
3739
            mem = memory(
3740
                name=None,
Q
qijun 已提交
3741 3742
                size=each_input.input.size,
                boot_layer=each_input.input)
3743
            mem.set_input(mem)
Z
zhangjinchao01 已提交
3744
            in_args.append(mem)
3745 3746
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
3747

Z
zhangjinchao01 已提交
3748 3749 3750 3751 3752
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

3753 3754 3755 3756 3757 3758
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
3759 3760 3761

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3762
    for layer_out in layer_outs:
3763 3764
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
3765 3766
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
3767 3768 3769 3770 3771
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3772

Z
zhangjinchao01 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
3801 3802

    def before_real_step(self):
Q
qijun 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
3812 3813 3814
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3815
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3839
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3840 3841 3842 3843
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3854

3855

H
Haonan 已提交
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3892

Z
zhangjinchao01 已提交
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

L
luotao02 已提交
3909 3910
    :param name: Layer name.
    :type name: basestring
Z
zhangjinchao01 已提交
3911 3912 3913 3914 3915 3916
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3917
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3918 3919
    :rtype: LayerOutput
    """
Q
qijun 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
3931 3932 3933


@wrap_name_default()
Q
qijun 已提交
3934 3935 3936 3937 3938 3939 3940
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
3941
                num_results_per_sample=None):
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3953
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3954 3955 3956 3957
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3958 3959 3960 3961 3962
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3963 3964
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3965 3966
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3967 3968
                               bos_id=0,
                               eos_id=1,
3969
                               beam_size=5)
3970 3971 3972 3973 3974 3975 3976 3977 3978

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3979
                 step, and it is applied to sequences with arbitrary length by
3980 3981 3982 3983 3984
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3985 3986
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3987
                  In beam_search, none of the input's type should be LayerOutput.
3988
    :type input: list
3989 3990 3991
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3992
                   symbol is essential, since it is used to initialize the RNN
3993 3994 3995 3996 3997 3998 3999 4000
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4001 4002
    :param max_length: Max generated sequence length.
    :type max_length: int
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4013 4014
    :return: The generated word index.
    :rtype: LayerOutput
4015 4016
    """

Z
zhangjinchao01 已提交
4017 4018 4019 4020 4021
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4022
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4023 4024 4025 4026 4027 4028
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4029 4030 4031
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4032
        if isinstance(each_input, BaseGeneratedInput):
4033 4034
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4035
            generated_input_index = i
4036

Z
zhangjinchao01 已提交
4037 4038 4039
        else:
            real_input.append(each_input)

4040
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4041 4042 4043 4044 4045 4046 4047 4048

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4049 4050 4051 4052 4053 4054
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4055 4056 4057 4058 4059 4060

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4061
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4062 4063
        return predict

4064 4065
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4066

Q
qijun 已提交
4067

4068 4069
def __cost_input__(input, label, weight=None):
    """
4070
    inputs and parents for cost layers.
4071 4072 4073 4074
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
4075
        assert weight.size == 1
4076 4077 4078
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4079

Z
zhangjinchao01 已提交
4080 4081

@wrap_name_default()
L
luotao1 已提交
4082
@layer_support()
4083
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
4084
    """
L
Luo Tao 已提交
4085 4086 4087 4088
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
4089
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4090 4091

    :param name: layer name.
4092
    :type name: basestring
Z
zhangjinchao01 已提交
4093
    :param input: Network prediction.
4094
    :type input: LayerOutput
Z
zhangjinchao01 已提交
4095
    :param label: Data label.
4096 4097 4098 4099
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
4100 4101
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4102 4103
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4104
    :return: LayerOutput object.
4105
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4106
    """
4107 4108
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4109 4110 4111 4112
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4113
        coeff=coeff,
Q
qijun 已提交
4114
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4115
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4116 4117


L
Luo Tao 已提交
4118 4119 4120
regression_cost = mse_cost


Z
zhangjinchao01 已提交
4121
@wrap_name_default("cost")
4122
@layer_support()
Q
qijun 已提交
4123 4124 4125 4126
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4127
                        evaluator=classification_error_evaluator,
4128 4129
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
4139 4140 4141
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
Z
zhangjinchao01 已提交
4142
    :param evaluator: Evaluator method.
4143 4144
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
4145 4146
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
4147
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4148 4149 4150 4151 4152
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4153 4154 4155

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4156 4157 4158 4159
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4160
        coeff=coeff,
Q
qijun 已提交
4161
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4172
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4173

4174
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4175 4176 4177 4178 4179
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4180
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4181

4182

Q
qijun 已提交
4183 4184 4185 4186 4187 4188 4189 4190 4191
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4192 4193
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

4204 4205
       op = conv_operator(img=input1,
                          filter=input2,
4206
                          filter_size=3,
Z
zhangjinchao01 已提交
4207 4208 4209
                          num_filters=64,
                          num_channels=64)

4210 4211 4212 4213
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
Z
zhangjinchao01 已提交
4214 4215
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
C
caoying03 已提交
4216 4217 4218
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
Z
zhangjinchao01 已提交
4219
    :type filter_size_y: int
4220 4221
    :param num_filters: channel of output data.
    :type num_filters: int
4222 4223
    :param num_channels: channel of input data.
    :type num_channels: int
Z
zhangjinchao01 已提交
4224
    :param stride: The x dimension of the stride.
L
luotao02 已提交
4225
    :type stride: int
Z
zhangjinchao01 已提交
4226
    :param stride_y: The y dimension of the stride.
L
luotao02 已提交
4227
    :type stride_y: int
Z
zhangjinchao01 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4241

4242 4243
    if num_channels is None:
        num_channels = img.num_filters
4244 4245

    assert isinstance(filter, LayerOutput)
4246
    assert filter.size is not None
4247

4248 4249 4250
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4262

4263
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4264 4265
    return op

Q
qijun 已提交
4266

4267
@wrap_param_attr_default()
Q
qijun 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4278 4279
                    param_attr=None,
                    trans=False):
4280 4281 4282 4283 4284 4285 4286 4287 4288
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4289
       proj = conv_projection(input=input1,
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4304 4305
    :param num_channels: channel of input data.
    :type num_channels: int
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4318 4319
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4350
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4351 4352 4353 4354 4355
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4356 4357 4358
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4371 4372 4373 4374

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4375

D
dangqingqing 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4393

D
dangqingqing 已提交
4394
    For example,
4395

4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4417 4418

    The simply usage is:
D
dangqingqing 已提交
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4480
@wrap_name_default()
L
luotao1 已提交
4481 4482
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4494 4495 4496 4497
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4498 4499 4500 4501 4502

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4503
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4504 4505 4506

    :param name: layer name
    :type name: basestring
4507 4508
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4509
    :param b: input layer b.
4510
    :type b: LayerOutput
L
luotao1 已提交
4511 4512
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4513
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4514 4515
    :rtype: LayerOutput
    """
4516 4517
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4518 4519 4520
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4521
        inputs=[a.name, b.name],
Q
qijun 已提交
4522
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4523

Q
qijun 已提交
4524 4525
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4526 4527 4528 4529 4530


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4531
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4532
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4533 4534 4535 4536 4537 4538 4539 4540
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4541 4542 4543 4544 4545
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4546
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4547 4548

    In this formular:
4549 4550
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4551 4552
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4553
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4554 4555 4556 4557 4558

    The simple usage is:

    .. code-block:: python

4559
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
4560 4561 4562

    :param name: layer name
    :type name: basestring
4563 4564 4565 4566
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
Z
zhangjinchao01 已提交
4567
    :param size: the layer dimension.
L
luotao02 已提交
4568
    :type size: int.
Z
zhangjinchao01 已提交
4569 4570 4571
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4572
    :type param_attr: ParameterAttribute
Z
zhangjinchao01 已提交
4573 4574 4575 4576 4577 4578
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4579
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4580 4581
    :rtype: LayerOutput
    """
4582
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
4583 4584 4585 4586 4587 4588
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
4589 4590 4591 4592
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
4593 4594 4595 4596 4597 4598


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
4599
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
4600 4601
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4602
                       select=None,
Q
qijun 已提交
4603 4604
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
4605 4606 4607
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
4608 4609 4610
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4621
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
4622 4623 4624 4625 4626

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4627 4628
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4629
                   If is None, acts exactly like fc_layer.
4630
    :type select: LayerOutput
Z
zhangjinchao01 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4643
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4644 4645 4646 4647
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4648
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
4649 4650
        param_attr = [param_attr]
    else:
4651
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
4652 4653 4654 4655
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4656 4657 4658 4659
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
4660
    Layer(
Q
qijun 已提交
4661 4662 4663
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
4664 4665 4666
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4667
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
4668 4669 4670 4671
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
4672 4673 4674 4675 4676 4677 4678
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
4679 4680 4681


@wrap_name_default()
L
luotao1 已提交
4682 4683
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4698 4699
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4700
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4701 4702
    :rtype: LayerOutput
    """
X
xuwei06 已提交
4703
    l = Layer(
Z
zhangjinchao01 已提交
4704 4705 4706
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
4707 4708 4709
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
4710 4711 4712


@wrap_name_default()
L
luotao1 已提交
4713
@layer_support()
Q
qijun 已提交
4714 4715 4716 4717
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4718
                          layer_attr=None):
Z
zhangjinchao01 已提交
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4740 4741
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4742
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4743 4744 4745 4746 4747 4748 4749 4750
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
4751 4752 4753
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
4754 4755 4756


@wrap_name_default()
L
luotao1 已提交
4757
@layer_support()
Q
qijun 已提交
4758
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4759
    """
4760 4761 4762 4763
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
4764 4765 4766

    .. math::

4767
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4768

4769 4770 4771 4772 4773
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
4774

4775
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
4776 4777

    In this formular:
4778 4779 4780 4781 4782 4783
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
4784 4785 4786 4787 4788

    The simple usage is:

    .. code-block:: python

4789
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
4790 4791
                                       size=elem_dim)

4792 4793 4794 4795
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
Z
zhangjinchao01 已提交
4796 4797 4798 4799
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4800 4801
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4802
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4803 4804
    :rtype: LayerOutput
    """
4805 4806 4807 4808
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
4809
            size = vectors.size / weights.size
4810 4811
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
4812 4813
    Layer(
        name=name,
4814
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
4815
        size=size,
4816
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
4817 4818 4819
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4820

4821

4822
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
4823

4824

Z
zhangjinchao01 已提交
4825
@wrap_name_default()
L
luotao1 已提交
4826
@layer_support()
Z
zhangjinchao01 已提交
4827 4828 4829 4830 4831 4832 4833
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4834
                       num_channels=None,
L
luotao1 已提交
4835 4836
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
4837 4838
    """
    Expand feature map to minibatch matrix.
4839
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
4840
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4851
    time step is block_y * block_x * num_channels. This layer can be used after
Z
zhangjinchao01 已提交
4852 4853
    convolution neural network, and before recurrent neural network.

4854 4855 4856 4857
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4858
       block_expand = block_expand_layer(input=layer,
4859
                                         num_channels=128,
4860 4861 4862 4863 4864
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

Z
zhangjinchao01 已提交
4865 4866
    :param input: The input layer.
    :type input: LayerOutput
4867 4868
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
Z
zhangjinchao01 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4883 4884
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4885
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4886 4887
    :rtype: LayerOutput
    """
4888 4889 4890
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
4908 4909


4910 4911
@wrap_name_default()
@layer_support()
4912
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4913 4914 4915 4916 4917
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4918
    So groups should be larger than 1, and the num of channels should be able
4919 4920
    to devided by groups.

X
xuwei06 已提交
4921 4922 4923 4924 4925 4926 4927 4928
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

4929
    Please refer to Paper:
4930 4931 4932 4933
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4934

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
4963 4964 4965 4966 4967 4968 4969 4970 4971
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4972 4973


Z
zhangjinchao01 已提交
4974
@wrap_name_default()
L
luotao1 已提交
4975
@layer_support()
Q
qijun 已提交
4976 4977 4978 4979 4980
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4981
              layer_attr=None):
Z
zhangjinchao01 已提交
4982 4983 4984 4985 4986
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4987 4988
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4989 4990
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4991 4992 4993 4994 4995 4996 4997 4998

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

C
caoying03 已提交
4999
    The example usage is:
Z
zhangjinchao01 已提交
5000 5001 5002 5003 5004 5005 5006 5007

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

5008
    :param input: The input layer.
Z
zhangjinchao01 已提交
5009 5010 5011
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
5012
    :param size: category numbers + 1.
Z
zhangjinchao01 已提交
5013
    :type size: int
5014 5015
    :param name: The name of this layer
    :type name: basestring|None
Z
zhangjinchao01 已提交
5016 5017
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
5018 5019
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5020
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5021 5022 5023 5024
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5025 5026 5027 5028 5029
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5030
    Layer(
5031 5032 5033 5034
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5035
        inputs=[input.name, label.name],
Q
qijun 已提交
5036
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5037 5038
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5039

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5051
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5052
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
5070 5071 5072 5073

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
L
Liu Yiqun 已提交
5074
    icml2006_GravesFGS06.pdf>`_.
5075 5076 5077

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
L
Liu Yiqun 已提交
5078 5079 5080
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
5081 5082
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
5083
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
5084
          'linear' activation is expected instead in the 'input' layer.
5085

C
caoying03 已提交
5086
    The example usage is:
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5132
@wrap_name_default()
5133
@wrap_param_attr_default()
L
luotao1 已提交
5134
@layer_support()
Q
qijun 已提交
5135 5136 5137 5138 5139 5140
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5141
              coeff=1.0,
L
luotao1 已提交
5142
              layer_attr=None):
Z
zhangjinchao01 已提交
5143 5144 5145 5146
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5147
    The example usage is:
Z
zhangjinchao01 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
5158
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5159 5160 5161 5162 5163 5164 5165 5166 5167
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5168 5169
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5170 5171
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5172
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5173 5174 5175 5176 5177
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5178 5179 5180 5181 5182 5183
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5184

Q
qijun 已提交
5185
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5186 5187 5188 5189
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5190 5191 5192 5193
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5194
        coeff=coeff,
Q
qijun 已提交
5195
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5196 5197 5198
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5199 5200 5201 5202
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5203

5204

Z
zhangjinchao01 已提交
5205
@wrap_name_default()
5206
@wrap_param_attr_default()
L
luotao1 已提交
5207
@layer_support()
Q
qijun 已提交
5208 5209 5210 5211 5212
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5213
                       layer_attr=None):
Z
zhangjinchao01 已提交
5214 5215 5216 5217 5218 5219 5220
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

C
caoying03 已提交
5221
    The example usage is:
L
Luo Tao 已提交
5222 5223 5224 5225 5226 5227

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5238 5239
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
5240
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5241 5242 5243 5244 5245 5246
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5247
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5248 5249 5250 5251
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5252 5253 5254 5255
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5256
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5257 5258 5259
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5260 5261 5262 5263
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5264

Q
qijun 已提交
5265

Y
Yu Yang 已提交
5266
@wrap_act_default(act=SigmoidActivation())
5267
@wrap_bias_attr_default(has_bias=True)
5268
@wrap_param_attr_default()
5269 5270
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5271 5272
def nce_layer(input,
              label,
C
caoying03 已提交
5273
              num_classes=None,
Y
Yu Yang 已提交
5274
              act=None,
5275
              param_attr=None,
Q
qijun 已提交
5276 5277 5278 5279 5280 5281
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5282 5283 5284 5285 5286 5287 5288 5289 5290
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5291 5292
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5304
    :type num_classes: int
Y
Yu Yang 已提交
5305 5306
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5307 5308
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5309
    :param num_neg_samples: number of negative samples. Default is 10.
5310
    :type num_neg_samples: int
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5324 5325 5326 5327 5328 5329 5330 5331
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5332
    assert isinstance(input, collections.Sequence)
5333

5334 5335
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5336 5337
    if num_classes is None:
        num_classes = label.size
5338 5339 5340
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5341
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5342 5343
    if not isinstance(act, BaseActivation):
        raise TypeError()
5344

5345 5346
    ipts_for_layer = []
    parents = []
5347
    for each_input, attr in zip(input, param_attr):
5348
        assert isinstance(each_input, LayerOutput)
5349
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5360
    l = Layer(
5361 5362 5363 5364
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5365
        active_type=act.name,
5366 5367 5368
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5369 5370
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5371 5372 5373 5374 5375
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
Q
qijun 已提交
5376

5377

Z
zhangjinchao01 已提交
5378 5379 5380
"""
following are cost Layers.
"""
5381 5382


Z
zhangjinchao01 已提交
5383
@wrap_name_default()
L
luotao1 已提交
5384
@layer_support()
Q
qijun 已提交
5385 5386 5387 5388 5389 5390 5391
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5392
    """
5393
    A cost Layer for learning to rank using gradient descent. Details can refer
5394 5395
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
Z
zhangjinchao01 已提交
5396 5397 5398 5399 5400
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

L
luotao02 已提交
5401
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5402

L
luotao02 已提交
5403
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5404

L
luotao02 已提交
5405
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5406 5407 5408 5409 5410 5411 5412 5413

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5414
    The example usage is:
Z
zhangjinchao01 已提交
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5435 5436
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5437
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5450 5451 5452 5453 5454 5455
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5456

X
xuwei06 已提交
5457
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5458

5459

Z
zhangjinchao01 已提交
5460
@wrap_name_default()
L
luotao1 已提交
5461
@layer_support()
Q
qijun 已提交
5462 5463 5464 5465 5466 5467
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5468 5469 5470
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5471
    The example usage is:
Z
zhangjinchao01 已提交
5472 5473 5474 5475 5476 5477 5478 5479

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5480
    :param input: Samples of the same query should be loaded as sequence.
Z
zhangjinchao01 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
C
caoying03 已提交
5492 5493 5494
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
Z
zhangjinchao01 已提交
5495 5496 5497
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5498 5499
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5500
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5501 5502
    :rtype: LayerOutput
    """
5503 5504 5505
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5506 5507 5508 5509 5510 5511 5512
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5513

Q
qijun 已提交
5514 5515
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5516

5517

Z
zhangjinchao01 已提交
5518
@wrap_name_default()
L
luotao1 已提交
5519
@layer_support()
5520 5521 5522 5523 5524 5525
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
5526 5527 5528
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
5529 5530
    The example usage is:

Z
zhangjinchao01 已提交
5531 5532
    .. code-block:: python

X
xuwei06 已提交
5533
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5534
                            label=label_layer)
Z
zhangjinchao01 已提交
5535 5536 5537 5538 5539 5540 5541

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5542 5543
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
Z
zhangjinchao01 已提交
5544
    :type coeff: float.
5545 5546 5547 5548
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5549 5550
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5551
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5552 5553 5554
    :rtype: LayerOutput.
    """

5555
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
5556 5557 5558
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5559
        inputs=ipts,
Q
qijun 已提交
5560 5561
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5562
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
5563

5564

Z
zhangjinchao01 已提交
5565
@wrap_name_default()
L
luotao1 已提交
5566
@layer_support()
Q
qijun 已提交
5567 5568 5569 5570
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5571 5572
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
5573 5574
    """
    A loss layer for multi class entropy with selfnorm.
5575
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
5576

C
caoying03 已提交
5577 5578
    The example usage is:

Z
zhangjinchao01 已提交
5579 5580
    .. code-block:: python

X
xuwei06 已提交
5581
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5582
                                          label=label_layer)
Z
zhangjinchao01 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5594 5595
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5596
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5597 5598
    :rtype: LayerOutput.
    """
Q
qijun 已提交
5599 5600 5601 5602 5603 5604 5605
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5606

Q
qijun 已提交
5607 5608 5609 5610 5611
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
5612

5613

X
xuwei06 已提交
5614 5615 5616 5617 5618 5619
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

C
caoying03 已提交
5620 5621
    The example usage is:

X
xuwei06 已提交
5622 5623
    .. code-block:: python

L
Luo Tao 已提交
5624
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5635
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
5636 5637 5638 5639 5640
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5641

Q
qijun 已提交
5642
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5643 5644


Z
zhangjinchao01 已提交
5645
@wrap_name_default()
L
luotao1 已提交
5646 5647
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
Z
zhangjinchao01 已提交
5648 5649 5650
    """
    A loss layer for huber loss.

C
caoying03 已提交
5651 5652
    The example usage is:

Z
zhangjinchao01 已提交
5653 5654
    .. code-block:: python

X
xuwei06 已提交
5655
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5656
                         label=label_layer)
Z
zhangjinchao01 已提交
5657 5658 5659 5660 5661 5662 5663 5664 5665

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5666 5667
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5668
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5669 5670
    :rtype: LayerOutput.
    """
5671 5672 5673
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
5674 5675 5676 5677 5678 5679
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5680
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
5681

5682

Z
zhangjinchao01 已提交
5683
@wrap_name_default()
L
luotao1 已提交
5684
@layer_support()
Q
qijun 已提交
5685 5686 5687 5688
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5689
                                     layer_attr=None):
Z
zhangjinchao01 已提交
5690 5691 5692
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
5693 5694
    The example usage is:

Z
zhangjinchao01 已提交
5695 5696
    .. code-block:: python

X
xuwei06 已提交
5697
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5698
                                               label=label_layer)
Z
zhangjinchao01 已提交
5699 5700 5701 5702 5703 5704 5705 5706 5707

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5708 5709
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5710
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5711 5712 5713
    :rtype: LayerOutput
    """

5714 5715
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
Q
qijun 已提交
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5732 5733 5734 5735


@wrap_name_default()
@layer_support()
5736
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5737 5738
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5739
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5740 5741 5742 5743 5744 5745 5746 5747 5748

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5749
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5750

D
dangqingqing 已提交
5751 5752 5753
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

C
caoying03 已提交
5754 5755
    The example usage is:

D
dangqingqing 已提交
5756 5757
    .. code-block:: python

5758 5759
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5760 5761 5762 5763 5764 5765 5766

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5767 5768
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5782
        coeff=coeff,
D
dangqingqing 已提交
5783 5784 5785
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
5805 5806
    The example usage is:

W
wwhu 已提交
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5839 5840


5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5857 5858


D
dangqingqing 已提交
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5881

D
dangqingqing 已提交
5882 5883 5884 5885 5886
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5887

D
dangqingqing 已提交
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5931 5932


5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
5952 5953 5954 5955 5956 5957
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5958 5959 5960 5961 5962
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
C
caoying03 已提交
5963 5964 5965 5966 5967 5968

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5969 5970 5971 5972 5973 5974 5975 5976
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

5977
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
C
caoying03 已提交
5978
    assert isinstance(param_attr, ParameterAttribute)
5979 5980 5981

    l = Layer(
        name=name,
C
caoying03 已提交
5982
        type=LayerType.PRELU,
C
caoying03 已提交
5983
        inputs=Input(input.name, **param_attr.attr),
5984 5985 5986 5987 5988 5989 5990
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
5991 5992


5993
@wrap_name_default()
C
caoying03 已提交
5994
@layer_support(ERROR_CLIPPING, DROPOUT)
5995 5996 5997 5998 5999 6000 6001
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6002 6003
                     gate_bias_attr=True,
                     inproj_attr=None,
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
    prodict between :match:`X'` and :math:`\sigma` is finally returned.

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

    :param input: input for this layer.
    :type input: LayerOutput
    :param size: output size of the gated unit.
    :type size: int
    :param act: activation type of the projected input.
    :type act: BaseActivation
    :param name: name of this layer.
    :type name: basestring
    :param gate_attr: Attributes to tune the gate output, for example, error
        clipping threshold, dropout and so on. See ExtraLayerAttribute for
        more details.
    :type gate_attr: ExtraLayerAttribute|None
    :param gate_param_attr: Attributes to tune the learnable projected matrix
        parameter of the gate.
    :type gate_param_attr: ParameterAttribute|None
C
caoying03 已提交
6040 6041 6042 6043 6044 6045
    :param gate_bias_attr: Attributes to tune the learnable bias of the gate.
    :type gate_bias_attr: ParameterAttribute|None
    :param inproj_attr: Attributes to the tune the projected input, for
        example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type inproj_attr: ExtraLayerAttribute|None
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
    :param inproj_param_attr: Attributes to tune the learnable parameter of
        the projection of input.
    :type inproj_param_attr: ParameterAttribute|None
    :param inproj_bias_attr: Attributes to tune the learnable bias of
        projection of the input.
    :type inproj_bias_attr: ParameterAttribute|None
    :param layer_attr: Attributes to tune the final output of the gated unit,
        for example, error clipping threshold, dropout and so on. See
        ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6068
        layer_attr=inproj_attr,
6069 6070 6071 6072 6073 6074 6075 6076 6077
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6078
        param_attr=gate_param_attr,
6079 6080 6081 6082 6083
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6084 6085


6086 6087
@wrap_name_default()
@layer_support()
6088
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6089
    """
6090
    The crop layer crops images by offset and shape. User can set crop shape by
6091
    args 'shape' explicitly or by reference input layer.
6092

6093 6094 6095
    The example usage is:

    .. code-block:: python
W
whs 已提交
6096
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6097 6098 6099 6100

    :param input: The input layer.If two inputs were setted,
                    the second input will be regarded as reference input
    :type input: LayerOutput or Sequence
6101 6102
    :param offset: The crop offset
    :type offset: Sequence
6103 6104 6105 6106 6107 6108 6109
    :param axis: start axis to be cropped. To image input layer:
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
    :type partial_sum: int
    :param shape: The shape to be cropped. Default is None.
6110
    :type shape: Sequence | None
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
    :param name: Name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6133 6134


C
caoying03 已提交
6135 6136
@wrap_name_default()
@layer_support()
6137
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6138
    """
6139
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6140
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6141

C
caoying03 已提交
6142 6143 6144
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6145 6146 6147 6148

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6149 6150

        sub_nest_seq = sub_nested_seq_layer(input=[data, selected_indices])
6151

C
caoying03 已提交
6152

6153 6154 6155
    :param input: A nested sequence.
    :type input: LayerOutput
    :param selected_indices: a set of sequence indices in the nested sequence.
C
caoying03 已提交
6156 6157 6158 6159 6160 6161
    :type input: LayerOutput
    :param name: name of this layer.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6162

6163 6164 6165 6166 6167 6168 6169
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6170
    l = Layer(
6171 6172
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6173 6174 6175 6176 6177 6178 6179
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6180 6181


G
guosheng 已提交
6182
@wrap_name_default("clip")
6183
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6184 6185 6186 6187 6188 6189 6190 6191 6192
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6193
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6194 6195 6196 6197 6198

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
6199 6200 6201 6202
    :param min: The lower threshold for clipping.
    :type min: double
    :param max: The upper threshold for clipping.
    :type max: double
6203 6204
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6205 6206 6207 6208 6209
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6210 6211
        min=min,
        max=max)
G
guosheng 已提交
6212 6213
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6214 6215


6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

    :param name: name of this layer.
    :type name: basestring
    :param input: input for this layer, it should be a sequence.
    :type input: LayerOutput
    :param starts: start indices to slice the input sequence.
    :type starts: LayerOutput|None
    :param ends: end indices to slice the input sequence.
    :type ends: LayerOutput|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
6280 6281


6282 6283 6284
@wrap_name_default()
@layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1):
6285
    """
C
caoying03 已提交
6286
    This layer accepts one input which are scores over a sequence or a nested
6287 6288 6289 6290 6291 6292 6293 6294 6295
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

        kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)


    :param name: The Layer Name.
    :type name: basestring
C
caoying03 已提交
6296
    :param input: The input layer. It stores scores over a sequence or a nested
6297 6298 6299 6300 6301 6302 6303
        sequence and its size must be 1.
    :type input: LayerOutput.
    :param beam_size: squence indices with top beam_size scores are returned.
    :type beam_size: double
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6304
    assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer "
6305
                                            "accepts only one input.")
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
    assert input.size == 1, (
        "input of kmax_sequence_score_layer is a score"
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
6318 6319 6320 6321 6322 6323 6324


@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
6325 6326
    A layer applies a linear transformation to each element in each row of
    the input matrix. For each element, the layer first re-scale it and then
6327 6328
    adds a bias to it.

X
xuwei06 已提交
6329
    This layer is very like the SlopeInterceptLayer, except the scale and
6330 6331
    bias are trainable.

G
guosheng 已提交
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param param_attr: The parameter attribute of scaling.
    :type param_attr: ParameterAttribute
    :param bias_attr: The parameter attribute of shifting.
    :type bias_attr: ParameterAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)