Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
5e4cc241
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5e4cc241
编写于
11月 02, 2016
作者:
W
wangyang59
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revised deconv implementations according to luotao1
上级
5fff96f5
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
62 addition
and
164 deletion
+62
-164
paddle/gserver/layers/ConvBaseLayer.cpp
paddle/gserver/layers/ConvBaseLayer.cpp
+2
-2
paddle/gserver/layers/ConvBaseLayer.h
paddle/gserver/layers/ConvBaseLayer.h
+2
-2
paddle/gserver/layers/ExpandConvBaseLayer.cpp
paddle/gserver/layers/ExpandConvBaseLayer.cpp
+18
-16
paddle/gserver/layers/ExpandConvBaseLayer.h
paddle/gserver/layers/ExpandConvBaseLayer.h
+7
-6
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+7
-6
paddle/gserver/layers/ExpandConvLayer.h
paddle/gserver/layers/ExpandConvLayer.h
+3
-3
paddle/gserver/layers/ExpandConvTransLayer.cpp
paddle/gserver/layers/ExpandConvTransLayer.cpp
+5
-5
paddle/gserver/layers/ExpandConvTransLayer.h
paddle/gserver/layers/ExpandConvTransLayer.h
+3
-3
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+2
-2
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+13
-119
未找到文件。
paddle/gserver/layers/ConvBaseLayer.cpp
浏览文件 @
5e4cc241
...
...
@@ -22,9 +22,9 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
Layer
::
init
(
layerMap
,
parameterMap
);
if
(
config_
.
type
()
==
"exconv"
||
config_
.
type
()
==
"cudnn_conv"
)
{
is
Conv_
=
tru
e
;
is
Deconv_
=
fals
e
;
}
else
{
is
Conv_
=
fals
e
;
is
Deconv_
=
tru
e
;
}
/* Initialize the convolutional layer parameter */
...
...
paddle/gserver/layers/ConvBaseLayer.h
浏览文件 @
5e4cc241
...
...
@@ -28,8 +28,8 @@ class ConvBaseLayer : public Layer {
protected:
typedef
std
::
vector
<
int
>
IntV
;
/// True if it's
convolution layer, false if it's deconv
layer
bool
is
C
onv_
;
/// True if it's
deconv layer, false if it's convolution
layer
bool
is
Dec
onv_
;
/// The number of filters.
int
numFilters_
;
...
...
paddle/gserver/layers/
ConvBaseLayerCpu
.cpp
→
paddle/gserver/layers/
ExpandConvBaseLayer
.cpp
浏览文件 @
5e4cc241
...
...
@@ -13,11 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "ExpandConvBaseLayer.h"
#include "paddle/utils/Logging.h"
#include "ConvBaseLayerCpu.h"
namespace
paddle
{
bool
ConvBaseLayerCpu
::
init
(
const
LayerMap
&
layerMap
,
bool
ExpandConvBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
...
...
@@ -34,10 +35,10 @@ bool ConvBaseLayerCpu::init(const LayerMap &layerMap,
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
nf
=
isConv_
?
numFilters_
:
conf
.
channels
();
nf
=
(
!
isDeconv_
)
?
numFilters_
:
conf
.
channels
();
subM_
.
push_back
(
nf
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
channel
=
isConv_
?
conf
.
channels
()
:
numFilters_
;
channel
=
(
!
isDeconv_
)
?
conf
.
channels
()
:
numFilters_
;
subK_
.
push_back
(
channel
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
...
...
@@ -47,11 +48,11 @@ bool ConvBaseLayerCpu::init(const LayerMap &layerMap,
return
true
;
}
void
ConvBaseLayerCpu
::
resetExpandInput
(
size_t
height
,
size_t
width
)
{
void
ExpandConvBaseLayer
::
resetExpandInput
(
size_t
height
,
size_t
width
)
{
Matrix
::
resizeOrCreate
(
expandInput_
,
height
,
width
,
false
,
useGpu_
);
}
void
ConvBaseLayerCpu
::
addSharedBias
()
{
void
ExpandConvBaseLayer
::
addSharedBias
()
{
size_t
mapW
=
getSize
()
/
numFilters_
;
size_t
mapH
=
getOutputValue
()
->
getElementCnt
()
/
mapW
;
MatrixPtr
out
=
...
...
@@ -75,7 +76,7 @@ void ConvBaseLayerCpu::addSharedBias() {
bias
->
clear
();
}
void
ConvBaseLayerCpu
::
addUnsharedBias
()
{
void
ExpandConvBaseLayer
::
addUnsharedBias
()
{
MatrixPtr
outValue
=
getOutputValue
();
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
...
...
@@ -84,9 +85,9 @@ void ConvBaseLayerCpu::addUnsharedBias() {
}
void
ConvBaseLayerCpu
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
void
ExpandConvBaseLayer
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
)
{
int
channel
=
isConv_
?
channels_
[
inIdx
]
:
numFilters_
;
int
channel
=
(
!
isDeconv_
)
?
channels_
[
inIdx
]
:
numFilters_
;
resetExpandInput
(
subK_
[
inIdx
]
*
groups_
[
inIdx
],
subN_
[
inIdx
]);
real
*
imgData
=
image
->
getData
()
+
startIdx
*
image
->
getWidth
();
...
...
@@ -101,7 +102,7 @@ void ConvBaseLayerCpu::expandOneFrame(MatrixPtr image, size_t startIdx,
imageTmp
->
clear
();
}
void
ConvBaseLayerCpu
::
expandFwdOnce
(
MatrixPtr
image
,
MatrixPtr
out
,
void
ExpandConvBaseLayer
::
expandFwdOnce
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inIdx
,
int
startIdx
)
{
int
subM
=
subM_
[
inIdx
];
int
subN
=
subN_
[
inIdx
];
...
...
@@ -109,7 +110,7 @@ void ConvBaseLayerCpu::expandFwdOnce(MatrixPtr image, MatrixPtr out,
expandOneFrame
(
image
,
startIdx
,
inIdx
);
int
nf
=
isConv_
?
numFilters_
:
channels_
[
inIdx
];
int
nf
=
(
!
isDeconv_
)
?
numFilters_
:
channels_
[
inIdx
];
real
*
outData
=
out
->
getData
()
+
startIdx
*
subN
*
nf
;
...
...
@@ -132,8 +133,9 @@ void ConvBaseLayerCpu::expandFwdOnce(MatrixPtr image, MatrixPtr out,
}
}
void
ConvBaseLayerCpu
::
bpropActs
(
MatrixPtr
out
,
MatrixPtr
image
,
int
inpIdx
)
{
int
channel
=
isConv_
?
channels_
[
inpIdx
]
:
numFilters_
;
void
ExpandConvBaseLayer
::
bpropActs
(
MatrixPtr
out
,
MatrixPtr
image
,
int
inpIdx
)
{
int
channel
=
(
!
isDeconv_
)
?
channels_
[
inpIdx
]
:
numFilters_
;
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
...
...
@@ -186,7 +188,7 @@ void ConvBaseLayerCpu::bpropActs(MatrixPtr out, MatrixPtr image, int inpIdx) {
}
}
void
ConvBaseLayerCpu
::
bpropWeights
(
MatrixPtr
image
,
MatrixPtr
out
,
void
ExpandConvBaseLayer
::
bpropWeights
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
)
{
MatrixPtr
weightGrad
=
weights_
[
inpIdx
]
->
getWGrad
();
...
...
@@ -221,7 +223,7 @@ void ConvBaseLayerCpu::bpropWeights(MatrixPtr image, MatrixPtr out,
}
}
void
ConvBaseLayerCpu
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
void
ExpandConvBaseLayer
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
getSize
()
/
numFilters_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
...
...
@@ -234,7 +236,7 @@ void ConvBaseLayerCpu::bpropSharedBias(MatrixPtr biases, MatrixPtr v) {
biases
->
collectBias
(
*
transOutValue_
,
1.0
f
);
}
void
ConvBaseLayerCpu
::
bpropBiases
(
MatrixPtr
v
)
{
void
ExpandConvBaseLayer
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
...
...
paddle/gserver/layers/
ConvBaseLayerCpu
.h
→
paddle/gserver/layers/
ExpandConvBaseLayer
.h
浏览文件 @
5e4cc241
...
...
@@ -25,7 +25,7 @@ namespace paddle {
* @brief A subclass of ConvBaseLayer that is a superclass of both
* ExpandConvLayer and ExpandConvTransLayer
*/
class
ConvBaseLayerCpu
:
public
ConvBaseLayer
{
class
ExpandConvBaseLayer
:
public
ConvBaseLayer
{
protected:
/// For expand convolution.
/// subM_ = numFilters_ / groups_.
...
...
@@ -43,18 +43,19 @@ protected:
/// The spatial dimensions of width of output feature map.
IntV
outputW_
;
/*The expandInput_ and transOutValue_ are used for CPU expand conv calc*/
/// Expand one sample at a time. shape:
/// (numChannels * filterPixels_, outputSizeH * outputSizeW)
/*The expandInput_ and transOutValue_ are used for CPU expand conv calc
* Expand one sample at a time. shape:
* (numChannels * filterPixels_, outputSizeH * outputSizeW)
* */
MatrixPtr
expandInput_
;
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
public:
explicit
ConvBaseLayerCpu
(
const
LayerConfig
&
config
)
explicit
ExpandConvBaseLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
ConvBaseLayerCpu
()
{}
~
ExpandConvBaseLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
...
...
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
5e4cc241
...
...
@@ -24,7 +24,7 @@ REGISTER_LAYER(exconv, ExpandConvLayer);
bool
ExpandConvLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ConvBaseLayerCpu
::
init
(
layerMap
,
parameterMap
);
ExpandConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
return
true
;
}
...
...
@@ -49,16 +49,17 @@ void ExpandConvLayer::forward(PassType passType) {
resetOutput
(
batchSize
,
getOutputSize
());
MatrixPtr
image
=
nullptr
;
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
MatrixPtr
outV
=
getOutputValue
();
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
LayerPtr
prevLayer
=
getPrev
(
i
);
image
=
prevLayer
->
getOutputValue
();
for
(
size_t
off
=
0
;
off
<
image
->
getHeight
();
off
++
)
{
REGISTER_TIMER_INFO
(
"expandFwdOnce"
,
getName
().
c_str
());
expandFwdOnce
(
image
,
getOutputValue
()
,
i
,
off
);
expandFwdOnce
(
image
,
outV
,
i
,
off
);
}
}
/* add the bias-vector */
if
(
biases_
.
get
()
!=
NULL
)
{
if
(
biases_
.
get
())
{
if
(
sharedBiases_
)
{
addSharedBias
();
}
else
{
...
...
@@ -81,9 +82,9 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
/* First, calculate the input layers error */
if
(
NULL
!=
getPrev
(
i
)
->
getOutputGrad
())
{
if
(
getPrev
(
i
)
->
getOutputGrad
())
{
bpropActs
(
outGrad
,
getPrev
(
i
)
->
getOutputGrad
(),
i
);
}
if
(
weights_
[
i
]
->
getWGrad
())
{
...
...
paddle/gserver/layers/ExpandConvLayer.h
浏览文件 @
5e4cc241
...
...
@@ -15,9 +15,9 @@ limitations under the License. */
#pragma once
#include "ConvBaseLayerCpu.h"
#include "paddle/math/Matrix.h"
#include <vector>
#include "ExpandConvBaseLayer.h"
namespace
paddle
{
...
...
@@ -29,10 +29,10 @@ namespace paddle {
* The config file api is img_conv_layer.
*/
class
ExpandConvLayer
:
public
ConvBaseLayerCpu
{
class
ExpandConvLayer
:
public
ExpandConvBaseLayer
{
public:
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayerCpu
(
config
)
{}
ExpandConvBaseLayer
(
config
)
{}
~
ExpandConvLayer
()
{}
...
...
paddle/gserver/layers/ExpandConvTransLayer.cpp
浏览文件 @
5e4cc241
...
...
@@ -29,7 +29,7 @@ REGISTER_LAYER(exconvt, ExpandConvTransLayer);
bool
ExpandConvTransLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ConvBaseLayerCpu
::
init
(
layerMap
,
parameterMap
);
ExpandConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
return
true
;
}
...
...
@@ -72,7 +72,7 @@ void ExpandConvTransLayer::forward(PassType passType) {
resetOutput
(
batchSize
,
getSize
());
MatrixPtr
output
=
nullptr
;
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
LayerPtr
prevLayer
=
getPrev
(
i
);
output
=
prevLayer
->
getOutputValue
();
REGISTER_TIMER_INFO
(
"shrinkFwd"
,
getName
().
c_str
());
...
...
@@ -80,7 +80,7 @@ void ExpandConvTransLayer::forward(PassType passType) {
}
/* add the bias-vector */
if
(
biases_
.
get
()
!=
NULL
)
{
if
(
biases_
.
get
())
{
if
(
sharedBiases_
)
{
addSharedBias
();
}
else
{
...
...
@@ -102,10 +102,10 @@ void ExpandConvTransLayer::backward(const UpdateCallback &callback) {
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
++
i
)
{
/* First, calculate the input layers error */
for
(
size_t
off
=
0
;
off
<
imageGrad
->
getHeight
();
off
++
)
{
if
(
NULL
!=
getPrev
(
i
)
->
getOutputGrad
())
{
if
(
getPrev
(
i
)
->
getOutputGrad
())
{
expandFwdOnce
(
imageGrad
,
getPrev
(
i
)
->
getOutputGrad
(),
i
,
off
);
}
}
...
...
paddle/gserver/layers/ExpandConvTransLayer.h
浏览文件 @
5e4cc241
...
...
@@ -15,9 +15,9 @@ limitations under the License. */
#pragma once
#include "ConvBaseLayerCpu.h"
#include "paddle/math/Matrix.h"
#include <vector>
#include "ExpandConvBaseLayer.h"
namespace
paddle
{
...
...
@@ -28,10 +28,10 @@ namespace paddle {
*
* The config file api is img_convTrans_layer.
*/
class
ExpandConvTransLayer
:
public
ConvBaseLayerCpu
{
class
ExpandConvTransLayer
:
public
ExpandConvBaseLayer
{
public:
explicit
ExpandConvTransLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayerCpu
(
config
)
{}
ExpandConvBaseLayer
(
config
)
{}
~
ExpandConvTransLayer
()
{}
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
5e4cc241
...
...
@@ -1107,7 +1107,7 @@ def parse_conv(conv, input_layer_name, conv_conf):
conv_conf
.
caffe_mode
)
def
parse_conv
t
(
conv
,
input_layer_name
,
conv_conf
,
num_filters
):
def
parse_conv
_trans
(
conv
,
input_layer_name
,
conv_conf
,
num_filters
):
conv_conf
.
filter_size
=
conv
.
filter_size
conv_conf
.
filter_size_y
=
conv
.
filter_size_y
conv_conf
.
channels
=
conv
.
channels
...
...
@@ -1683,7 +1683,7 @@ class ConvTransLayerBase(LayerBase):
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_conv
t
(
parse_conv
_trans
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
conv_conf
,
num_filters
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
5e4cc241
...
...
@@ -1515,7 +1515,8 @@ def img_conv_layer(input, filter_size, num_filters,
name
=
None
,
num_channels
=
None
,
act
=
None
,
groups
=
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
None
,
param_attr
=
None
,
shared_biases
=
True
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
):
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
trans
=
False
):
"""
Convolution layer for image. Paddle only support square input currently and
thus input image's width equals height.
...
...
@@ -1523,120 +1524,7 @@ def img_conv_layer(input, filter_size, num_filters,
The details of convolution layer, please refer UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/
FeatureExtractionUsingConvolution/>`_ .
The num_channel means input image's channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer's
num_filters * num_group.
There are several group of filter in PaddlePaddle implementation.
Each group will process some channel of the inputs. For example, if an input
num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
32*4 = 128 filters to process inputs. The channels will be split into 4
pieces. First 256/4 = 64 channels will process by first 32 filters. The
rest channels will be processed by rest group of filters.
:param name: Layer name.
:type name: basestring
:param input: Layer Input.
:type input: LayerOutput
:param filter_size: The x dimension of a filter kernel. Or input a tuple for
two image dimension.
:type filter_size: int|tuple|list
:param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
currently supports rectangular filters, the filter's
shape will be (filter_size, filter_size_y).
:type filter_size_y: int|None
:param num_filters: Each filter group's number of filter
:param act: Activation type. Default is tanh
:type act: BaseActivation
:param groups: Group size of filters.
:type groups: int
:param stride: The x dimension of the stride. Or input a tuple for two image
dimension.
:type stride: int|tuple|list
:param stride_y: The y dimension of the stride.
:type stride_y: int
:param padding: The x dimension of the padding. Or input a tuple for two
image dimension
:type padding: int|tuple|list
:param padding_y: The y dimension of the padding.
:type padding_y: int
:param bias_attr: Convolution bias attribute. None means default bias.
False means no bias.
:type bias_attr: ParameterAttribute|False
:param num_channels: number of input channels. If None will be set
automatically from previous output.
:type num_channels: int
:param param_attr: Convolution param attribute. None means default attribute
:type param_attr: ParameterAttribute
:param shared_biases: Is biases will be shared between filters or not.
:type shared_biases: bool
:param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput object.
:rtype: LayerOutput
"""
if
num_channels
is
None
:
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
if
filter_size_y
is
None
:
if
isinstance
(
filter_size
,
collections
.
Sequence
):
assert
len
(
filter_size
)
==
2
filter_size
,
filter_size_y
=
filter_size
else
:
filter_size_y
=
filter_size
if
stride_y
is
None
:
if
isinstance
(
stride
,
collections
.
Sequence
):
assert
len
(
stride
)
==
2
stride
,
stride_y
=
stride
else
:
stride_y
=
stride
if
padding_y
is
None
:
if
isinstance
(
padding
,
collections
.
Sequence
):
assert
len
(
padding
)
==
2
padding
,
padding_y
=
padding
else
:
padding_y
=
padding
if
param_attr
.
attr
.
get
(
'initial_smart'
):
# special initial for conv layers.
init_w
=
(
2.0
/
(
filter_size
**
2
*
num_channels
))
**
0.5
param_attr
.
attr
[
"initial_mean"
]
=
0.0
param_attr
.
attr
[
"initial_std"
]
=
init_w
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_smart"
]
=
False
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
conv
=
Conv
(
filter_size
=
filter_size
,
padding
=
padding
,
stride
=
stride
,
channels
=
num_channels
,
groups
=
groups
,
filter_size_y
=
filter_size_y
,
padding_y
=
padding_y
,
stride_y
=
stride_y
),
**
param_attr
.
attr
),
active_type
=
act
.
name
,
num_filters
=
num_filters
,
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
shared_biases
=
shared_biases
,
type
=
LayerType
.
CONV_LAYER
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
CONV_LAYER
,
parents
=
[
input
],
activation
=
act
,
num_filters
=
num_filters
)
@
wrap_name_default
(
"convt"
)
@
wrap_param_attr_default
()
@
wrap_bias_attr_default
()
@
wrap_act_default
(
act
=
ReluActivation
())
@
layer_support
(
DROPOUT
)
def
img_convTrans_layer
(
input
,
filter_size
,
num_filters
,
name
=
None
,
num_channels
=
None
,
act
=
None
,
groups
=
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
None
,
param_attr
=
None
,
shared_biases
=
True
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
):
"""
Convolution Transpose (deconv) layer for image. Paddle only support square
input currently and thus input image's width equals height.
...
...
@@ -1644,7 +1532,6 @@ def img_convTrans_layer(input, filter_size, num_filters,
please refer to the following explanation and references therein
<http://datascience.stackexchange.com/questions/6107/
what-are-deconvolutional-layers/>`_ .
The num_channel means input image's channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer's
num_filters * num_group.
...
...
@@ -1694,6 +1581,8 @@ def img_convTrans_layer(input, filter_size, num_filters,
:type shared_biases: bool
:param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute
:param trans: true if it is a convTransLayer, false if it is a convLayer
:type trans: bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -1729,6 +1618,12 @@ def img_convTrans_layer(input, filter_size, num_filters,
param_attr
.
attr
[
"initial_std"
]
=
init_w
param_attr
.
attr
[
"initial_strategy"
]
=
0
param_attr
.
attr
[
"initial_smart"
]
=
False
if
trans
:
lt
=
LayerType
.
CONVTRANS_LAYER
else
:
lt
=
LayerType
.
CONV_LAYER
Layer
(
name
=
name
,
inputs
=
Input
(
input
.
name
,
conv
=
Conv
(
...
...
@@ -1741,14 +1636,13 @@ def img_convTrans_layer(input, filter_size, num_filters,
num_filters
=
num_filters
,
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
shared_biases
=
shared_biases
,
type
=
LayerType
.
CONVTRANS_LAYER
,
type
=
lt
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
)
)
return
LayerOutput
(
name
,
LayerType
.
CONVTRANS_LAYER
,
parents
=
[
input
],
return
LayerOutput
(
name
,
lt
,
parents
=
[
input
],
activation
=
act
,
num_filters
=
num_filters
)
@
wrap_name_default
(
"pool"
)
@
layer_support
()
def
img_pool_layer
(
input
,
pool_size
,
name
=
None
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录