layers.py 251.2 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
Q
qijun 已提交
151
]
Z
zhangjinchao01 已提交
152 153 154 155 156 157 158


class LayerType(object):
    """
    Layer type enumerations.
    """

159 160 161 162 163 164 165 166
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
167
    POOLING_AVG = 'average'
168
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
169
    COST = 'cost'
170 171
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
172
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
173
    HSIGMOID = 'hsigmoid'
174 175 176 177 178
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
179
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
180
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
181
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
182 183 184
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
185
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
186 187 188 189
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
190
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
191 192 193 194 195 196 197

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
198
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
199 200 201
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
202
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
203
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
204
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
205
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
217
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
218
    BLOCK_EXPAND = "blockexpand"
219
    MAXOUT = "maxout"
Q
qijun 已提交
220
    SPP_LAYER = "spp"
D
dangqingqing 已提交
221
    PAD_LAYER = "pad"
W
wwhu 已提交
222
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
223
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
224 225 226

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
227 228
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
229
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
230 231 232 233 234

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
235
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
236

237 238 239
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

240 241
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
242
    HUBER_REGRESSION = 'huber_regression'
243
    HUBER_CLASSIFICATION = 'huber_classification'
244 245
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
246
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
247 248 249 250 251 252
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
253
    SWITCH_ORDER_LAYER = 'switch_order'
254
    CROP_LAYER = 'crop'
C
caoying03 已提交
255
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
256
    CLIP_LAYER = 'clip'
257
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
258

259
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
260
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
261

262
    RESIZE = 'resize'
Y
yangyaming 已提交
263
    SUB_SEQ_LAYER = 'subseq'
264

Y
yangyaming 已提交
265
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
287
    """
L
Luo Tao 已提交
288
    PaddlePaddle supports three sequence types:
289 290 291

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
292 293
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
294

L
Luo Tao 已提交
295
    Accordingly, AggregateLevel supports two modes:
296

L
Luo Tao 已提交
297
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
298
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
299 300
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
301
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
302 303 304
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
305 306
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
307 308 309
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
332
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
333 334
    """

Q
qijun 已提交
335 336 337 338 339 340 341 342 343
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
344
                 reverse=None):
Z
zhangjinchao01 已提交
345 346
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
347
        assert size is not None
Z
zhangjinchao01 已提交
348 349
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
350
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
351
        self.layer_type = layer_type
352 353
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
354 355 356 357 358 359 360 361
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
362
        self.reverse = reverse
Z
zhangjinchao01 已提交
363

364 365 366 367 368 369 370 371
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

372 373 374 375
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

376 377 378 379 380 381 382 383
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
384 385 386

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
387
DEVICE = 'device'
Z
zhangjinchao01 已提交
388 389 390


def layer_support(*attrs):
391
    attrs_list = list(attrs)
392
    attrs_list.append(DEVICE)
Q
qijun 已提交
393

Z
zhangjinchao01 已提交
394 395 396
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
397
            for attr in attrs_list:
Z
zhangjinchao01 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
414 415 416 417 418
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
449
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
450 451 452 453 454 455 456 457
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
458 459
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
460 461 462 463
    proj.origin = input
    return proj


464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
485
    :param input: The input of this layer.
486 487 488 489 490 491 492 493
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
494 495
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
496 497 498 499
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
530
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
531 532 533 534 535 536 537 538
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
539 540
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
541 542 543 544
    proj.origin = input
    return proj


545
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
575
    :param input: The input of this layer.
576
    :type input: LayerOutput
Z
zhangjinchao01 已提交
577 578
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
579
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
580 581 582 583 584 585
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
586 587
        if size is None:
            size = input.size - offset
Q
qijun 已提交
588
        proj = IdentityOffsetProjection(
589
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
590 591 592 593
        proj.origin = input
    return proj


594 595
def slice_projection(input, slices):
    """
596 597
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
598 599

    .. math::
600
       output = [input.slices()]
601 602 603 604 605 606 607 608 609

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
610
    :param input: The input of this layer.
611 612 613 614
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
615
    :type slices: pair of int
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
648
    :param input: The input of this layer.
X
xuwei06 已提交
649 650 651 652 653 654
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
655
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
656 657 658 659
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
660
@wrap_param_attr_default()
661
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
662
    """
663
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
677
    :param input: The input of this layer.
678 679 680 681 682 683
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
684 685
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
686
    proj.origin = input
687
    return proj
Z
zhangjinchao01 已提交
688

689 690

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
691 692
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
693

Z
zhangjinchao01 已提交
694
    .. math::
L
Luo Tao 已提交
695
       out.row[i] += scale * (a.row[i] .* b.row[i])
696

Z
zhangjinchao01 已提交
697 698
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
699

Z
zhangjinchao01 已提交
700
    The example usage is:
701

Z
zhangjinchao01 已提交
702
    .. code-block:: python
703

L
Luo Tao 已提交
704
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
705

706 707 708 709
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
710 711
    :param scale: config scalar, default value is one.
    :type scale: float
712 713
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
714
    """
715 716 717
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
718
    a = kwargs.get('x', a)  # For Backward capacity.
719 720 721 722 723 724
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
725
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
726
    op.origin = [a, b]
727
    return op
Z
zhangjinchao01 已提交
728

729

Z
zhangjinchao01 已提交
730
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
731 732 733
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
748
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
749 750 751 752 753 754 755 756 757
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
758
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
759 760 761 762 763 764 765 766 767 768 769
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
770 771 772 773 774 775
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
789
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
790 791 792 793 794 795
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
796
        :param act: Activation type.
Z
zhangjinchao01 已提交
797
        :type act: BaseActivation
R
ranqiu 已提交
798 799 800
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
801
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
802 803 804
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
805 806 807 808 809 810 811
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
812 813 814 815 816
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

817
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
818 819 820 821 822 823 824 825
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
826
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
827
            self.inputs.append(other)
828 829 830 831
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
832 833 834 835 836 837 838 839
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

840
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
841 842
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
843
        assert len(self.inputs) != 0
844
        ml = MixedLayer(
Z
zhangjinchao01 已提交
845 846 847 848 849
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
850
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
851 852 853
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
854
        self.finalized = True
Z
zhangjinchao01 已提交
855 856 857 858 859 860


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
861 862 863 864 865
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
893
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
894
                  then this function will just return layer's name.
895
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
896
    :type act: BaseActivation
R
ranqiu 已提交
897 898 899
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
900
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
901 902 903 904 905 906 907 908 909
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
910 911 912 913 914 915
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
916
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
917 918 919 920 921 922 923 924
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
925 926
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
927 928 929 930 931 932 933
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
934
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
935

R
ranqiu 已提交
936
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
937 938 939
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
940
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
941
    :type height: int | None
L
Luo Tao 已提交
942
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
943
    :type width: int | None
Z
zhangjinchao01 已提交
944 945
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
946
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
947 948
    :rtype: LayerOutput
    """
Q
qijun 已提交
949 950 951 952
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
953
        depth=depth,
L
Luo Tao 已提交
954 955
        height=height,
        width=width,
Q
qijun 已提交
956
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
957

C
chengduoZH 已提交
958 959
    if depth is None:
        depth = 1
960 961
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
962 963
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
964
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
965 966

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
967 968 969 970


@wrap_name_default("embedding")
@wrap_param_attr_default()
971
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
972 973 974 975
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

976
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
977
    :type name: basestring
R
ranqiu 已提交
978
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
979 980 981 982 983
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
984
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
985
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
986
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
987
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
988 989
    :rtype: LayerOutput
    """
Q
qijun 已提交
990 991 992 993 994 995
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
996 997 998 999 1000 1001 1002 1003 1004
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1005 1006 1007 1008 1009 1010 1011
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1024
    which is equal to:
Z
zhangjinchao01 已提交
1025 1026 1027 1028 1029 1030

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1031
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1032
    :type name: basestring
R
ranqiu 已提交
1033 1034
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1035 1036
    :param size: The layer dimension.
    :type size: int
1037
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1038 1039 1040
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1041 1042 1043
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1044
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1045
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1046
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1047
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1048 1049 1050 1051
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1052
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1053 1054
        param_attr = [param_attr]
    else:
1055
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1056 1057
            assert len(input) == len(param_attr)
        else:
1058
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1059
                logger.fatal(
W
wangmeng28 已提交
1060 1061 1062 1063 1064
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1065 1066
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1067
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1068 1069

    Layer(
Q
qijun 已提交
1070 1071 1072
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1073 1074 1075 1076 1077
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1078 1079 1080
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1081

1082

1083
@wrap_name_default("print")
1084
def printer_layer(input, format=None, name=None):
1085 1086
    """
    Print the output value of input layers. This layer is useful for debugging.
1087

1088
    :param name: The name of this layer. It is optional.
1089
    :type name: basestring
R
ranqiu 已提交
1090 1091
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1092
    :return: LayerOutput
1093
    """
1094 1095 1096 1097 1098
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1099 1100 1101

    Layer(
        name=name,
1102
        format=format,
1103
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1104
        inputs=[l.name for l in input], )
1105
    # this layer don't return anything, can not be input of other layer.
1106

X
xuwei06 已提交
1107 1108 1109 1110 1111 1112 1113
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1114

Y
yuan 已提交
1115
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1116
def priorbox_layer(input,
G
gaoyuan 已提交
1117
                   image,
G
gaoyuan 已提交
1118 1119 1120 1121 1122
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1123 1124 1125
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1126
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1127
    :type name: basestring
R
ranqiu 已提交
1128
    :param input: The input of this layer.
Y
yuan 已提交
1129
    :type input: LayerOutput
G
gaoyuan 已提交
1130 1131
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1143
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1144 1145 1146
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1147
        inputs=[input.name, image.name],
Y
yuan 已提交
1148 1149 1150 1151 1152 1153
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1154 1155
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1156
        parents=[input, image],
G
gaoyuan 已提交
1157 1158 1159
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1175
    :param name: The name of this layer. It is optional.
1176
    :type name: basestring
Y
yangyaming 已提交
1177 1178
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1179
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1180
    :type input_conf: LayerOutput | List of LayerOutput
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1202
    input_loc_num = len(input_loc)
1203 1204 1205 1206 1207 1208

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1209
    input_conf_num = len(input_conf)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1247 1248
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1249

1250
    :param name: The name of this layer. It is optional.
1251
    :type name: basestring
Y
yangyaming 已提交
1252 1253
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1254
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1255
    :type input_conf: LayerOutput | List of LayerOutput.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1277
    input_loc_num = len(input_loc)
1278 1279 1280 1281 1282 1283

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1284 1285
    input_conf_num = len(input_conf)

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1314 1315 1316 1317 1318 1319
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1320
                   num_channels=None,
G
guosheng 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1338 1339
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1340 1341
    :return: LayerOutput
    """
G
guosheng 已提交
1342 1343 1344 1345
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1346 1347 1348 1349 1350 1351
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1352 1353
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1354 1355
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1356 1357


1358 1359
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1360 1361 1362 1363 1364
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1365

1366
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1367
    :type name: basestring
R
ranqiu 已提交
1368
    :param input: The input of this layer.
G
gaoyuan 已提交
1369 1370 1371 1372 1373
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1374
    assert input.num_filters is not None
G
gaoyuan 已提交
1375 1376
    Layer(
        name=name,
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1390 1391
    return LayerOutput(
        name,
1392
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1393 1394 1395 1396 1397
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1398 1399 1400 1401
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1402 1403 1404 1405
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1406
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1407
                  stride=-1,
Z
zhangjinchao01 已提交
1408 1409 1410 1411
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1412 1413
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1414 1415 1416
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1417
    operation. Note that for sequence with sub-sequence, the default value
1418 1419
    of stride is -1.

Z
zhangjinchao01 已提交
1420 1421 1422 1423 1424 1425
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1426
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1427

L
Luo Tao 已提交
1428 1429
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1430
    :type agg_level: AggregateLevel
1431
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1432
    :type name: basestring
R
ranqiu 已提交
1433
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1434 1435 1436
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1437
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1438
    :param stride: The step size between successive pooling regions.
1439
    :type stride: Int
R
ranqiu 已提交
1440 1441 1442
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1443
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1444
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1445
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1446
    :return: LayerOutput object.
Y
Yu Yang 已提交
1447
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1448 1449
    """
    extra_dict = dict()
1450
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1451 1452
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1453 1454 1455 1456
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1457 1458
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1459 1460 1461
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1462 1463 1464 1465 1466 1467
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1468
        stride=stride,
Q
qijun 已提交
1469
        **extra_dict)
Z
zhangjinchao01 已提交
1470

Q
qijun 已提交
1471 1472
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474

Z
zhangjinchao01 已提交
1475 1476
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1477
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1478 1479
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1480
@layer_support()
Q
qijun 已提交
1481 1482
def lstmemory(input,
              name=None,
1483
              size=None,
Q
qijun 已提交
1484 1485 1486 1487 1488 1489
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1490 1491 1492 1493 1494 1495 1496 1497
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1498
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1499

L
luotao02 已提交
1500
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1501

L
luotao02 已提交
1502
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1503

L
luotao02 已提交
1504
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1505

L
luotao02 已提交
1506
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1507 1508


C
caoying03 已提交
1509
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1510
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1511 1512 1513 1514
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1515

C
caoying03 已提交
1516
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1517 1518
    to config a simple plain lstm layer.

C
caoying03 已提交
1519 1520 1521 1522
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1523 1524 1525 1526 1527

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1528 1529
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1530
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1531 1532 1533
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
1534
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1535 1536 1537 1538 1539
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1540 1541 1542
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1543
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1544
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1545
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1546
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1547
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1548
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1549 1550 1551 1552 1553 1554
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1555
    assert input.size is not None and input.size % 4 == 0
1556

1557 1558 1559 1560 1561
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1562 1563 1564
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1565

Q
qijun 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1576

Q
qijun 已提交
1577 1578 1579 1580 1581
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1582

Z
zhangjinchao01 已提交
1583 1584 1585

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1586
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1587 1588
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1589
@layer_support()
Q
qijun 已提交
1590
def grumemory(input,
1591
              size=None,
Q
qijun 已提交
1592 1593 1594 1595 1596 1597
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1619 1620
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1621 1622 1623 1624 1625

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1626 1627 1628
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1629 1630 1631 1632 1633

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1634
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1635
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1636 1637 1638
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1639

C
caoying03 已提交
1640 1641 1642
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1643 1644 1645 1646 1647 1648 1649 1650

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1651 1652
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1653
    :type input: LayerOutput.
1654 1655
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1656
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1657
    :type reverse: bool
R
ranqiu 已提交
1658
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1659 1660 1661 1662 1663 1664
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1665 1666 1667
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1668
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1669
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1670
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1671
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1672
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1673
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1674 1675 1676 1677
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1678 1679 1680 1681 1682 1683
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1684 1685 1686
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1687

Q
qijun 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1697

Q
qijun 已提交
1698 1699 1700 1701 1702
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1703

Z
zhangjinchao01 已提交
1704 1705 1706

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1707 1708
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1709
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1710
             stride=-1,
Z
zhangjinchao01 已提交
1711 1712 1713 1714
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1715 1716 1717
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1718
    of stride is -1.
1719

L
Luo Tao 已提交
1720 1721 1722 1723 1724 1725
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1726
    :param agg_level: Aggregated level
1727
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1728
    :type name: basestring
R
ranqiu 已提交
1729
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1730
    :type input: LayerOutput
L
Luo Tao 已提交
1731
    :param stride: The step size between successive pooling regions.
1732
    :type stride: Int
Z
zhangjinchao01 已提交
1733 1734
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1735
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1736 1737
    :rtype: LayerOutput
    """
1738 1739 1740 1741 1742 1743
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1744
    if agg_level == AggregateLevel.TO_SEQUENCE:
1745 1746
        assert stride == -1

Z
zhangjinchao01 已提交
1747 1748 1749 1750 1751
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1752
        stride=stride,
Q
qijun 已提交
1753 1754 1755 1756 1757 1758
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1759 1760 1761 1762


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1763 1764
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1765
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1766
              stride=-1,
Z
zhangjinchao01 已提交
1767 1768 1769 1770
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1771 1772 1773
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1774
    of stride is -1.
1775

L
Luo Tao 已提交
1776 1777 1778 1779 1780 1781
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1782
    :param agg_level: aggregation level
1783
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1784
    :type name: basestring
R
ranqiu 已提交
1785
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1786
    :type input: LayerOutput
L
Luo Tao 已提交
1787
    :param stride: The step size between successive pooling regions.
1788
    :type stride: Int
Z
zhangjinchao01 已提交
1789 1790
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1791
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1792 1793
    :rtype: LayerOutput
    """
1794 1795 1796 1797 1798 1799 1800

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1801
    if agg_level == AggregateLevel.TO_SEQUENCE:
1802 1803
        assert stride == -1

Z
zhangjinchao01 已提交
1804 1805 1806 1807 1808
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1809
        stride=stride,
Q
qijun 已提交
1810 1811 1812 1813 1814 1815
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1816 1817 1818


class ExpandLevel(object):
1819 1820 1821 1822 1823
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1824 1825
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1826 1827
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1828 1829
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1830 1831
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1832 1833
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1834 1835
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1836

1837

Z
zhangjinchao01 已提交
1838 1839
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1840 1841
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1842 1843
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1844
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1856
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1857

R
ranqiu 已提交
1858
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1859 1860 1861
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1862
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1863
    :type name: basestring
R
ranqiu 已提交
1864 1865 1866
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1867
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1868 1869 1870 1871
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1872
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1882 1883 1884 1885 1886 1887
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1888 1889


X
xuwei06 已提交
1890
@wrap_name_default()
X
xuwei06 已提交
1891
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1892
@layer_support()
X
xuwei06 已提交
1893 1894 1895
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1896
                 act=None,
X
xuwei06 已提交
1897 1898
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1899
    """
X
xuwei06 已提交
1900
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1901

X
xuwei06 已提交
1902
    If as_row_vector:
X
xuwei06 已提交
1903
    .. math::
X
xuwei06 已提交
1904 1905 1906 1907 1908
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1909 1910 1911 1912 1913

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1914
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1915

R
ranqiu 已提交
1916
    :param input: The input of this layer.
X
xuwei06 已提交
1917 1918 1919
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1920
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1921 1922 1923 1924 1925 1926
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
1927
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1928
    :type act: BaseActivation
X
xuwei06 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1939
        active_type=act.name,
X
xuwei06 已提交
1940
        num_filters=num_repeats,
X
xuwei06 已提交
1941
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1942
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1943 1944 1945 1946 1947
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1948
        activation=act,
Q
qijun 已提交
1949 1950
        parents=[input])

X
xuwei06 已提交
1951

1952 1953 1954
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1955
@layer_support(ERROR_CLIPPING, DROPOUT)
1956 1957 1958 1959 1960 1961 1962 1963
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1964
    the dimension of each instance is M, and the input reshape_size is N, then the
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1975
    :param input: The input of this layer.
1976 1977 1978
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1979
    :param name: The name of this layer. It is optional.
1980
    :type name: basestring
1981
    :param act: Activation type. IdentityActivation is the default activation.
1982 1983 1984
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1985 1986 1987
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1988
    :type bias_attr: ParameterAttribute | None | bool | Any
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2027 2028
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2029 2030
    :param weight: Weight layer.
    :type weight: LayerOutput
2031
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2032 2033 2034
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2035
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2036 2037
    :rtype: LayerOutput
    """
2038
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2039
    assert len(input) == 2
2040 2041 2042 2043 2044 2045 2046
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2047 2048 2049 2050
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2051 2052 2053 2054 2055 2056
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2057 2058


L
liaogang 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2075
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2076

L
liaogang 已提交
2077
    :param   input:        A input layer.
L
liaogang 已提交
2078
    :type    input:        LayerOutput.
L
liaogang 已提交
2079
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2080
    :type    out_size_x:   int | None
L
liaogang 已提交
2081
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2082
    :type    out_size_y:   int | None
L
liaogang 已提交
2083
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2084
    :type    name:         None | basestring
L
liaogang 已提交
2085
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2086 2087 2088 2089 2090 2091 2092
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2093
    assert input.num_filters is not None
L
liaogang 已提交
2094
    num_channels = input.num_filters
Q
qijun 已提交
2095 2096 2097 2098 2099 2100 2101
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2102
                channels=num_channels)),
Q
qijun 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2112

Z
zhangjinchao01 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2132
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2133 2134 2135
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2136
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2137 2138 2139
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2140
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2141 2142
    :rtype: LayerOutput
    """
2143 2144 2145
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2146 2147 2148
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2149
        inputs=[weight.name, input.name],
Q
qijun 已提交
2150 2151 2152
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2153 2154 2155 2156 2157 2158


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2159
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2160 2161

    .. math::
2162
       y  = w x
Z
zhangjinchao01 已提交
2163

2164 2165 2166 2167 2168
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2169 2170 2171 2172 2173 2174 2175

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2176
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2177 2178 2179
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2180
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2181 2182 2183
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2184
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2185 2186
    :rtype: LayerOutput
    """
2187 2188 2189
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2190 2191 2192 2193
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2194 2195 2196
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2197 2198 2199 2200 2201 2202


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2203
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2216
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2217
    :type input: LayerOutput
2218
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2219 2220 2221
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2222
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2223 2224 2225 2226 2227 2228
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2229 2230 2231
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2232 2233


2234 2235
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2236
def rotate_layer(input, height, width, name=None, layer_attr=None):
2237
    """
H
Haonan 已提交
2238 2239
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2240 2241

    .. math::
H
Haonan 已提交
2242
       y(j,i,:) = x(M-i-1,j,:)
2243

H
Haonan 已提交
2244
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2245 2246 2247 2248 2249 2250

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2251 2252
                          height=100,
                          width=100)
2253

R
ranqiu 已提交
2254
    :param input: The input of this layer.
2255 2256 2257
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2258
    :param name: The name of this layer. It is optional.
2259 2260 2261 2262 2263 2264 2265
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2266 2267 2268
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2269
        width=width,
H
Haonan 已提交
2270 2271 2272 2273 2274 2275 2276 2277
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2278 2279


Z
zhangjinchao01 已提交
2280 2281
@wrap_name_default()
@layer_support()
2282
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2283 2284 2285 2286
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2287
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2288 2289 2290 2291 2292
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2293

2294 2295
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2296

L
Luo Tao 已提交
2297 2298 2299 2300 2301 2302
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2303
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2315
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2316 2317
    :rtype: LayerOutput
    """
2318
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2319 2320 2321 2322 2323 2324
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2325
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2326
    else:
2327 2328
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2329 2330 2331 2332 2333 2334
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2335
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2336
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2337

2338

C
caoying03 已提交
2339 2340 2341 2342
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2343
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2344
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2375
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2376 2377 2378
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2379
        inputs=[x.name, y.name],
C
caoying03 已提交
2380 2381 2382 2383
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2384 2385
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2386
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2387
@layer_support()
Q
qijun 已提交
2388 2389
def hsigmoid(input,
             label,
2390
             num_classes=None,
Q
qijun 已提交
2391 2392 2393 2394
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2406
                        label=data_layer)
Z
zhangjinchao01 已提交
2407

R
ranqiu 已提交
2408 2409
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2410 2411 2412
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2413
    :type num_classes: int | None
2414
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2415
    :type name: basestring
R
ranqiu 已提交
2416 2417 2418
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2419
    :type bias_attr: ParameterAttribute | None | bool | Any
2420
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2421
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2422 2423
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2424
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2425 2426 2427 2428
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2429 2430 2431 2432 2433 2434 2435 2436 2437
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2438 2439 2440
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2441 2442 2443 2444 2445
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2446 2447
    ipts_for_layer = []
    parents = []
2448
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2449
        assert isinstance(each_input, LayerOutput)
2450
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2451 2452 2453 2454
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2455
    l = Layer(
Z
zhangjinchao01 已提交
2456 2457 2458 2459 2460
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2461 2462 2463
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2464

2465

Z
zhangjinchao01 已提交
2466 2467 2468 2469 2470
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2480
                   dilation=1,
Q
qijun 已提交
2481 2482 2483 2484 2485 2486 2487
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2488
                   dilation_y=None,
2489 2490
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2491
    """
2492
    Convolution layer for image. Paddle can support both square and non-square
2493
    input currently.
Z
zhangjinchao01 已提交
2494 2495 2496 2497

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2498

2499
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2500
    and non-square input currently.
2501

X
xuwei06 已提交
2502
    The details of convolution transpose layer,
2503 2504 2505
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2506 2507 2508 2509
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2510 2511
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2512
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2513 2514 2515
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2516

L
Luo Tao 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2527
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2528
    :type name: basestring
R
ranqiu 已提交
2529
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2530
    :type input: LayerOutput
R
ranqiu 已提交
2531 2532 2533 2534 2535 2536
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2537
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2538 2539 2540
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2541
    :param num_filters: Each filter group's number of filter
2542
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2543
    :type act: BaseActivation
R
ranqiu 已提交
2544
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2545
    :type groups: int
R
ranqiu 已提交
2546 2547 2548 2549 2550
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2551
    :type stride: int | tuple | list
R
ranqiu 已提交
2552
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2553
    :type stride_y: int
R
ranqiu 已提交
2554 2555 2556 2557 2558
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2559
    :type padding: int | tuple | list
R
ranqiu 已提交
2560
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2561
    :type padding_y: int
R
ranqiu 已提交
2562 2563 2564 2565 2566
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2567
    :type dilation: int | tuple | list
R
ranqiu 已提交
2568
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2569
    :type dilation_y: int
R
ranqiu 已提交
2570 2571 2572
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2573
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2574 2575 2576
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2577
    :type num_channels: int
R
ranqiu 已提交
2578 2579
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2580
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2581
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2582
    :type shared_biases: bool
R
ranqiu 已提交
2583 2584
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2585
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2586
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2587
    :type trans: bool
R
ranqiu 已提交
2588 2589 2590 2591 2592
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2593
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2594 2595 2596 2597 2598
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2599

Z
zhangjinchao01 已提交
2600
    if filter_size_y is None:
2601 2602 2603 2604 2605 2606
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2607
    if stride_y is None:
2608 2609 2610 2611 2612 2613
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2614
    if padding_y is None:
2615 2616 2617 2618 2619 2620
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2621 2622 2623 2624 2625 2626 2627
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2628 2629
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2630
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2631 2632 2633 2634
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2635

2636
    if layer_type:
W
wanghaoshuang 已提交
2637
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2638 2639 2640
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2641
        if trans:
2642
            assert layer_type in ["exconvt", "cudnn_convt"]
2643 2644 2645 2646 2647
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2648

X
xuwei06 已提交
2649
    l = Layer(
Z
zhangjinchao01 已提交
2650
        name=name,
Q
qijun 已提交
2651 2652 2653 2654 2655
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2656
                dilation=dilation,
Q
qijun 已提交
2657 2658 2659 2660 2661
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2662
                dilation_y=dilation_y,
Q
qijun 已提交
2663 2664
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2665 2666 2667 2668
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2669
        type=lt,
Q
qijun 已提交
2670 2671 2672 2673 2674 2675 2676 2677
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2678 2679 2680 2681


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2692 2693
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2694 2695 2696
    """
    Image pooling Layer.

R
ranqiu 已提交
2697
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2698 2699 2700

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2729
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2730
    :type padding: int
R
ranqiu 已提交
2731 2732 2733 2734
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2735
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2736
    :type input: LayerOutput
R
ranqiu 已提交
2737
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2738
    :type pool_size: int
R
ranqiu 已提交
2739 2740 2741 2742 2743 2744 2745
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2746
    :type num_channels: int
R
ranqiu 已提交
2747
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2748
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2749
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2750
    :type stride: int
R
ranqiu 已提交
2751 2752 2753 2754 2755
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2756
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2757 2758 2759
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
2760
    :type ceil_mode: bool
D
dangqingqing 已提交
2761 2762
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2773
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2774
                               CudnnMaxPooling], \
X
xzl 已提交
2775
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2776

2777
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2778
        if (
Y
Yu Yang 已提交
2779
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2780
        else pool_type.name
2781 2782 2783 2784
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2785
    l = Layer(
Z
zhangjinchao01 已提交
2786 2787
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2800
                    padding_y=padding_y))
Q
qijun 已提交
2801
        ],
2802
        ceil_mode=ceil_mode,
Q
qijun 已提交
2803 2804 2805 2806 2807 2808 2809
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2810 2811


C
chengduoZH 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2864
    :type padding: int | tuple | list
R
ranqiu 已提交
2865
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2866
    :type name: basestring.
R
ranqiu 已提交
2867
    :param input: The input of this layer.
C
chengduoZH 已提交
2868
    :type input: LayerOutput
R
ranqiu 已提交
2869 2870
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2871
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2872 2873 2874
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2875
    :type num_channels: int
R
ranqiu 已提交
2876
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2877
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2878 2879 2880
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2881
    :type stride: int | tuple | list
R
ranqiu 已提交
2882 2883 2884 2885 2886
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2887
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2888 2889 2890
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2960 2961
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2962 2963 2964 2965 2966 2967
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2968
    """
R
ranqiu 已提交
2969 2970 2971 2972 2973
    A layer performs spatial pyramid pooling.

    Reference:
        Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
        https://arxiv.org/abs/1406.4729
Q
qijun 已提交
2974

L
Luo Tao 已提交
2975 2976 2977 2978
    The example usage is:

    ..  code-block:: python

2979 2980 2981
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2982 2983
                        pool_type=MaxPooling())

2984
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2985
    :type name: basestring
R
ranqiu 已提交
2986
    :param input: The input of this layer.
Q
qijun 已提交
2987
    :type input: LayerOutput
R
ranqiu 已提交
2988 2989 2990
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
2991
    :type num_channels: int
R
ranqiu 已提交
2992
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
2993
    :type scale: BasePoolingType
R
ranqiu 已提交
2994
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
2995
    :type pyramid_height: int
R
ranqiu 已提交
2996 2997
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3015
    l = Layer(
Q
qijun 已提交
3016 3017
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3018 3019 3020 3021 3022
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3023
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3035 3036 3037 3038
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3039
    l = Layer(
Q
qijun 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3059 3060 3061 3062


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3063 3064 3065 3066 3067 3068
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3069
                      layer_attr=None):
Z
zhangjinchao01 已提交
3070
    """
3071
    Response normalization across feature maps.
R
ranqiu 已提交
3072 3073 3074 3075

    Reference:
        ImageNet Classification with Deep Convolutional Neural Networks
        http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
Z
zhangjinchao01 已提交
3076

L
Luo Tao 已提交
3077 3078 3079
    The example usage is:

    ..  code-block:: python
3080

L
Luo Tao 已提交
3081 3082
        norm = img_cmrnorm_layer(input=net, size=5)

3083
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3084
    :type name: basestring
R
ranqiu 已提交
3085
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3086
    :type input: LayerOutput
3087
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3088
    :type size: int
D
dangqingqing 已提交
3089
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3090
    :type scale: float
D
dangqingqing 已提交
3091
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3092
    :type power: float
R
ranqiu 已提交
3093 3094 3095 3096 3097
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3098
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3099
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3100 3101 3102
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3103
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3104 3105 3106


@wrap_bias_attr_default()
3107 3108
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3109 3110
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3111
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3112 3113 3114
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3115
                     img3D=False,
Q
qijun 已提交
3116 3117 3118 3119
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3120 3121
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3122 3123
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3124
    """
R
ranqiu 已提交
3125
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3139 3140 3141 3142
    Reference:
        Batch Normalization: Accelerating Deep Network Training by Reducing
        Internal Covariate Shift
        http://arxiv.org/abs/1502.03167
Z
zhangjinchao01 已提交
3143

L
Luo Tao 已提交
3144 3145 3146
    The example usage is:

    ..  code-block:: python
3147

L
Luo Tao 已提交
3148 3149
        norm = batch_norm_layer(input=net, act=ReluActivation())

3150
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3151
    :type name: basestring
R
ranqiu 已提交
3152
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3153
    :type input: LayerOutput
3154 3155 3156 3157 3158
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3159 3160
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3161
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3162 3163 3164
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3165
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3166
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3167
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3168
    :type act: BaseActivation
R
ranqiu 已提交
3169 3170 3171
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3172
    :type num_channels: int
R
ranqiu 已提交
3173 3174 3175 3176
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3177
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3178 3179
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3180
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3181 3182
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3183
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3184 3185 3186 3187 3188 3189
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3190
    :type use_global_stats: bool | None.
R
ranqiu 已提交
3191 3192
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3193
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3194 3195
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3196
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3197 3198 3199 3200 3201 3202 3203 3204 3205
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3206
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3207
           (batch_norm_type == "cudnn_batch_norm")
X
xuwei06 已提交
3208
    l = Layer(
Z
zhangjinchao01 已提交
3209
        name=name,
C
chengduoZH 已提交
3210
        img3D=img3D,
Q
qijun 已提交
3211 3212
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3213 3214 3215 3216 3217 3218
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3219
        mean_var_names=mean_var_names,
Q
qijun 已提交
3220
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3221

Q
qijun 已提交
3222 3223 3224 3225 3226 3227 3228
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3250
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3251
    :type input: LayerOutput
3252
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3253
    :type name: basestring
R
ranqiu 已提交
3254 3255 3256
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3257
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3258 3259 3260 3261 3262 3263
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3264 3265 3266
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3267 3268


G
guosheng 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3287
    :param input: The input of this layer.
G
guosheng 已提交
3288
    :type input: LayerOutput
3289
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3290
    :type name: basestring
R
ranqiu 已提交
3291 3292
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3306 3307 3308
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3309
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3310
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3329 3330 3331
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3332

C
caoying03 已提交
3333 3334 3335
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3336

3337
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3338
    :type name: basestring
R
ranqiu 已提交
3339
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3340
                 LayerOutput.
R
ranqiu 已提交
3341
    :type input: LayerOutput | list | tuple
3342
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3343
    :type act: BaseActivation
R
ranqiu 已提交
3344 3345 3346
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3347
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3348 3349
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3350
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3351
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3352 3353 3354 3355 3356 3357
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3358
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3359 3360 3361 3362 3363 3364 3365
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3366
    l = Layer(
Q
qijun 已提交
3367 3368 3369
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3370 3371
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3372
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3373

Q
qijun 已提交
3374 3375 3376 3377 3378 3379 3380
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3381 3382 3383 3384


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3385
@layer_support(DROPOUT, ERROR_CLIPPING)
3386
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3387
    """
R
ranqiu 已提交
3388 3389
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3390

3391 3392 3393 3394 3395 3396
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3397
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3398
    :type name: basestring
R
ranqiu 已提交
3399
    :param input: The input layers or projections
R
ranqiu 已提交
3400
    :type input: list | tuple | collections.Sequence
3401
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3402
    :type act: BaseActivation
R
ranqiu 已提交
3403 3404
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3405
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3406
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3407 3408 3409 3410 3411 3412 3413 3414
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3415
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3416 3417

    def __is_type__(o, tp):
3418
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3440 3441
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3442

Q
qijun 已提交
3443 3444
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3445

3446 3447
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3448

3449
    layer = Layer(
Q
qijun 已提交
3450 3451
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3452 3453
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3454
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3455
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3456

3457
    sz = layer.config.size
Z
zhangjinchao01 已提交
3458

Q
qijun 已提交
3459 3460 3461 3462 3463 3464 3465 3466
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3467 3468
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3469
@wrap_bias_attr_default(has_bias=False)
3470
@layer_support(DROPOUT, ERROR_CLIPPING)
3471 3472 3473
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3474
    Concatenate sequence a and sequence b.
3475

3476
    Inputs:
X
xuwei06 已提交
3477
      - a = [a1, a2, ..., am]
3478
      - b = [b1, b2, ..., bn]
3479

X
xuwei06 已提交
3480 3481 3482 3483
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3484 3485 3486 3487 3488 3489 3490

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3491
    :param name: The name of this layer. It is optional.
3492
    :type name: basestring
R
ranqiu 已提交
3493
    :param a: The first input sequence layer
3494
    :type a: LayerOutput
R
ranqiu 已提交
3495
    :param b: The second input sequence layer
3496
    :type b: LayerOutput
3497
    :param act: Activation type. IdentityActivation is the default activation.
3498
    :type act: BaseActivation
R
ranqiu 已提交
3499 3500
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3501
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3502 3503 3504
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3505
    :type bias_attr: ParameterAttribute | None | bool | Any
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3527
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3528 3529
def memory(name,
           size,
3530
           memory_name=None,
Q
qijun 已提交
3531 3532 3533 3534
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3535 3536
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3537
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3538

R
ranqiu 已提交
3539
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3540

R
ranqiu 已提交
3541 3542
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3543

R
ranqiu 已提交
3544 3545
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3546

R
ranqiu 已提交
3547
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3548

3549 3550 3551 3552 3553
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3554 3555
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3556 3557

    .. code-block:: python
L
Liu Yiqun 已提交
3558

3559 3560 3561 3562
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3563
    :param name: The name of the layer which this memory remembers.
3564 3565
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3566
    :type name: basestring
R
ranqiu 已提交
3567
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3568
    :type size: int
R
ranqiu 已提交
3569
    :param memory_name: The name of the memory. It is ignored when name is provided.
3570
    :type memory_name: basestring
3571
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3572
    :type is_seq: bool
R
ranqiu 已提交
3573 3574
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3575
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3576 3577 3578 3579
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3580
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3581 3582
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3583
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3584 3585
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3586
    :type boot_with_const_id: int
R
ranqiu 已提交
3587
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3598 3599
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3600

3601 3602 3603 3604 3605 3606 3607 3608
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3609 3610

    lout = LayerOutput(
3611
        name=memory_name,
Q
qijun 已提交
3612 3613 3614
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3615 3616 3617 3618
    return lout


@wrap_bias_attr_default()
3619 3620
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3621 3622 3623
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3624 3625
def lstm_step_layer(input,
                    state,
3626
                    size=None,
Q
qijun 已提交
3627 3628 3629 3630 3631 3632
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3633
    """
3634 3635
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3636 3637 3638

    ..  math::

3639
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3640

3641
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3642

3643
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3644

3645
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3646

L
luotao02 已提交
3647
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3648 3649


L
luotao02 已提交
3650
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3651
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3652
    input vectors.
Z
zhangjinchao01 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3663
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3664
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3665 3666
    :code:`get_output_layer` to extract this output.

3667
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3668
    :type name: basestring
R
ranqiu 已提交
3669 3670
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3671
    :type size: int
R
ranqiu 已提交
3672
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3673
    :type input: LayerOutput
3674
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3675
    :type state: LayerOutput
3676
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3677
    :type act: BaseActivation
3678 3679
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3680
    :type gate_act: BaseActivation
3681 3682
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3683
    :type state_act: BaseActivation
R
ranqiu 已提交
3684 3685 3686
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3687
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3688
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3689
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3690
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3691 3692
    :rtype: LayerOutput
    """
3693 3694 3695

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3696 3697 3698 3699 3700 3701 3702
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3703
        size=state.size,
Q
qijun 已提交
3704 3705
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3706

Q
qijun 已提交
3707 3708 3709 3710 3711 3712 3713
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3714 3715 3716


@wrap_bias_attr_default()
W
wangyang59 已提交
3717
@wrap_param_attr_default()
Q
qijun 已提交
3718
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3719 3720 3721
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3722 3723 3724 3725 3726 3727 3728
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3729
                   param_attr=None,
Q
qijun 已提交
3730
                   layer_attr=None):
Z
zhangjinchao01 已提交
3731 3732
    """

R
ranqiu 已提交
3733
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3734
    :type input: LayerOutput
R
ranqiu 已提交
3735 3736 3737 3738 3739 3740
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3741 3742
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3743
    :type act: BaseActivation
3744
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3745
    :type name: basestring
3746 3747
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3748
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3749 3750 3751 3752
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3753
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3754 3755 3756 3757
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3758
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3759 3760 3761 3762 3763 3764 3765 3766
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3767 3768 3769 3770
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3771
        # backward model compatibility.
3772
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3773 3774 3775 3776
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3777
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3778
    return LayerOutput(
Q
qijun 已提交
3779 3780
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3781
        parents=[input, output_mem],
Q
qijun 已提交
3782 3783
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3784 3785


Y
Yu Yang 已提交
3786 3787 3788 3789
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3790
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3802
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3803 3804
    and DROPOUT.

3805
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3806 3807 3808 3809 3810 3811
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3812
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3813
    :type name: basestring
3814 3815
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3816
    :type act: BaseActivation
3817 3818
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3819
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3820 3821 3822 3823
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3824
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3825 3826 3827 3828 3829
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3830
    :rtype: LayerOutput
Y
Yu Yang 已提交
3831 3832 3833 3834 3835 3836
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3837
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3838 3839 3840 3841
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3842

Y
Yu Yang 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3880 3881 3882 3883
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3884 3885 3886 3887
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3888

3889
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3890
    :type name: basestring
R
ranqiu 已提交
3891
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3892 3893
                   multiple outputs.
    :type input: LayerOutput
3894
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3895
    :type arg_name: basestring
R
ranqiu 已提交
3896 3897
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3898
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3899 3900 3901 3902 3903 3904 3905
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3906 3907 3908 3909 3910 3911 3912
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3913

Q
qijun 已提交
3914 3915 3916 3917 3918
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3919 3920 3921 3922 3923 3924 3925


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3926 3927 3928 3929 3930 3931 3932
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3933
    """
3934 3935
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3952
    :param input: The input of this layer.
3953
    :type input: LayerOutput
3954
    :param act: Activation type. TanhActivation is the default activation.
3955
    :type act: BaseActivation
C
caoying03 已提交
3956
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
3957 3958 3959
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3960
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3961 3962
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3963
    :type param_attr: ParameterAttribute
3964
    :param name: The name of this layer. It is optional.
3965
    :type name: basestring
R
ranqiu 已提交
3966 3967
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3968
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3969
    :return: LayerOutput object.
3970
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3971
    """
Q
qijun 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3987 3988 3989 3990 3991


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
3992
    and can be a sequence or non-sequence.
3993 3994
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
3995
    """
3996

Z
zhangjinchao01 已提交
3997 3998 3999
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4000
        assert input.size is not None
Z
zhangjinchao01 已提交
4001
        if size is not None:
4002
            assert input.size == size
Z
zhangjinchao01 已提交
4003 4004


4005
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4006
    """
4007
    DEPRECATED.
Z
zhangjinchao01 已提交
4008 4009 4010 4011 4012 4013 4014 4015
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4016
    return input
Z
zhangjinchao01 已提交
4017 4018 4019


@wrap_name_default("recurrent_group")
4020
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4021
    """
C
caoying03 已提交
4022 4023 4024
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4025 4026
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4048 4049
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4050

R
ranqiu 已提交
4051 4052 4053
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4054 4055 4056 4057
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4058
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4059 4060 4061 4062 4063 4064 4065
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4066
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4067

R
ranqiu 已提交
4068
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4069

R
ranqiu 已提交
4070
    :param reverse: If reverse is set to True, the recurrent unit will process the
4071
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4072
    :type reverse: bool
4073

4074 4075
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4076 4077 4078 4079 4080 4081 4082

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4083
    :type targetInlink: LayerOutput | SubsequenceInput
4084

D
dangqingqing 已提交
4085
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4086 4087 4088 4089
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4090
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4091
        input = [input]
4092
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4093 4094

    def is_in_links(x):
4095
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4096 4097 4098 4099

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4100
        name=name,
4101 4102
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4103 4104
    in_args = []
    for each_input in input:
4105
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4106
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4107
            mem = memory(
4108
                name=None,
Q
qijun 已提交
4109 4110
                size=each_input.input.size,
                boot_layer=each_input.input)
4111
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4112
            in_args.append(mem)
4113 4114
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4115

Z
zhangjinchao01 已提交
4116 4117 4118 4119 4120
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4121 4122 4123 4124 4125 4126
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4127 4128 4129

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4130
    for layer_out in layer_outs:
4131 4132
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4133 4134
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4135 4136 4137 4138 4139
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4140

Z
zhangjinchao01 已提交
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4169 4170

    def before_real_step(self):
Q
qijun 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4180 4181 4182
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4183
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4201
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4202
    :type input: LayerOutput
4203
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4204
    :type name: basestring
R
ranqiu 已提交
4205 4206
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4207
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4208
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4209 4210 4211 4212
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4223

4224

R
ranqiu 已提交
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
    :type input: LayerOutput
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4276
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4277
    :type name: basestring
R
ranqiu 已提交
4278
    :param input1: The first input layer.
H
Haonan 已提交
4279
    :type input: LayerOutput
R
ranqiu 已提交
4280
    :param input2: The second input layer.
H
Haonan 已提交
4281
    :type input2: LayerOutput
R
ranqiu 已提交
4282 4283
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4284 4285 4286 4287 4288 4289 4290
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4301

Z
zhangjinchao01 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4318
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4319
    :type name: basestring
R
ranqiu 已提交
4320
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4321
    :type input: LayerOutput
R
ranqiu 已提交
4322
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4323
    :type eos_id: int
R
ranqiu 已提交
4324 4325
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4326
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4327
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4328 4329
    :rtype: LayerOutput
    """
Q
qijun 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4341 4342 4343


@wrap_name_default()
Q
qijun 已提交
4344 4345 4346 4347 4348 4349 4350
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4351
                num_results_per_sample=None):
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4363
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4364 4365 4366 4367
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4368 4369 4370 4371 4372
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4373 4374
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4375 4376
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4377 4378
                               bos_id=0,
                               eos_id=1,
4379
                               beam_size=5)
4380 4381 4382 4383 4384 4385

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4386 4387
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4388
    :type name: basestring
4389
    :param step: A callable function that defines the calculation in a time
4390
                 step, and it is applied to sequences with arbitrary length by
4391 4392 4393 4394 4395
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4396 4397
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4398
                  In beam_search, none of the input's type should be LayerOutput.
4399
    :type input: list
4400 4401 4402
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4403
                   symbol is essential, since it is used to initialize the RNN
4404 4405 4406 4407 4408 4409 4410 4411
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4412 4413
    :param max_length: Max generated sequence length.
    :type max_length: int
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4424 4425
    :return: The generated word index.
    :rtype: LayerOutput
4426 4427
    """

Z
zhangjinchao01 已提交
4428 4429 4430 4431 4432
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4433
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4434 4435 4436 4437 4438 4439
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4440 4441 4442
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4443
        if isinstance(each_input, BaseGeneratedInput):
4444 4445
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4446
            generated_input_index = i
4447

Z
zhangjinchao01 已提交
4448 4449 4450
        else:
            real_input.append(each_input)

4451
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4452 4453 4454 4455 4456 4457 4458 4459

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4460 4461 4462 4463 4464 4465
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4466 4467 4468 4469 4470 4471

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4472
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4473 4474
        return predict

4475 4476
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4477

Q
qijun 已提交
4478

4479 4480
def __cost_input__(input, label, weight=None):
    """
4481
    inputs and parents for cost layers.
4482
    """
C
caoying03 已提交
4483 4484 4485 4486 4487 4488
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4489
    if weight is not None:
4490
        assert weight.size == 1
4491 4492 4493
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4494

Z
zhangjinchao01 已提交
4495 4496

@wrap_name_default()
L
luotao1 已提交
4497
@layer_support()
4498 4499 4500 4501 4502 4503
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4504
    """
4505
    sum of square error cost:
L
Luo Tao 已提交
4506 4507 4508

    ..  math::

4509
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4510

4511
    :param name: The name of this layer. It is optional.
4512
    :type name: basestring
R
ranqiu 已提交
4513
    :param input: The first input layer.
4514
    :type input: LayerOutput
R
ranqiu 已提交
4515
    :param label: The input label.
4516
    :type label: LayerOutput
R
ranqiu 已提交
4517 4518
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4519
    :type weight: LayerOutput
R
ranqiu 已提交
4520
    :param coeff: The weight of the gradient in the back propagation.
4521
                  1.0 is the default value.
4522
    :type coeff: float
R
ranqiu 已提交
4523 4524
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4525
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4526
    :return: LayerOutput object.
4527
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4528
    """
4529 4530
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4531 4532 4533 4534
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4535
        coeff=coeff,
Q
qijun 已提交
4536
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4537
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4538 4539


4540
regression_cost = square_error_cost
L
Luo Tao 已提交
4541 4542


Z
zhangjinchao01 已提交
4543
@wrap_name_default("cost")
4544
@layer_support()
Q
qijun 已提交
4545 4546 4547 4548
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4549
                        evaluator=classification_error_evaluator,
4550 4551
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4552 4553 4554
    """
    classification cost Layer.

4555
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4556
    :type name: basestring
R
ranqiu 已提交
4557
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4558
    :type input: LayerOutput
R
ranqiu 已提交
4559
    :param label: The input label.
Z
zhangjinchao01 已提交
4560
    :type label: LayerOutput
R
ranqiu 已提交
4561 4562
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4563
    :type weight: LayerOutput
R
ranqiu 已提交
4564 4565 4566 4567
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4568
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4569
    :param coeff: The weight of the gradient in the back propagation.
4570
                  1.0 is the default value.
4571
    :type coeff: float
D
dangqingqing 已提交
4572
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4573 4574 4575 4576 4577
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4578 4579 4580

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4581 4582 4583 4584
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4585
        coeff=coeff,
Q
qijun 已提交
4586
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4597
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4598

4599
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4600 4601 4602 4603 4604
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4605
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4606

4607

Q
qijun 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4617 4618
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4619 4620 4621 4622
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4623
    supports GPU mode.
Z
zhangjinchao01 已提交
4624 4625 4626 4627 4628

    The example usage is:

    .. code-block:: python

4629 4630
       op = conv_operator(img=input1,
                          filter=input2,
4631
                          filter_size=3,
Z
zhangjinchao01 已提交
4632 4633 4634
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4635
    :param img: The input image.
4636
    :type img: LayerOutput
R
ranqiu 已提交
4637
    :param filter: The input filter.
4638
    :type filter: LayerOutput
R
ranqiu 已提交
4639
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4640
    :type filter_size: int
R
ranqiu 已提交
4641 4642 4643
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4644
    :type filter_size_y: int
R
ranqiu 已提交
4645
    :param num_filters: The number of the output channels.
4646
    :type num_filters: int
R
ranqiu 已提交
4647 4648 4649
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4650
    :type num_channels: int
R
ranqiu 已提交
4651
    :param stride: The stride on the x axis.
L
luotao02 已提交
4652
    :type stride: int
R
ranqiu 已提交
4653 4654
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4655
    :type stride_y: int
R
ranqiu 已提交
4656
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4657
    :type padding: int
R
ranqiu 已提交
4658 4659
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4670

4671 4672
    if num_channels is None:
        num_channels = img.num_filters
4673 4674

    assert isinstance(filter, LayerOutput)
4675
    assert filter.size is not None
4676

4677 4678 4679
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4691

4692
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4693 4694
    return op

Q
qijun 已提交
4695

4696
@wrap_param_attr_default()
Q
qijun 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4707 4708
                    param_attr=None,
                    trans=False):
4709
    """
R
ranqiu 已提交
4710 4711 4712
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4713 4714 4715 4716 4717

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4718
       proj = conv_projection(input=input1,
4719 4720 4721 4722
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4723
    :param input: The input of this layer.
4724
    :type input: LayerOutput
R
ranqiu 已提交
4725 4726 4727 4728 4729
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4730
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4731 4732 4733
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4734
    :type filter_size_y: int
R
ranqiu 已提交
4735
    :param num_filters: The number of filters.
4736
    :type num_filters: int
R
ranqiu 已提交
4737
    :param num_channels: The number of the input channels.
4738
    :type num_channels: int
R
ranqiu 已提交
4739 4740 4741 4742 4743 4744 4745
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4746
    :type stride_y: int
R
ranqiu 已提交
4747 4748 4749 4750 4751 4752 4753
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4754 4755 4756
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4757 4758
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4759
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4760
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4761
    :type trans: bool
R
ranqiu 已提交
4762 4763
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4792
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4793 4794 4795 4796 4797
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4798 4799 4800
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4813 4814 4815 4816

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4817

D
dangqingqing 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4828 4829
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4830

R
ranqiu 已提交
4831 4832 4833 4834
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4835

D
dangqingqing 已提交
4836
    For example,
4837

4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4859 4860

    The simply usage is:
D
dangqingqing 已提交
4861 4862 4863 4864 4865 4866 4867 4868

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4869
    :param input: The input of this layer.
D
dangqingqing 已提交
4870
    :type input: LayerOutput
R
ranqiu 已提交
4871
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4872
    :type pad_c: list | None
R
ranqiu 已提交
4873
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4874
    :type pad_h: list | None
R
ranqiu 已提交
4875
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4876
    :type pad_w: list | None
R
ranqiu 已提交
4877 4878
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4879
    :type layer_attr: ExtraLayerAttribute
4880
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4923
@wrap_name_default()
L
luotao1 已提交
4924 4925
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4926
    """
R
ranqiu 已提交
4927
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4928 4929 4930 4931 4932 4933 4934 4935
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4936
    In this formula:
4937 4938 4939 4940
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4941 4942 4943 4944 4945

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4946
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4947

4948
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4949
    :type name: basestring
R
ranqiu 已提交
4950
    :param a: The first input of this layer.
4951
    :type a: LayerOutput
R
ranqiu 已提交
4952
    :param b: The second input of this layer.
4953
    :type b: LayerOutput
R
ranqiu 已提交
4954 4955
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4956
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4957
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4958 4959
    :rtype: LayerOutput
    """
4960 4961
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4962 4963 4964
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4965
        inputs=[a.name, b.name],
Q
qijun 已提交
4966
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4967

Q
qijun 已提交
4968 4969
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4970 4971 4972 4973 4974


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4975
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4976
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4977 4978 4979 4980 4981 4982 4983 4984
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4985
    """
R
ranqiu 已提交
4986 4987
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
4988 4989

    .. math::
4990
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4991 4992

    In this formular:
4993 4994
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
4995 4996
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4997
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
4998 4999 5000 5001 5002

    The simple usage is:

    .. code-block:: python

5003
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5004

5005
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5006
    :type name: basestring
R
ranqiu 已提交
5007
    :param a: The first input of this layer.
5008
    :type a: LayerOutput
R
ranqiu 已提交
5009
    :param b: The second input of this layer.
5010
    :type b: LayerOutput
R
ranqiu 已提交
5011 5012
    :param size: The dimension of this layer.
    :type size: int
5013
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5014
    :type act: BaseActivation
R
ranqiu 已提交
5015 5016
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5017
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5018 5019 5020 5021
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5022
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5023 5024
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5025
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5026
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5027 5028
    :rtype: LayerOutput
    """
5029
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5030 5031 5032 5033 5034 5035
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5036 5037 5038 5039
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5040 5041 5042 5043 5044 5045


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5046
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5047 5048
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5049
                       select=None,
Q
qijun 已提交
5050 5051
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5052 5053 5054
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5055 5056 5057
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5058 5059
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5060
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5061 5062 5063 5064 5065 5066 5067
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5068
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5069

5070
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5071
    :type name: basestring
R
ranqiu 已提交
5072 5073
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5074 5075 5076 5077
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5078
    :type select: LayerOutput
R
ranqiu 已提交
5079 5080
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5081
    :type size: int
5082
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5083
    :type act: BaseActivation
R
ranqiu 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5094
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5095 5096 5097 5098
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5099
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5100 5101
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5102
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5103
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5104 5105 5106 5107
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5108
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5109 5110
        param_attr = [param_attr]
    else:
5111
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5112 5113
            assert len(input) == len(param_attr)
        else:
5114
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5115
                logger.fatal(
W
wangmeng28 已提交
5116 5117 5118 5119 5120
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5121 5122
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5123 5124 5125 5126
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5127
    Layer(
Q
qijun 已提交
5128 5129 5130
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5131 5132 5133
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5134
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5135 5136 5137 5138
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5139 5140 5141 5142 5143 5144 5145
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5146 5147 5148


@wrap_name_default()
L
luotao1 已提交
5149 5150
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5151
    """
R
ranqiu 已提交
5152
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5153 5154 5155 5156 5157 5158 5159 5160
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5161
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5162
    :type input: LayerOutput
5163
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5164
    :type name: basestring
R
ranqiu 已提交
5165 5166 5167
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5168
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5169 5170
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5171
    l = Layer(
Z
zhangjinchao01 已提交
5172 5173 5174
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5175 5176 5177
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5178 5179 5180


@wrap_name_default()
L
luotao1 已提交
5181
@layer_support()
Q
qijun 已提交
5182 5183 5184 5185
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5186
                          layer_attr=None):
Z
zhangjinchao01 已提交
5187
    """
R
ranqiu 已提交
5188
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5199
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5200
    :type input: LayerOutput
5201
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5202
    :type name: basestring
R
ranqiu 已提交
5203 5204 5205 5206 5207 5208 5209
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5210
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5211 5212 5213 5214 5215 5216 5217 5218
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5219 5220 5221
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5222 5223 5224


@wrap_name_default()
L
luotao1 已提交
5225
@layer_support()
Q
qijun 已提交
5226
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5227
    """
5228 5229 5230 5231
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5232 5233 5234

    .. math::

5235
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5236

5237 5238 5239 5240 5241
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5242

5243
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5244 5245

    In this formular:
5246 5247 5248 5249 5250 5251
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5252 5253 5254 5255 5256

    The simple usage is:

    .. code-block:: python

5257
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5258 5259
                                       size=elem_dim)

5260 5261 5262 5263
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5264
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5265
    :type size: int
5266
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5267
    :type name: basestring
R
ranqiu 已提交
5268 5269 5270
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5271
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5272 5273
    :rtype: LayerOutput
    """
5274 5275 5276 5277
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5278
            size = vectors.size / weights.size
5279 5280
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5281 5282
    Layer(
        name=name,
5283
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5284
        size=size,
5285
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5286 5287 5288
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5289

5290

5291
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5292

5293

Z
zhangjinchao01 已提交
5294
@wrap_name_default()
L
luotao1 已提交
5295
@layer_support()
Z
zhangjinchao01 已提交
5296 5297 5298 5299 5300 5301 5302
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5303
                       num_channels=None,
L
luotao1 已提交
5304 5305
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5306 5307
    """
    Expand feature map to minibatch matrix.
5308
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5309
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5310 5311 5312 5313 5314 5315 5316

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5317
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5318
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5319
    The number of time steps is outputH * outputW and the dimension of each
5320
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5321
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5322

5323 5324 5325 5326
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5327
       block_expand = block_expand_layer(input=layer,
5328
                                         num_channels=128,
5329 5330 5331 5332 5333
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5334
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5335
    :type input: LayerOutput
R
ranqiu 已提交
5336 5337 5338 5339
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5352
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5353 5354 5355 5356
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5357
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5358 5359
    :rtype: LayerOutput
    """
5360 5361 5362
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5380 5381


5382 5383
@wrap_name_default()
@layer_support()
5384
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5385
    """
R
ranqiu 已提交
5386 5387 5388 5389
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5390

5391
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5392 5393 5394 5395 5396 5397 5398
    to be devided by groups.

    Reference:
        Maxout Networks
        http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
        Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
        https://arxiv.org/pdf/1312.6082v4.pdf
5399

X
xuwei06 已提交
5400 5401 5402 5403 5404 5405 5406 5407
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5408 5409 5410 5411 5412 5413 5414 5415
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5416
    :param input: The input of this layer.
5417
    :type input: LayerOutput
R
ranqiu 已提交
5418 5419 5420 5421
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5422 5423
    :param groups: The group number of input layer.
    :type groups: int
5424
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5425 5426 5427
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5438 5439 5440 5441 5442 5443 5444 5445 5446
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5447 5448


Z
zhangjinchao01 已提交
5449
@wrap_name_default()
L
luotao1 已提交
5450
@layer_support()
Q
qijun 已提交
5451 5452 5453 5454 5455
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5456
              layer_attr=None):
Z
zhangjinchao01 已提交
5457 5458
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5459
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5460 5461
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5462 5463 5464 5465
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5466 5467

    Note:
R
ranqiu 已提交
5468 5469 5470 5471 5472
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5473

C
caoying03 已提交
5474
    The example usage is:
Z
zhangjinchao01 已提交
5475 5476 5477 5478 5479 5480 5481 5482

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5483
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5484
    :type input: LayerOutput
R
ranqiu 已提交
5485
    :param label: The input label.
Z
zhangjinchao01 已提交
5486
    :type label: LayerOutput
R
ranqiu 已提交
5487
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5488
    :type size: int
5489
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5490 5491
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5492
    :type norm_by_times: bool
R
ranqiu 已提交
5493 5494 5495
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5496
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5497 5498 5499 5500
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5501 5502 5503 5504 5505
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5506
    Layer(
5507 5508 5509 5510
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5511
        inputs=[input.name, label.name],
Q
qijun 已提交
5512
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5513 5514
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5515

5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5527
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5528
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5529 5530 5531 5532 5533 5534 5535
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5536 5537 5538 5539
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5540 5541

    Note:
R
ranqiu 已提交
5542 5543 5544
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5545
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5546
          should be consistent with those used in your labels.
5547
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5548
          'linear' activation is expected to be used instead in the 'input' layer.
5549

C
caoying03 已提交
5550
    The example usage is:
5551 5552 5553 5554 5555 5556 5557 5558 5559

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5560
    :param input: The input of this layer.
5561
    :type input: LayerOutput
R
ranqiu 已提交
5562
    :param label: The input label.
5563
    :type label: LayerOutput
R
ranqiu 已提交
5564
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5565
    :type size: int
5566
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5567 5568
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5569
    :type blank: int
R
ranqiu 已提交
5570
    :param norm_by_times: Whether to do normalization by times. False is the default.
5571
    :type norm_by_times: bool
R
ranqiu 已提交
5572 5573 5574
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5597
@wrap_name_default()
5598
@wrap_param_attr_default()
L
luotao1 已提交
5599
@layer_support()
Q
qijun 已提交
5600 5601 5602 5603 5604 5605
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5606
              coeff=1.0,
L
luotao1 已提交
5607
              layer_attr=None):
Z
zhangjinchao01 已提交
5608 5609 5610 5611
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5612
    The example usage is:
Z
zhangjinchao01 已提交
5613 5614 5615 5616 5617 5618 5619

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5620
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5621
    :type input: LayerOutput
R
ranqiu 已提交
5622
    :param label: The input label.
5623
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5624 5625
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5626 5627
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5628
    :type weight: LayerOutput
R
ranqiu 已提交
5629 5630
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5631
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5632
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5633 5634
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5635
                  1.0 is the default value.
5636
    :type coeff: float
R
ranqiu 已提交
5637 5638 5639
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5640
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5641 5642 5643 5644 5645
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5646 5647 5648 5649 5650 5651
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5652

Q
qijun 已提交
5653
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5654 5655 5656 5657
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5658 5659 5660 5661
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5662
        coeff=coeff,
Q
qijun 已提交
5663
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5664 5665 5666
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5667 5668 5669 5670
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5671

5672

Z
zhangjinchao01 已提交
5673
@wrap_name_default()
5674
@wrap_param_attr_default()
L
luotao1 已提交
5675
@layer_support()
Q
qijun 已提交
5676 5677 5678 5679 5680
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5681
                       layer_attr=None):
Z
zhangjinchao01 已提交
5682 5683 5684
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5685 5686 5687
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5688

C
caoying03 已提交
5689
    The example usage is:
L
Luo Tao 已提交
5690 5691 5692 5693 5694 5695

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5696 5697
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5698
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5699
    :type size: int
R
ranqiu 已提交
5700 5701 5702 5703
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5704
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5705
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5706 5707 5708 5709
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5710
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5711 5712 5713 5714 5715 5716
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5717
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5718 5719 5720 5721
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5722 5723 5724 5725
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5726
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5727 5728 5729
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5730 5731 5732 5733
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5734

Q
qijun 已提交
5735

C
caoying03 已提交
5736 5737 5738 5739 5740
"""
Following are cost Layers.
"""


5741
@wrap_bias_attr_default(has_bias=True)
5742
@wrap_param_attr_default()
5743 5744
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5745 5746
def nce_layer(input,
              label,
C
caoying03 已提交
5747
              num_classes=None,
5748
              param_attr=None,
Q
qijun 已提交
5749 5750 5751 5752 5753 5754
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5755 5756
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5757 5758 5759 5760

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5761 5762 5763 5764 5765

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5766 5767
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5768 5769
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5770
    :param name: The name of this layer. It is optional.
5771
    :type name: basestring
R
ranqiu 已提交
5772
    :param input: The first input of this layer.
R
ranqiu 已提交
5773
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5774
    :param label: The input label.
5775
    :type label: LayerOutput
C
caoying03 已提交
5776
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5777
                   mini-batch. It is optional.
5778
    :type weight: LayerOutput
R
ranqiu 已提交
5779
    :param num_classes: The number of classes.
5780
    :type num_classes: int
5781
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5782
    :type act: BaseActivation
R
ranqiu 已提交
5783 5784
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5785
    :type param_attr: ParameterAttribute
5786 5787
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5788
    :type num_neg_samples: int
C
caoying03 已提交
5789 5790 5791
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5792
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5793 5794 5795
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5796
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5797 5798 5799 5800
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5801
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5802 5803
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5804
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5805
    :return: LayerOutput object.
5806 5807 5808 5809
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5810 5811 5812 5813 5814 5815 5816 5817
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5818
    assert isinstance(input, collections.Sequence)
5819

5820 5821
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5822 5823
    if num_classes is None:
        num_classes = label.size
5824 5825 5826
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5827
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5828

5829 5830
    ipts_for_layer = []
    parents = []
5831
    for each_input, attr in zip(input, param_attr):
5832
        assert isinstance(each_input, LayerOutput)
5833
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5844
    l = Layer(
5845 5846 5847 5848
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5849
        active_type=SigmoidActivation().name,
5850 5851 5852
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5853 5854
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5855 5856 5857 5858
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5859
        activation=SigmoidActivation())
5860 5861


Z
zhangjinchao01 已提交
5862
@wrap_name_default()
L
luotao1 已提交
5863
@layer_support()
Q
qijun 已提交
5864 5865 5866 5867 5868 5869 5870
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5871
    """
R
ranqiu 已提交
5872 5873 5874 5875 5876
    A cost Layer for learning to rank using gradient descent.

    Reference:
        Learning to Rank using Gradient Descent
        http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
Z
zhangjinchao01 已提交
5877 5878 5879

    .. math::

L
luotao02 已提交
5880
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5881

L
luotao02 已提交
5882
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5883

L
luotao02 已提交
5884
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5885 5886 5887 5888 5889 5890 5891 5892

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5893
    The example usage is:
Z
zhangjinchao01 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5907 5908
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5909
    :type weight: LayerOutput
R
ranqiu 已提交
5910
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5911 5912
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5913
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5914
    :type coeff: float
R
ranqiu 已提交
5915 5916
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5917
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5918
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5931 5932 5933 5934 5935 5936
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5937

X
xuwei06 已提交
5938
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5939

5940

Z
zhangjinchao01 已提交
5941
@wrap_name_default()
L
luotao1 已提交
5942
@layer_support()
Q
qijun 已提交
5943 5944 5945 5946 5947 5948
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5949 5950 5951
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5952
    The example usage is:
Z
zhangjinchao01 已提交
5953 5954 5955 5956 5957 5958 5959 5960

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5961 5962
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5963
    :type input: LayerOutput
R
ranqiu 已提交
5964
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5965 5966
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5967
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5968
                     minimum size of the list.
Z
zhangjinchao01 已提交
5969
    :type NDCG_num: int
R
ranqiu 已提交
5970 5971 5972 5973 5974
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
5975
    :type max_sort_size: int
R
ranqiu 已提交
5976
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5977 5978 5979
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5980
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5981
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5982 5983
    :rtype: LayerOutput
    """
5984 5985 5986
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5987 5988 5989 5990 5991 5992 5993
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5994

Q
qijun 已提交
5995 5996
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
5997

5998

Z
zhangjinchao01 已提交
5999
@wrap_name_default()
L
luotao1 已提交
6000
@layer_support()
6001 6002 6003 6004 6005 6006
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6007 6008 6009
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6010 6011
    The example usage is:

Z
zhangjinchao01 已提交
6012 6013
    .. code-block:: python

X
xuwei06 已提交
6014
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6015
                            label=label_layer)
Z
zhangjinchao01 已提交
6016 6017 6018 6019

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6020
    :type input: LayerOutput
R
ranqiu 已提交
6021
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6022 6023
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6024
                  1.0 is the default value.
R
ranqiu 已提交
6025
    :type coeff: float
R
ranqiu 已提交
6026 6027
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6028
    :type weight: LayerOutout
R
ranqiu 已提交
6029 6030
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6031
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6032
    :return: LayerOutput object.
R
ranqiu 已提交
6033
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6034 6035
    """

6036
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6037 6038 6039
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6040
        inputs=ipts,
Q
qijun 已提交
6041 6042
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6043
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6044

6045

Z
zhangjinchao01 已提交
6046
@wrap_name_default()
L
luotao1 已提交
6047
@layer_support()
Q
qijun 已提交
6048 6049 6050 6051
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6052 6053
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6054 6055
    """
    A loss layer for multi class entropy with selfnorm.
6056
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6057

C
caoying03 已提交
6058 6059
    The example usage is:

Z
zhangjinchao01 已提交
6060 6061
    .. code-block:: python

X
xuwei06 已提交
6062
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6063
                                          label=label_layer)
Z
zhangjinchao01 已提交
6064 6065

    :param input: The first input layer.
R
ranqiu 已提交
6066
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6067
    :param label: The input label.
R
ranqiu 已提交
6068
    :type input: LayerOutput
R
ranqiu 已提交
6069
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6070 6071
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6072
                  1.0 is the default value.
R
ranqiu 已提交
6073
    :type coeff: float
Z
zhangjinchao01 已提交
6074
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6075 6076 6077
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6078
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6079
    :return: LayerOutput object.
R
ranqiu 已提交
6080
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6081
    """
Q
qijun 已提交
6082 6083 6084 6085 6086 6087 6088
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6089

Q
qijun 已提交
6090 6091 6092 6093 6094
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6095

6096

X
xuwei06 已提交
6097 6098 6099 6100
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6101
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6102

C
caoying03 已提交
6103 6104
    The example usage is:

X
xuwei06 已提交
6105 6106
    .. code-block:: python

L
Luo Tao 已提交
6107
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6108

R
ranqiu 已提交
6109
    :param input: The input of this layer.
R
ranqiu 已提交
6110
    :type input: LayerOutput
R
ranqiu 已提交
6111
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6112 6113 6114
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6115 6116 6117 6118
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6119
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6120 6121 6122 6123 6124
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6125

Q
qijun 已提交
6126
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6127 6128


Z
zhangjinchao01 已提交
6129
@wrap_name_default()
L
luotao1 已提交
6130
@layer_support()
L
Luo Tao 已提交
6131 6132 6133 6134 6135 6136
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6137
    """
6138 6139 6140
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6141 6142 6143 6144 6145
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
6146

C
caoying03 已提交
6147 6148
    The example usage is:

Z
zhangjinchao01 已提交
6149 6150
    .. code-block:: python

L
Luo Tao 已提交
6151
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6152 6153

    :param input: The first input layer.
R
ranqiu 已提交
6154
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6155
    :param label: The input label.
R
ranqiu 已提交
6156
    :type input: LayerOutput
R
ranqiu 已提交
6157
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6158
    :type name: basestring
L
Luo Tao 已提交
6159
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6160 6161
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6162
                  1.0 is the default value.
R
ranqiu 已提交
6163 6164 6165
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6166
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6167
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6168 6169
    :rtype: LayerOutput.
    """
6170
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6182
@wrap_name_default()
L
luotao1 已提交
6183
@layer_support()
6184 6185 6186 6187 6188
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6189
    """
6190 6191 6192
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
6193 6194 6195
    loss is defined as:

    .. math:
6196
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
6197
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
6198

C
caoying03 已提交
6199 6200
    The example usage is:

Z
zhangjinchao01 已提交
6201 6202
    .. code-block:: python

6203
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6204 6205

    :param input: The first input layer.
R
ranqiu 已提交
6206
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6207
    :param label: The input label.
R
ranqiu 已提交
6208
    :type input: LayerOutput
R
ranqiu 已提交
6209
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6210 6211
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6212
                  1.0 is the default value.
R
ranqiu 已提交
6213 6214 6215
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6216
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6217
    :return: LayerOutput object.
R
ranqiu 已提交
6218
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6219
    """
6220 6221 6222
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6223 6224
    Layer(
        name=name,
6225
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6226 6227 6228
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6229 6230
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6231

6232

Z
zhangjinchao01 已提交
6233
@wrap_name_default()
L
luotao1 已提交
6234
@layer_support()
Q
qijun 已提交
6235 6236 6237 6238
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6239
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6240 6241 6242
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6243 6244
    The example usage is:

Z
zhangjinchao01 已提交
6245 6246
    .. code-block:: python

X
xuwei06 已提交
6247
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6248
                                               label=label_layer)
Z
zhangjinchao01 已提交
6249 6250 6251 6252 6253

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6254
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6255 6256
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6257
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6258
    :type coeff: float
R
ranqiu 已提交
6259 6260
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6261
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6262
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6263 6264 6265
    :rtype: LayerOutput
    """

6266 6267
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6268 6269 6270 6271
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6284 6285


C
caoying03 已提交
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6308 6309
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6310
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6311
    """
C
caoying03 已提交
6312 6313 6314
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6315

C
caoying03 已提交
6316 6317 6318 6319 6320
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6321

C
caoying03 已提交
6322 6323 6324 6325 6326
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6327

C
caoying03 已提交
6328 6329 6330
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6331

C
caoying03 已提交
6332 6333 6334 6335
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6336

C
caoying03 已提交
6337 6338 6339
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6340
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6341 6342
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6343

D
dangqingqing 已提交
6344

C
caoying03 已提交
6345 6346
    The example usage is:

D
dangqingqing 已提交
6347 6348
    .. code-block:: python

C
caoying03 已提交
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6361
    :param input: Input beams for this layer.
C
caoying03 已提交
6362
    :type input: BeamInput
R
ranqiu 已提交
6363
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6390 6391 6392
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6393 6394
@wrap_name_default()
@layer_support()
6395
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6396 6397
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6398
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6399 6400 6401 6402 6403 6404 6405 6406 6407

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6408
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6409

R
ranqiu 已提交
6410 6411 6412
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6413

C
caoying03 已提交
6414 6415
    The example usage is:

D
dangqingqing 已提交
6416 6417
    .. code-block:: python

6418 6419
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6420 6421 6422 6423 6424

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6425
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6426
    :type name: basestring
R
ranqiu 已提交
6427
    :param coeff: The weight of the gradient in the back propagation.
6428
                  1.0 is the default value.
6429
    :type coeff: float
R
ranqiu 已提交
6430 6431
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6444
        coeff=coeff,
D
dangqingqing 已提交
6445 6446 6447
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6448 6449 6450 6451 6452


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6453 6454 6455
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6456
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6457 6458
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6459 6460 6461 6462 6463 6464 6465 6466

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6467 6468
    The example usage is:

W
wwhu 已提交
6469 6470 6471 6472 6473 6474
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6475
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6476
    :type name: basestring
R
ranqiu 已提交
6477 6478
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6502 6503


6504 6505 6506 6507
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6508 6509 6510 6511 6512 6513
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6514
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6515
    :type name: basestring
R
ranqiu 已提交
6516
    :param input: The input of this layer.
R
ranqiu 已提交
6517 6518 6519 6520 6521
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6522 6523 6524 6525 6526 6527 6528
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6529 6530


D
dangqingqing 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6544
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6545 6546 6547 6548 6549 6550 6551
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6552
    efficient manner to improve unidirectional RNNs.
6553

R
ranqiu 已提交
6554
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6555 6556 6557 6558
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6559

D
dangqingqing 已提交
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6575
    :param input: The input of this layer.
D
dangqingqing 已提交
6576 6577 6578 6579
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6580
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6581
    :type act: BaseActivation
R
ranqiu 已提交
6582 6583
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6584
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6585 6586
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6587
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6603 6604


6605 6606 6607 6608 6609
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6610 6611
                channel_shared=None,
                num_channels=None,
6612 6613 6614
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6615
    The Parametric Relu activation that actives outputs with a learnable weight.
6616 6617 6618 6619 6620 6621 6622 6623 6624

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6625 6626 6627 6628 6629 6630
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6631
    :param name: The name of this layer. It is optional.
6632
    :type name: basestring
R
ranqiu 已提交
6633
    :param input: The input of this layer.
6634
    :type input: LayerOutput
R
ranqiu 已提交
6635
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6636 6637

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6638 6639
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6640 6641

    :type partial_sum: int
6642 6643 6644 6645
    :param channel_shared: whether or not the parameter are shared across channels.
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
    :type channel_shared: bool
6646 6647
    :param num_channels: number of input channel.
    :type num_channels: int
6648
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6649 6650 6651
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6652
    :type layer_attr: ExtraLayerAttribute | None
6653 6654 6655 6656
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6657
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6658

6659
    if not param_attr:
X
xzl 已提交
6660
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6661 6662 6663 6664
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6665 6666
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6667 6668 6669 6670
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6671 6672
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6673 6674 6675 6676
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6677 6678 6679

    l = Layer(
        name=name,
C
caoying03 已提交
6680
        type=LayerType.PRELU,
C
caoying03 已提交
6681
        inputs=Input(input.name, **param_attr.attr),
6682 6683 6684 6685 6686 6687
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6688
        num_filters=num_channels,
6689
        size=l.config.size)
6690 6691


6692
@wrap_name_default()
C
caoying03 已提交
6693
@layer_support(ERROR_CLIPPING, DROPOUT)
6694 6695 6696 6697 6698 6699 6700
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6701 6702
                     gate_bias_attr=True,
                     inproj_attr=None,
6703 6704 6705 6706 6707 6708 6709
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6710
    product between :match:`X'` and :math:`\sigma` is finally returned.
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6724
    :param input: The input of this layer.
6725
    :type input: LayerOutput
R
ranqiu 已提交
6726
    :param size: The dimension of this layer's output.
6727
    :type size: int
6728 6729
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6730
    :type act: BaseActivation
6731
    :param name: The name of this layer. It is optional.
6732
    :type name: basestring
R
ranqiu 已提交
6733 6734
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6735
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6736 6737 6738
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6739
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6740
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6741
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6742 6743 6744
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6745
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6746 6747 6748
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6749
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6750
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6751
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6752 6753 6754
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6755
    :type layer_attr: ExtraLayerAttribute | None
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6768
        layer_attr=inproj_attr,
6769 6770 6771 6772 6773 6774 6775 6776 6777
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6778
        param_attr=gate_param_attr,
6779 6780 6781 6782 6783
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6784 6785


6786
@layer_support()
6787
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6788 6789
def switch_order_layer(input,
                       name=None,
6790
                       reshape_axis=None,
W
wanghaoshuang 已提交
6791 6792
                       act=None,
                       layer_attr=None):
6793
    """
6794
    This layer switch dimension order of image input.
6795 6796
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6797 6798 6799 6800

    The example usage is:

    .. code-block:: python
6801 6802
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6803
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6804

R
ranqiu 已提交
6805
    :param input: The input of this layer.
6806
    :type input: LayerOutput
6807
    :param name: The name of this layer. It is optional.
6808
    :type name: basestring
R
ranqiu 已提交
6809 6810
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6811 6812 6813
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6814
    assert isinstance(input, LayerOutput)
6815 6816 6817 6818 6819
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6820 6821
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6822
        inputs=input.name,
6823 6824
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6825
        active_type=act.name,
6826 6827 6828
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6829
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6830
        activation=act,
6831 6832
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6833 6834


6835 6836
@wrap_name_default()
@layer_support()
6837
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6838
    """
R
ranqiu 已提交
6839 6840 6841
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6842

6843 6844 6845
    The example usage is:

    .. code-block:: python
W
whs 已提交
6846
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6847

R
ranqiu 已提交
6848 6849
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6850 6851
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6852
    :type offset: Sequence
R
ranqiu 已提交
6853
    :param axis: The start axis to be cropped. For image input layer:
6854 6855 6856 6857
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6858 6859
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6860
    :type shape: Sequence | None
6861
    :param name: The name of this layer. It is optional.
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6883 6884


C
caoying03 已提交
6885 6886
@wrap_name_default()
@layer_support()
6887
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6888
    """
6889
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6890
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6891

C
caoying03 已提交
6892 6893 6894
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6895 6896 6897 6898

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6899

R
ranqiu 已提交
6900
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6901

C
caoying03 已提交
6902

R
ranqiu 已提交
6903
    :param input: The input of this layer. It is a nested sequence.
6904
    :type input: LayerOutput
R
ranqiu 已提交
6905
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6906
    :type input: LayerOutput
6907
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6908 6909 6910 6911
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6912

6913 6914 6915 6916 6917 6918 6919
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6920
    l = Layer(
6921 6922
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6923 6924 6925 6926 6927 6928 6929
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6930 6931


G
guosheng 已提交
6932
@wrap_name_default("clip")
6933
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6943
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6944

6945
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6946
    :type name: basestring
R
ranqiu 已提交
6947
    :param input: The input of this layer.
G
guosheng 已提交
6948
    :type input: LayerOutput.
6949
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6950
    :type min: float
6951
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6952
    :type max: float
6953 6954
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6955 6956 6957 6958 6959
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6960 6961
        min=min,
        max=max)
G
guosheng 已提交
6962 6963
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6964 6965


6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

6990
    :param name: The name of this layer. It is optional.
6991
    :type name: basestring
R
ranqiu 已提交
6992
    :param input: The input of this layer, which should be a sequence.
6993
    :type input: LayerOutput
R
ranqiu 已提交
6994
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
6995
    :type starts: LayerOutput | None
R
ranqiu 已提交
6996
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
6997
    :type ends: LayerOutput | None
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7029 7030


7031 7032
@wrap_name_default()
@layer_support()
7033
def kmax_seq_score_layer(input, name=None, beam_size=1):
7034
    """
R
ranqiu 已提交
7035
    This layer accepts one input which is scores over a sequence or a nested
7036 7037 7038 7039
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7040
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7041 7042


7043
    :param name: The name of this layer. It is optional.
7044
    :type name: basestring
R
ranqiu 已提交
7045 7046
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7047
    :type input: LayerOutput
R
ranqiu 已提交
7048 7049
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7050 7051 7052
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7053
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7054
                                            "accepts only one input.")
7055
    assert input.size == 1, (
7056
        "input of kmax_seq_score_layer is a score "
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7067 7068


7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7095
        conv = img_conv3d_layer(input=data, filter_size=1,
7096 7097 7098 7099 7100
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7101
    :param name: The name of this layer. It is optional.
7102
    :type name: basestring
R
ranqiu 已提交
7103
    :param input: The input of this layer.
7104
    :type input: LayerOutput
R
ranqiu 已提交
7105 7106
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7107
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7108 7109
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7110
    :param act: Activation type. ReluActivation is the default activation.
7111
    :type act: BaseActivation
R
ranqiu 已提交
7112
    :param groups: The number of the filter groups.
7113
    :type groups: int
R
ranqiu 已提交
7114 7115
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7116
    :type stride: int | tuple | list
R
ranqiu 已提交
7117 7118
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7119
    :type padding: int | tuple | list
R
ranqiu 已提交
7120 7121 7122
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7123
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7124
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7125 7126
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7127
    :type num_channels: int
R
ranqiu 已提交
7128 7129
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7130
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7131
    :param shared_biases: Whether biases will be shared between filters or not.
7132
    :type shared_biases: bool
R
ranqiu 已提交
7133 7134
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7135
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7136
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7137
    :type trans: bool
R
ranqiu 已提交
7138
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7139 7140 7141
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7142 7143 7144 7145 7146 7147 7148
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7149 7150 7151 7152 7153 7154
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7155

C
chengduoZH 已提交
7156 7157 7158 7159 7160 7161
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7162

C
chengduoZH 已提交
7163 7164 7165 7166 7167 7168
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7215 7216


G
guosheng 已提交
7217 7218 7219 7220 7221
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7222
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7223
    the input matrix. For each element, the layer first re-scales it and then
7224 7225
    adds a bias to it.

X
xuwei06 已提交
7226
    This layer is very like the SlopeInterceptLayer, except the scale and
7227 7228
    bias are trainable.

G
guosheng 已提交
7229 7230 7231 7232 7233 7234 7235 7236
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7237
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7238
    :type name: basestring
R
ranqiu 已提交
7239 7240
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7241 7242
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7243
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7244 7245 7246
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7247
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7258 7259 7260 7261 7262 7263 7264 7265 7266


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7267
    :param input: The input of this layer.
7268 7269 7270
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7271
    :param size: The resized output dimension of this layer.
7272 7273 7274 7275 7276 7277
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7297 7298
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7299
    :type offsets: LayerOutput
R
ranqiu 已提交
7300
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7301
    :type sizes: LayerOutput
7302
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7303
    :type act: BaseActivation.
R
ranqiu 已提交
7304 7305 7306
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7332 7333


Y
yangyaming 已提交
7334 7335
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7336
    """
Y
yangyaming 已提交
7337 7338 7339 7340 7341 7342
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7343 7344 7345

    .. code-block:: python

Y
yangyaming 已提交
7346 7347 7348
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7364 7365
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7366 7367 7368 7369 7370 7371 7372
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7373
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7374 7375 7376 7377 7378
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7379
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7380
        parents=[input, indices],
Y
yangyaming 已提交
7381
        num_filters=input.num_filters,
Y
yangyaming 已提交
7382
        size=input.size)