mot_sde_infer.py 35.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18
import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20
import glob
21 22 23 24 25
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
26 27 28 29
from preprocess import decode_image

# add python path
import sys
W
wangguanzhong 已提交
30
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
31
sys.path.insert(0, parent_path)
32

W
wangguanzhong 已提交
33 34
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor
from mot_utils import argsparser, Timer, get_current_memory_mb, video2frames, _is_valid_video
F
Feng Ni 已提交
35
from mot.tracker import JDETracker, DeepSORTTracker, OCSORTTracker
36
from mot.utils import MOTTimer, write_mot_results, get_crops, clip_box, flow_statistic
W
wangguanzhong 已提交
37
from mot.visualize import plot_tracking, plot_tracking_dict
38

F
Feng Ni 已提交
39 40 41 42
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

43 44 45 46 47

class SDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
48
        tracker_config (str): tracker config path
49
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
50
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
51
        batch_size (int): size of pre batch in inference
52 53 54 55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
59 60 61 62 63 64
        output_dir (string): The path of output, default as 'output'
        threshold (float): Score threshold of the detected bbox, default as 0.5
        save_images (bool): Whether to save visualization image results, default as False
        save_mot_txts (bool): Whether to save tracking results (txt), default as False
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
65
        skip_frame_num (int): Skip frame num to get faster MOT results, default as -1
66 67
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
68 69 70 71 72 73 74 75 76 77
            counting in MOT, and the video should be taken by a static camera.
        do_break_in_counting(bool): Whether counting the numbers of identifiers break in
            the area, default as False,only support single class counting in MOT,
            and the video should be taken by a static camera.
        region_type (str): Area type for entrance counting or break in counting, 'horizontal'
            and 'vertical' used when do entrance counting. 'custom' used when do break in counting. 
            Note that only support single-class MOT, and the video should be taken by a static camera.
        region_polygon (list): Clockwise point coords (x0,y0,x1,y1...) of polygon of area when
            do_break_in_counting. Note that only support single-class MOT and
            the video should be taken by a static camera.
78 79
        reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
        mtmct_dir (str): MTMCT dir, default None, set for doing MTMCT
80 81 82 83
    """

    def __init__(self,
                 model_dir,
84
                 tracker_config,
85
                 device='CPU',
86
                 run_mode='paddle',
87 88
                 batch_size=1,
                 trt_min_shape=1,
89 90
                 trt_max_shape=1280,
                 trt_opt_shape=640,
91 92
                 trt_calib_mode=False,
                 cpu_threads=1,
93 94 95
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
96 97 98 99
                 save_images=False,
                 save_mot_txts=False,
                 draw_center_traj=False,
                 secs_interval=10,
100
                 skip_frame_num=-1,
101
                 do_entrance_counting=False,
102 103 104
                 do_break_in_counting=False,
                 region_type='horizontal',
                 region_polygon=[],
105 106
                 reid_model_dir=None,
                 mtmct_dir=None):
107 108 109 110 111 112 113 114 115 116
        super(SDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
117 118 119
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
120 121 122 123
        self.save_images = save_images
        self.save_mot_txts = save_mot_txts
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
124
        self.skip_frame_num = skip_frame_num
125
        self.do_entrance_counting = do_entrance_counting
126 127 128 129 130 131 132
        self.do_break_in_counting = do_break_in_counting
        self.region_type = region_type
        self.region_polygon = region_polygon
        if self.region_type == 'custom':
            assert len(
                self.region_polygon
            ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
133

134 135 136
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)
137 138
        if self.skip_frame_num > 1:
            self.previous_det_result = None
139

140
        # reid config
141 142 143 144 145 146
        self.use_reid = False if reid_model_dir is None else True
        if self.use_reid:
            self.reid_pred_config = self.set_config(reid_model_dir)
            self.reid_predictor, self.config = load_predictor(
                reid_model_dir,
                run_mode=run_mode,
147
                batch_size=50,  # reid_batch_size
148 149 150 151 152 153 154 155 156
                min_subgraph_size=self.reid_pred_config.min_subgraph_size,
                device=device,
                use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn)
157 158 159
        else:
            self.reid_pred_config = None
            self.reid_predictor = None
160

161 162 163 164 165 166
        assert tracker_config is not None, 'Note that tracker_config should be set.'
        self.tracker_config = tracker_config
        tracker_cfg = yaml.safe_load(open(self.tracker_config))
        cfg = tracker_cfg[tracker_cfg['type']]

        # tracker config
167 168
        self.use_deepsort_tracker = True if tracker_cfg[
            'type'] == 'DeepSORTTracker' else False
F
Feng Ni 已提交
169 170 171
        self.use_ocsort_tracker = True if tracker_cfg[
            'type'] == 'OCSORTTracker' else False

172
        if self.use_deepsort_tracker:
173 174
            if self.reid_pred_config is not None and hasattr(
                    self.reid_pred_config, 'tracker'):
175 176
                cfg = self.reid_pred_config.tracker
            budget = cfg.get('budget', 100)
177 178
            max_age = cfg.get('max_age', 30)
            max_iou_distance = cfg.get('max_iou_distance', 0.7)
179 180 181
            matching_threshold = cfg.get('matching_threshold', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
182 183

            self.tracker = DeepSORTTracker(
184
                budget=budget,
185 186
                max_age=max_age,
                max_iou_distance=max_iou_distance,
187 188
                matching_threshold=matching_threshold,
                min_box_area=min_box_area,
189
                vertical_ratio=vertical_ratio, )
F
Feng Ni 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

        elif self.use_ocsort_tracker:
            det_thresh = cfg.get('det_thresh', 0.4)
            max_age = cfg.get('max_age', 30)
            min_hits = cfg.get('min_hits', 3)
            iou_threshold = cfg.get('iou_threshold', 0.3)
            delta_t = cfg.get('delta_t', 3)
            inertia = cfg.get('inertia', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
            use_byte = cfg.get('use_byte', False)

            self.tracker = OCSORTTracker(
                det_thresh=det_thresh,
                max_age=max_age,
                min_hits=min_hits,
                iou_threshold=iou_threshold,
                delta_t=delta_t,
                inertia=inertia,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                use_byte=use_byte)
212
        else:
213
            # use ByteTracker
214 215
            use_byte = cfg.get('use_byte', False)
            det_thresh = cfg.get('det_thresh', 0.3)
216 217
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
218 219 220 221 222 223
            match_thres = cfg.get('match_thres', 0.9)
            conf_thres = cfg.get('conf_thres', 0.6)
            low_conf_thres = cfg.get('low_conf_thres', 0.1)

            self.tracker = JDETracker(
                use_byte=use_byte,
224
                det_thresh=det_thresh,
225 226 227 228 229
                num_classes=self.num_classes,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                match_thres=match_thres,
                conf_thres=conf_thres,
230 231
                low_conf_thres=low_conf_thres, )

232 233 234 235 236
        self.do_mtmct = False if mtmct_dir is None else True
        self.mtmct_dir = mtmct_dir

    def postprocess(self, inputs, result):
        # postprocess output of predictor
F
Feng Ni 已提交
237 238 239
        keep_idx = result['boxes'][:, 1] > self.threshold
        result['boxes'] = result['boxes'][keep_idx]
        np_boxes_num = [len(result['boxes'])]
240 241 242 243 244 245 246
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def reidprocess(self, det_results, repeats=1):
247
        pred_dets = det_results['boxes']  # cls_id, score, x0, y0, x1, y1
248 249 250 251 252
        pred_xyxys = pred_dets[:, 2:6]

        ori_image = det_results['ori_image']
        ori_image_shape = ori_image.shape[:2]
        pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
253 254

        if len(keep_idx[0]) == 0:
255 256 257
            det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
            det_results['embeddings'] = None
            return det_results
F
Feng Ni 已提交
258

259 260
        pred_dets = pred_dets[keep_idx[0]]
        pred_xyxys = pred_dets[:, 2:6]
261

262
        w, h = self.tracker.input_size
263
        crops = get_crops(pred_xyxys, ori_image, w, h)
F
Feng Ni 已提交
264

265
        # to keep fast speed, only use topk crops
266
        crops = crops[:50]  # reid_batch_size
267 268
        det_results['crops'] = np.array(crops).astype('float32')
        det_results['boxes'] = pred_dets[:50]
F
Feng Ni 已提交
269

270
        input_names = self.reid_predictor.get_input_names()
271
        for i in range(len(input_names)):
272 273
            input_tensor = self.reid_predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(det_results[input_names[i]])
274

W
wangguanzhong 已提交
275
        # model prediction
276
        for i in range(repeats):
277 278
            self.reid_predictor.run()
            output_names = self.reid_predictor.get_output_names()
279 280
            feature_tensor = self.reid_predictor.get_output_handle(output_names[
                0])
281 282
            pred_embs = feature_tensor.copy_to_cpu()

283 284 285 286
        det_results['embeddings'] = pred_embs
        return det_results

    def tracking(self, det_results):
287
        pred_dets = det_results['boxes']  # cls_id, score, x0, y0, x1, y1
288 289
        pred_embs = det_results.get('embeddings', None)

290
        if self.use_deepsort_tracker:
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
            # use DeepSORTTracker, only support singe class
            self.tracker.predict()
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs, online_scores, online_ids = [], [], []
            if self.do_mtmct:
                online_tlbrs, online_feats = [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
                    continue
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
                if self.do_mtmct:
                    online_tlbrs.append(t.to_tlbr())
                    online_feats.append(t.feat)

            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            if self.do_mtmct:
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']

                tracking_outs['feat_data'] = {}
323 324
                for _tlbr, _id, _feat in zip(online_tlbrs, online_ids,
                                             online_feats):
325 326 327 328 329 330 331 332
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
333
            return tracking_outs
F
Feng Ni 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

        elif self.use_ocsort_tracker:
            # use OCSORTTracker, only support singe class
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
            for t in online_targets:
                tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
                tscore = float(t[4])
                tid = int(t[5])
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                if tlwh[2] * tlwh[3] > 0:
                    online_tlwhs[0].append(tlwh)
                    online_ids[0].append(tid)
                    online_scores[0].append(tscore)
            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            return tracking_outs

360
        else:
361 362 363 364
            # use ByteTracker, support multiple class
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
365
            if self.do_mtmct:
366 367
                online_tlbrs, online_feats = defaultdict(list), defaultdict(
                    list)
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
            online_targets_dict = self.tracker.update(pred_dets, pred_embs)
            for cls_id in range(self.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
                        continue
                    if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > self.tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
383 384 385 386 387 388 389 390 391 392 393 394 395 396
                    if self.do_mtmct:
                        online_tlbrs[cls_id].append(t.tlbr)
                        online_feats[cls_id].append(t.curr_feat)

            if self.do_mtmct:
                assert self.num_classes == 1, 'MTMCT only support single class.'
                tracking_outs = {
                    'online_tlwhs': online_tlwhs[0],
                    'online_scores': online_scores[0],
                    'online_ids': online_ids[0],
                }
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']
                tracking_outs['feat_data'] = {}
397 398
                for _tlbr, _id, _feat in zip(online_tlbrs[0], online_ids[0],
                                             online_feats[0]):
399 400 401 402 403 404 405 406 407
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
                return tracking_outs
408

409 410 411 412 413 414 415
            else:
                tracking_outs = {
                    'online_tlwhs': online_tlwhs,
                    'online_scores': online_scores,
                    'online_ids': online_ids,
                }
                return tracking_outs
416

417 418 419 420 421
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True,
422 423
                      seq_name=None,
                      reuse_det_result=False):
424 425 426 427
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        if self.do_mtmct:
428
            mot_features_dict = {}  # cid_tid_fid feats
429
        else:
430 431 432 433 434 435 436
            mot_results = []
        for frame_id, img_file in enumerate(image_list):
            if self.do_mtmct:
                if frame_id % 10 == 0:
                    print('Tracking frame: %d' % (frame_id))
            batch_image_list = [img_file]  # bs=1 in MOT model
            frame, _ = decode_image(img_file, {})
F
Feng Ni 已提交
437
            if run_benchmark:
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
W
wangguanzhong 已提交
474

475
            else:
476
                self.det_times.preprocess_time_s.start()
477 478
                if not reuse_det_result:
                    inputs = self.preprocess(batch_image_list)
479 480 481
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
482 483
                if not reuse_det_result:
                    result = self.predict()
484 485 486
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
487 488 489 490 491 492
                if not reuse_det_result:
                    det_result = self.postprocess(inputs, result)
                    self.previous_det_result = det_result
                else:
                    assert self.previous_det_result is not None
                    det_result = self.previous_det_result
493 494 495 496 497 498 499 500 501 502 503 504
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1
F
Feng Ni 已提交
505 506 507 508

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']
509

510 511 512 513 514 515 516
            if self.do_mtmct:
                feat_data_dict = tracking_outs['feat_data']
                mot_features_dict = dict(mot_features_dict, **feat_data_dict)
            else:
                mot_results.append([online_tlwhs, online_scores, online_ids])

            if visual:
517
                if len(image_list) > 1 and frame_id % 10 == 0:
518 519
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})
520 521
                if isinstance(online_tlwhs, defaultdict):
                    im = plot_tracking_dict(
522
                        frame,
523
                        num_classes,
524 525 526
                        online_tlwhs,
                        online_ids,
                        online_scores,
527
                        frame_id=frame_id,
528
                        ids2names=ids2names)
529
                else:
530
                    im = plot_tracking(
531 532 533 534
                        frame,
                        online_tlwhs,
                        online_ids,
                        online_scores,
535 536
                        frame_id=frame_id,
                        ids2names=ids2names)
537 538 539 540 541
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
542

543 544 545 546
        if self.do_mtmct:
            return mot_features_dict
        else:
            return mot_results
F
Feng Ni 已提交
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
565 566
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
567 568
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

569
        frame_id = 0
570
        timer = MOTTimer()
571
        results = defaultdict(list)
572
        num_classes = self.num_classes
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels

        center_traj = None
        entrance = None
        records = None
        if self.draw_center_traj:
            center_traj = [{} for i in range(num_classes)]
        if num_classes == 1:
            id_set = set()
            interval_id_set = set()
            in_id_list = list()
            out_id_list = list()
            prev_center = dict()
            records = list()
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
            if self.do_entrance_counting or self.do_break_in_counting:
                if self.region_type == 'horizontal':
                    entrance = [0, height / 2., width, height / 2.]
                elif self.region_type == 'vertical':
                    entrance = [width / 2, 0., width / 2, height]
                elif self.region_type == 'custom':
                    entrance = []
                    assert len(
                        self.region_polygon
                    ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
                    for i in range(0, len(self.region_polygon), 2):
                        entrance.append([
                            self.region_polygon[i], self.region_polygon[i + 1]
                        ])
                    entrance.append([width, height])
                else:
                    raise ValueError("region_type:{} is not supported.".format(
                        self.region_type))

607 608
        video_fps = fps

609 610 611 612 613 614
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
615

616
            timer.tic()
617 618 619 620
            mot_skip_frame_num = self.skip_frame_num
            reuse_det_result = False
            if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
                reuse_det_result = True
621
            seq_name = video_out_name.split('.')[0]
622
            mot_results = self.predict_image(
623 624 625 626
                [frame],
                visual=False,
                seq_name=seq_name,
                reuse_det_result=reuse_det_result)
627 628
            timer.toc()

629 630 631
            # bs=1 in MOT model
            online_tlwhs, online_scores, online_ids = mot_results[0]

F
Feng Ni 已提交
632
            # flow statistic for one class, and only for bytetracker
F
Feng Ni 已提交
633
            if num_classes == 1 and not self.use_deepsort_tracker and not self.use_ocsort_tracker:
634 635 636 637
                result = (frame_id + 1, online_tlwhs[0], online_scores[0],
                          online_ids[0])
                statistic = flow_statistic(
                    result, self.secs_interval, self.do_entrance_counting,
638 639 640
                    self.do_break_in_counting, self.region_type, video_fps,
                    entrance, id_set, interval_id_set, in_id_list, out_id_list,
                    prev_center, records, data_type, num_classes)
641 642
                records = statistic['records']

643
            fps = 1. / timer.duration
F
Feng Ni 已提交
644 645
            if self.use_deepsort_tracker or self.use_ocsort_tracker:
                # use DeepSORTTracker or OCSORTTracker, only support singe class
646 647
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
648 649 650 651 652 653
                im = plot_tracking(
                    frame,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
654
                    fps=fps,
655
                    ids2names=ids2names,
656 657
                    do_entrance_counting=self.do_entrance_counting,
                    entrance=entrance)
658 659 660 661
            else:
                # use ByteTracker, support multiple class
                for cls_id in range(num_classes):
                    results[cls_id].append(
662 663
                        (frame_id + 1, online_tlwhs[cls_id],
                         online_scores[cls_id], online_ids[cls_id]))
664 665 666 667 668 669 670 671
                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps,
672 673 674 675 676
                    ids2names=ids2names,
                    do_entrance_counting=self.do_entrance_counting,
                    entrance=entrance,
                    records=records,
                    center_traj=center_traj)
677

678 679 680 681 682
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
683
            frame_id += 1
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

        if self.save_mot_txts:
            result_filename = os.path.join(
                self.output_dir, video_out_name.split('.')[-2] + '.txt')
            write_mot_results(result_filename, results)

            result_filename = os.path.join(
                self.output_dir,
                video_out_name.split('.')[-2] + '_flow_statistic.txt')
            f = open(result_filename, 'w')
            for line in records:
                f.write(line)
            print('Flow statistic save in {}'.format(result_filename))
            f.close()

699 700
        writer.release()

701 702 703 704 705 706 707
    def predict_mtmct(self, mtmct_dir, mtmct_cfg):
        cameras_bias = mtmct_cfg['cameras_bias']
        cid_bias = parse_bias(cameras_bias)
        scene_cluster = list(cid_bias.keys())
        # 1.zone releated parameters
        use_zone = mtmct_cfg.get('use_zone', False)
        zone_path = mtmct_cfg.get('zone_path', None)
708

709 710 711
        # 2.tricks parameters, can be used for other mtmct dataset
        use_ff = mtmct_cfg.get('use_ff', False)
        use_rerank = mtmct_cfg.get('use_rerank', False)
F
Feng Ni 已提交
712

713 714 715
        # 3.camera releated parameters
        use_camera = mtmct_cfg.get('use_camera', False)
        use_st_filter = mtmct_cfg.get('use_st_filter', False)
F
Feng Ni 已提交
716

717 718 719
        # 4.zone releated parameters
        use_roi = mtmct_cfg.get('use_roi', False)
        roi_dir = mtmct_cfg.get('roi_dir', False)
F
Feng Ni 已提交
720

721 722
        mot_list_breaks = []
        cid_tid_dict = dict()
F
Feng Ni 已提交
723

724 725 726
        output_dir = self.output_dir
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
F
Feng Ni 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
        seqs = os.listdir(mtmct_dir)
        for seq in sorted(seqs):
            fpath = os.path.join(mtmct_dir, seq)
            if os.path.isfile(fpath) and _is_valid_video(fpath):
                seq = seq.split('.')[-2]
                print('ffmpeg processing of video {}'.format(fpath))
                frames_path = video2frames(
                    video_path=fpath, outpath=mtmct_dir, frame_rate=25)
                fpath = os.path.join(mtmct_dir, seq)

            if os.path.isdir(fpath) == False:
                print('{} is not a image folder.'.format(fpath))
                continue
            if os.path.exists(os.path.join(fpath, 'img1')):
                fpath = os.path.join(fpath, 'img1')
743 744
            assert os.path.isdir(fpath), '{} should be a directory'.format(
                fpath)
745 746 747 748 749
            image_list = glob.glob(os.path.join(fpath, '*.jpg'))
            image_list.sort()
            assert len(image_list) > 0, '{} has no images.'.format(fpath)
            print('start tracking seq: {}'.format(seq))

750 751
            mot_features_dict = self.predict_image(
                image_list, visual=False, seq_name=seq)
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

            cid = int(re.sub('[a-z,A-Z]', "", seq))
            tid_data, mot_list_break = trajectory_fusion(
                mot_features_dict,
                cid,
                cid_bias,
                use_zone=use_zone,
                zone_path=zone_path)
            mot_list_breaks.append(mot_list_break)
            # single seq process
            for line in tid_data:
                tracklet = tid_data[line]
                tid = tracklet['tid']
                if (cid, tid) not in cid_tid_dict:
                    cid_tid_dict[(cid, tid)] = tracklet

        map_tid = sub_cluster(
            cid_tid_dict,
F
Feng Ni 已提交
770
            scene_cluster,
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_camera=use_camera,
            use_st_filter=use_st_filter)

        pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
        if use_camera:
            gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
        else:
            gen_res(
                pred_mtmct_file,
                scene_cluster,
                map_tid,
                mot_list_breaks,
                use_roi=use_roi,
                roi_dir=roi_dir)
F
Feng Ni 已提交
787

788
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
F
Feng Ni 已提交
789 790 791 792 793 794 795 796
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
797
            camera_results,
F
Feng Ni 已提交
798 799 800 801
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
802

803
def main():
804 805 806 807 808 809
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    detector = SDE_Detector(
        FLAGS.model_dir,
810
        tracker_config=FLAGS.tracker_config,
811 812
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
813
        batch_size=1,
814 815 816 817 818
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
819 820
        enable_mkldnn=FLAGS.enable_mkldnn,
        output_dir=FLAGS.output_dir,
821 822 823 824 825
        threshold=FLAGS.threshold,
        save_images=FLAGS.save_images,
        save_mot_txts=FLAGS.save_mot_txts,
        draw_center_traj=FLAGS.draw_center_traj,
        secs_interval=FLAGS.secs_interval,
826
        skip_frame_num=FLAGS.skip_frame_num,
827
        do_entrance_counting=FLAGS.do_entrance_counting,
828 829 830
        do_break_in_counting=FLAGS.do_break_in_counting,
        region_type=FLAGS.region_type,
        region_polygon=FLAGS.region_polygon,
831
        reid_model_dir=FLAGS.reid_model_dir,
832
        mtmct_dir=FLAGS.mtmct_dir, )
833 834 835

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
836
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
F
Feng Ni 已提交
837
    elif FLAGS.mtmct_dir is not None:
838
        with open(FLAGS.mtmct_cfg) as f:
F
Feng Ni 已提交
839
            mtmct_cfg = yaml.safe_load(f)
840
        detector.predict_mtmct(FLAGS.mtmct_dir, mtmct_cfg)
841 842
    else:
        # predict from image
843 844
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
845
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
846
        seq_name = FLAGS.image_dir.split('/')[-1]
847 848
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
849 850 851 852 853

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
854 855 856
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
857 858
                'precision': mode.split('_')[-1]
            }
859
            bench_log(detector, img_list, model_info, name='MOT')
860 861 862 863 864 865 866 867 868 869 870 871


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()