mot_sde_infer.py 26.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
from collections import defaultdict

import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

from picodet_postprocess import PicoDetPostProcess
from utils import argsparser, Timer, get_current_memory_mb
from det_infer import Detector, DetectorPicoDet, get_test_images, print_arguments, PredictConfig
from det_infer import load_predictor
from benchmark_utils import PaddleInferBenchmark
from visualize import plot_tracking

from mot.tracker import DeepSORTTracker
from mot.utils import MOTTimer, write_mot_results

# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}


def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


def scale_coords(coords, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    pad_w = (input_shape[1] - int(im_shape[1])) / 2
    pad_h = (input_shape[0] - int(im_shape[0])) / 2
    coords[:, 0::2] -= pad_w
    coords[:, 1::2] -= pad_h
    coords[:, 0:4] /= ratio
    coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
    return coords.round()


def clip_box(xyxy, input_shape, im_shape, scale_factor):
    im_shape = im_shape[0]
    ratio = scale_factor[0][0]
    img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]
    xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=img0_shape[1])
    xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=img0_shape[0])
    w = xyxy[:, 2:3] - xyxy[:, 0:1]
    h = xyxy[:, 3:4] - xyxy[:, 1:2]
    mask = np.logical_and(h > 0, w > 0)
    keep_idx = np.nonzero(mask)
    return xyxy[keep_idx[0]], keep_idx


def preprocess_reid(imgs,
                    w=64,
                    h=192,
                    mean=[0.485, 0.456, 0.406],
                    std=[0.229, 0.224, 0.225]):
    im_batch = []
    for img in imgs:
        img = cv2.resize(img, (w, h))
        img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        img = np.expand_dims(img, axis=0)
        im_batch.append(img)
    im_batch = np.concatenate(im_batch, 0)
    return im_batch


class SDE_Detector(Detector):
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
        self.pred_config = pred_config

    def postprocess(self, boxes, input_shape, im_shape, scale_factor, threshold,
                    scaled):
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        if not scaled:
            # scaled means whether the coords after detector outputs
            # have been scaled back to the original image, set True 
            # in general detector, set False in JDE YOLOv3.
            pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
                                       scale_factor)
        else:
            pred_bboxes = boxes[:, 2:]

        pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                        scale_factor)
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

        return pred_dets, pred_xyxys

    def predict(self, image, scaled, threshold=0.5, warmup=0, repeats=1):
        '''
        Args:
            image (np.ndarray): image numpy data
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
        Returns:
            pred_dets (np.ndarray, [N, 6])
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape']
            scale_factor = inputs['scale_factor']

            pred_dets, pred_xyxys = self.postprocess(
                boxes, input_shape, im_shape, scale_factor, threshold, scaled)

        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
        return pred_dets, pred_xyxys


class SDE_DetectorPicoDet(DetectorPicoDet):
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_DetectorPicoDet, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
        self.pred_config = pred_config

    def postprocess_bboxes(self, boxes, input_shape, im_shape, scale_factor,
                           threshold):
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        pred_bboxes = boxes[:, 2:]

        pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                        scale_factor)
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)
        return pred_dets, pred_xyxys

    def predict(self, image, scaled, threshold=0.5, warmup=0, repeats=1):
        '''
        Args:
            image (np.ndarray): image numpy data
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
        Returns:
            pred_dets (np.ndarray, [N, 6])
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        np_score_list, np_boxes_list = [], []
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())

        self.det_times.inference_time_s.end(repeats=repeats)
        self.det_times.img_num += 1
        self.det_times.postprocess_time_s.start()
        self.postprocess = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        boxes, boxes_num = self.postprocess(np_score_list, np_boxes_list)

        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape']
            scale_factor = inputs['scale_factor']
            pred_dets, pred_xyxys = self.postprocess_bboxes(
                boxes, input_shape, im_shape, scale_factor, threshold)

        return pred_dets, pred_xyxys


class SDE_ReID(object):
    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=50,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
            batch_size=batch_size,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
        self.batch_size = batch_size
        assert pred_config.tracker, "Tracking model should have tracker"
        pt = pred_config.tracker
        max_age = pt['max_age'] if 'max_age' in pt else 30
        max_iou_distance = pt[
            'max_iou_distance'] if 'max_iou_distance' in pt else 0.7
        self.tracker = DeepSORTTracker(
            max_age=max_age, max_iou_distance=max_iou_distance)

    def get_crops(self, xyxy, ori_img):
        w, h = self.tracker.input_size
        self.det_times.preprocess_time_s.start()
        crops = []
        xyxy = xyxy.astype(np.int64)
        ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
        for i, bbox in enumerate(xyxy):
            crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
            crops.append(crop)
        crops = preprocess_reid(crops, w, h)
        self.det_times.preprocess_time_s.end()

        return crops

    def preprocess(self, crops):
        # to keep fast speed, only use topk crops
        crops = crops[:self.batch_size]
        inputs = {}
        inputs['crops'] = np.array(crops).astype('float32')
        return inputs

    def postprocess(self, pred_dets, pred_embs):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)

        online_tlwhs, online_scores, online_ids = [], [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
                continue
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
            if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

        return online_tlwhs, online_scores, online_ids

    def predict(self, crops, pred_dets, warmup=0, repeats=1):
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(crops)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            pred_embs = feature_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            pred_embs = feature_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
        online_tlwhs, online_scores, online_ids = self.postprocess(pred_dets,
                                                                   pred_embs)
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1

        return online_tlwhs, online_scores, online_ids


def predict_image(detector, reid_model, image_list):
    image_list.sort()
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
            pred_dets, pred_xyxys = detector.predict(
                [frame], FLAGS.scaled, FLAGS.threshold, warmup=10, repeats=10)
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                     FLAGS.threshold)

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(i))
            online_im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            if FLAGS.run_benchmark:
                online_tlwhs, online_scores, online_ids = reid_model.predict(
                    crops, pred_dets, warmup=10, repeats=10)
            else:
                online_tlwhs, online_scores, online_ids = reid_model.predict(
                    crops, pred_dets)
                online_im = plot_tracking(
                    frame, online_tlwhs, online_ids, online_scores, frame_id=i)

        if FLAGS.save_images:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(FLAGS.output_dir, img_name)
            cv2.imwrite(out_path, online_im)
            print("save result to: " + out_path)


def predict_video(detector, reid_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    # Get Video info : resolution, fps, frame count
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    if not FLAGS.save_images:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    frame_id = 0
    timer = MOTTimer()
    results = defaultdict(list)
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
        pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                 FLAGS.threshold)

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            timer.toc()
            im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)
            online_tlwhs, online_scores, online_ids = reid_model.predict(
                crops, pred_dets)
            results[0].append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
            timer.toc()

            fps = 1. / timer.average_time
            im = plot_tracking(
                frame,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps)

        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
        else:
            writer.write(im)

        frame_id += 1
        print('detect frame:%d' % (frame_id))

        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector_func = 'SDE_Detector'
    if pred_config.arch == 'PicoDet':
        detector_func = 'SDE_DetectorPicoDet'

    detector = eval(detector_func)(pred_config,
                                   FLAGS.model_dir,
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
                                   enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig(FLAGS.reid_model_dir)
    reid_model = SDE_ReID(
        pred_config,
        FLAGS.reid_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.reid_batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, reid_model, FLAGS.camera_id)
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, reid_model, img_list)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            reid_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')

            reid_model_dir = FLAGS.reid_model_dir
            reid_model_info = {
                'model_name': reid_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(reid_model, img_list, reid_model_info, name='ReID')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()