mot_sde_infer.py 34.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20 21 22 23 24 25 26 27
import numpy as np
from collections import defaultdict

import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
28
from utils import argsparser, Timer, get_current_memory_mb, _is_valid_video, video2frames
29 30 31 32 33 34
from det_infer import Detector, DetectorPicoDet, get_test_images, print_arguments, PredictConfig
from det_infer import load_predictor
from benchmark_utils import PaddleInferBenchmark
from visualize import plot_tracking

from mot.tracker import DeepSORTTracker
F
Feng Ni 已提交
35
from mot.utils import MOTTimer, write_mot_results, flow_statistic, scale_coords, clip_box, preprocess_reid
36

F
Feng Ni 已提交
37 38 39 40
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}


def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


class SDE_Detector(Detector):
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
        self.pred_config = pred_config

F
Feng Ni 已提交
105
    def postprocess(self, boxes, ori_image_shape, threshold, scaled):
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        if not scaled:
            # scaled means whether the coords after detector outputs
            # have been scaled back to the original image, set True 
            # in general detector, set False in JDE YOLOv3.
            pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
                                       scale_factor)
        else:
            pred_bboxes = boxes[:, 2:]

F
Feng Ni 已提交
123 124
        pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

        return pred_dets, pred_xyxys

F
Feng Ni 已提交
141
    def predict(self, image_path, ori_image_shape, scaled, threshold=0.5, warmup=0, repeats=1):
142 143
        '''
        Args:
F
Feng Ni 已提交
144 145 146
            image_path (list[str]): path of images, only support one image path
                (batch_size=1) in tracking model
            ori_image_shape (list[int]: original image shape
147 148 149 150 151 152 153
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
        Returns:
            pred_dets (np.ndarray, [N, 6])
        '''
        self.det_times.preprocess_time_s.start()
F
Feng Ni 已提交
154
        inputs = self.preprocess(image_path)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            pred_dets, pred_xyxys = self.postprocess(
F
Feng Ni 已提交
182
                boxes, ori_image_shape, threshold, scaled)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
        return pred_dets, pred_xyxys


class SDE_DetectorPicoDet(DetectorPicoDet):
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_DetectorPicoDet, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
        self.pred_config = pred_config

    def postprocess_bboxes(self, boxes, input_shape, im_shape, scale_factor,
                           threshold):
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        pred_bboxes = boxes[:, 2:]

        pred_xyxys, keep_idx = clip_box(pred_bboxes, input_shape, im_shape,
                                        scale_factor)
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)
        return pred_dets, pred_xyxys

    def predict(self, image, scaled, threshold=0.5, warmup=0, repeats=1):
        '''
        Args:
            image (np.ndarray): image numpy data
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
        Returns:
            pred_dets (np.ndarray, [N, 6])
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        np_score_list, np_boxes_list = [], []
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())

        self.det_times.inference_time_s.end(repeats=repeats)
        self.det_times.img_num += 1
        self.det_times.postprocess_time_s.start()
        self.postprocess = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        boxes, boxes_num = self.postprocess(np_score_list, np_boxes_list)

        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape']
            scale_factor = inputs['scale_factor']
            pred_dets, pred_xyxys = self.postprocess_bboxes(
                boxes, input_shape, im_shape, scale_factor, threshold)

        return pred_dets, pred_xyxys


class SDE_ReID(object):
    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=50,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
            batch_size=batch_size,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
        self.batch_size = batch_size
        assert pred_config.tracker, "Tracking model should have tracker"
        pt = pred_config.tracker
        max_age = pt['max_age'] if 'max_age' in pt else 30
        max_iou_distance = pt[
            'max_iou_distance'] if 'max_iou_distance' in pt else 0.7
        self.tracker = DeepSORTTracker(
            max_age=max_age, max_iou_distance=max_iou_distance)

    def get_crops(self, xyxy, ori_img):
        w, h = self.tracker.input_size
        self.det_times.preprocess_time_s.start()
        crops = []
        xyxy = xyxy.astype(np.int64)
        ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
        for i, bbox in enumerate(xyxy):
            crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
            crops.append(crop)
        crops = preprocess_reid(crops, w, h)
        self.det_times.preprocess_time_s.end()

        return crops

    def preprocess(self, crops):
        # to keep fast speed, only use topk crops
        crops = crops[:self.batch_size]
        inputs = {}
        inputs['crops'] = np.array(crops).astype('float32')
        return inputs

    def postprocess(self, pred_dets, pred_embs):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)

        online_tlwhs, online_scores, online_ids = [], [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
                continue
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
            if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

F
Feng Ni 已提交
405 406 407 408 409 410 411 412 413 414 415
        tracking_outs = {
            'online_tlwhs': online_tlwhs,
            'online_scores': online_scores,
            'online_ids': online_ids,
        }
        return tracking_outs

    def postprocess_mtmct(self, pred_dets, pred_embs, frame_id, seq_name):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)
416

F
Feng Ni 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        online_tlwhs, online_scores, online_ids = [], [], []
        online_tlbrs, online_feats = [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
                continue
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
            if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

            online_tlbrs.append(t.to_tlbr())
            online_feats.append(t.feat)

        tracking_outs = {
            'online_tlwhs': online_tlwhs,
            'online_scores': online_scores,
            'online_ids': online_ids,
            'feat_data': {},
        }
        for _tlbr, _id, _feat in zip(online_tlbrs, online_ids, online_feats):
            feat_data = {}
            feat_data['bbox'] = _tlbr
            feat_data['frame'] = f"{frame_id:06d}"
            feat_data['id'] = _id
            _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
            feat_data['imgname'] = _imgname
            feat_data['feat'] = _feat
            tracking_outs['feat_data'].update({_imgname: feat_data})
        return tracking_outs

    def predict(self,
                crops,
                pred_dets,
                warmup=0,
                repeats=1,
                MTMCT=False,
                frame_id=0,
                seq_name=''):
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(crops)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            pred_embs = feature_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            pred_embs = feature_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
F
Feng Ni 已提交
485 486 487 488 489
        if MTMCT == False:
            tracking_outs = self.postprocess(pred_dets, pred_embs)
        else:
            tracking_outs = self.postprocess_mtmct(pred_dets, pred_embs,
                                                   frame_id, seq_name)
490 491 492
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1

F
Feng Ni 已提交
493
        return tracking_outs
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520


def predict_image(detector, reid_model, image_list):
    image_list.sort()
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
            pred_dets, pred_xyxys = detector.predict(
                [frame], FLAGS.scaled, FLAGS.threshold, warmup=10, repeats=10)
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                     FLAGS.threshold)

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(i))
            online_im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            if FLAGS.run_benchmark:
F
Feng Ni 已提交
521
                tracking_outs = reid_model.predict(
522 523
                    crops, pred_dets, warmup=10, repeats=10)
            else:
F
Feng Ni 已提交
524 525 526 527 528 529
                tracking_outs = reid_model.predict(crops, pred_dets)

                online_tlwhs = tracking_outs['online_tlwhs']
                online_scores = tracking_outs['online_scores']
                online_ids = tracking_outs['online_ids']

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
                online_im = plot_tracking(
                    frame, online_tlwhs, online_ids, online_scores, frame_id=i)

        if FLAGS.save_images:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(FLAGS.output_dir, img_name)
            cv2.imwrite(out_path, online_im)
            print("save result to: " + out_path)


def predict_video(detector, reid_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    # Get Video info : resolution, fps, frame count
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    if not FLAGS.save_images:
560 561
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
562 563 564 565
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    frame_id = 0
    timer = MOTTimer()
    results = defaultdict(list)
566 567 568 569 570 571 572 573 574
    id_set = set()
    interval_id_set = set()
    in_id_list = list()
    out_id_list = list()
    prev_center = dict()
    records = list()
    entrance = [0, height / 2., width, height / 2.]
    video_fps = fps

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
        pred_dets, pred_xyxys = detector.predict([frame], FLAGS.scaled,
                                                 FLAGS.threshold)

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            timer.toc()
            im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)
F
Feng Ni 已提交
591 592 593 594 595 596
            tracking_outs = reid_model.predict(crops, pred_dets)

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']

597 598
            results[0].append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
599 600 601 602 603 604 605 606 607 608 609 610 611
            # NOTE: just implement flow statistic for one class
            result = (frame_id + 1, online_tlwhs, online_scores, online_ids)
            statistic = flow_statistic(
                result, FLAGS.secs_interval, FLAGS.do_entrance_counting,
                video_fps, entrance, id_set, interval_id_set, in_id_list,
                out_id_list, prev_center, records)
            id_set = statistic['id_set']
            interval_id_set = statistic['interval_id_set']
            in_id_list = statistic['in_id_list']
            out_id_list = statistic['out_id_list']
            prev_center = statistic['prev_center']
            records = statistic['records']

612 613
            timer.toc()

614
            fps = 1. / timer.duration
615 616 617 618 619 620
            im = plot_tracking(
                frame,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
621 622 623
                fps=fps,
                do_entrance_counting=FLAGS.do_entrance_counting,
                entrance=entrance)
624 625 626 627 628 629 630 631 632 633 634

        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
        else:
            writer.write(im)

        frame_id += 1
635
        print('detect frame:%d, fps: %f' % (frame_id, fps))
636 637 638 639 640 641 642 643 644 645 646

        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)

647 648 649 650 651 652 653 654
        result_filename = os.path.join(
            FLAGS.output_dir, video_name.split('.')[-2] + '_flow_statistic.txt')
        f = open(result_filename, 'w')
        for line in records:
            f.write(line)
        print('Flow statistic save in {}'.format(result_filename))
        f.close()

655 656 657 658 659 660 661 662 663 664
    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()


F
Feng Ni 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
def predict_mtmct_seq(detector, reid_model, seq_name, output_dir):
    fpath = os.path.join(FLAGS.mtmct_dir, seq_name)
    if os.path.exists(os.path.join(fpath, 'img1')):
        fpath = os.path.join(fpath, 'img1')

    assert os.path.isdir(fpath), '{} should be a directory'.format(fpath)
    image_list = os.listdir(fpath)
    image_list.sort()
    assert len(image_list) > 0, '{} has no images.'.format(fpath)

    results = defaultdict(list)
    mot_features_dict = {}  # cid_tid_fid feats
    print('Totally {} frames found in seq {}.'.format(len(image_list), seq_name))

    for frame_id, img_file in enumerate(image_list):
        if frame_id % 40 == 0:
            print('Processing frame {} of seq {}.'.format(frame_id, seq_name))
        frame = cv2.imread(os.path.join(fpath, img_file))
F
Feng Ni 已提交
683 684 685
        ori_image_shape = list(frame.shape[:2])
        frame_path = os.path.join(fpath, img_file)
        pred_dets, pred_xyxys = detector.predict([frame_path], ori_image_shape, FLAGS.scaled,
F
Feng Ni 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
                                                 FLAGS.threshold)

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            online_im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            tracking_outs = reid_model.predict(
                crops,
                pred_dets,
                MTMCT=True,
                frame_id=frame_id,
                seq_name=seq_name)

            feat_data_dict = tracking_outs['feat_data']
            mot_features_dict = dict(mot_features_dict, **feat_data_dict)

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']

            online_im = plot_tracking(frame, online_tlwhs, online_ids,
                                      online_scores, frame_id)
            results[0].append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))

        if FLAGS.save_images:
            save_dir = os.path.join(output_dir, seq_name)
            if not os.path.exists(save_dir): os.makedirs(save_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(save_dir, img_name)
            cv2.imwrite(out_path, online_im)

    if FLAGS.save_mot_txts:
        result_filename = os.path.join(output_dir, seq_name + '.txt')
        write_mot_results(result_filename, results)

    return mot_features_dict


def predict_mtmct(detector, reid_model, mtmct_dir, mtmct_cfg):
    MTMCT = mtmct_cfg['MTMCT']
    assert MTMCT == True, 'predict_mtmct should be used for MTMCT.'

    cameras_bias = mtmct_cfg['cameras_bias']
    cid_bias = parse_bias(cameras_bias)
    scene_cluster = list(cid_bias.keys())

    # 1.zone releated parameters
    use_zone = mtmct_cfg['use_zone']
    zone_path = mtmct_cfg['zone_path']

    # 2.tricks parameters, can be used for other mtmct dataset
    use_ff = mtmct_cfg['use_ff']
    use_rerank = mtmct_cfg['use_rerank']

    # 3.camera releated parameters
    use_camera = mtmct_cfg['use_camera']
    use_st_filter = mtmct_cfg['use_st_filter']

    # 4.zone releated parameters
    use_roi = mtmct_cfg['use_roi']
    roi_dir = mtmct_cfg['roi_dir']

    mot_list_breaks = []
    cid_tid_dict = dict()

    output_dir = FLAGS.output_dir
    if not os.path.exists(output_dir): os.makedirs(output_dir)

    seqs = os.listdir(mtmct_dir)
    seqs.sort()

    for seq in seqs:
        fpath = os.path.join(mtmct_dir, seq)
        if os.path.isfile(fpath) and _is_valid_video(fpath):
            ext = seq.split('.')[-1]
            seq = seq.split('.')[-2]
            print('ffmpeg processing of video {}'.format(fpath))
            frames_path = video2frames(video_path=fpath, outpath=mtmct_dir, frame_rate=25)
            fpath = os.path.join(mtmct_dir, seq)

        if os.path.isdir(fpath) == False:
            print('{} is not a image folder.'.format(fpath))
            continue

        mot_features_dict = predict_mtmct_seq(detector, reid_model,
                                              seq, output_dir)

        cid = int(re.sub('[a-z,A-Z]', "", seq))
        tid_data, mot_list_break = trajectory_fusion(
            mot_features_dict,
            cid,
            cid_bias,
            use_zone=use_zone,
            zone_path=zone_path)
        mot_list_breaks.append(mot_list_break)
        # single seq process
        for line in tid_data:
            tracklet = tid_data[line]
            tid = tracklet['tid']
            if (cid, tid) not in cid_tid_dict:
                cid_tid_dict[(cid, tid)] = tracklet

    map_tid = sub_cluster(
        cid_tid_dict,
        scene_cluster,
        use_ff=use_ff,
        use_rerank=use_rerank,
        use_camera=use_camera,
        use_st_filter=use_st_filter)

    pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
    if use_camera:
        gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
    else:
        gen_res(
            pred_mtmct_file,
            scene_cluster,
            map_tid,
            mot_list_breaks,
            use_roi=use_roi,
            roi_dir=roi_dir)

    if FLAGS.save_images:
        carame_results, cid_tid_fid_res = get_mtmct_matching_results(
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
            carame_results,
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
828 829 830 831 832
    # evalution metrics
    data_root_gt = os.path.join(mtmct_dir, '..', 'gt', 'gt.txt')
    if os.path.exists(data_root_gt):
        print_mtmct_result(data_root_gt, pred_mtmct_file)

F
Feng Ni 已提交
833

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector_func = 'SDE_Detector'
    if pred_config.arch == 'PicoDet':
        detector_func = 'SDE_DetectorPicoDet'

    detector = eval(detector_func)(pred_config,
                                   FLAGS.model_dir,
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
                                   enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig(FLAGS.reid_model_dir)
    reid_model = SDE_ReID(
        pred_config,
        FLAGS.reid_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.reid_batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, reid_model, FLAGS.camera_id)
F
Feng Ni 已提交
869 870 871 872 873 874 875

    elif FLAGS.mtmct_dir is not None:
        mtmct_cfg_file = FLAGS.mtmct_cfg
        with open(mtmct_cfg_file) as f:
            mtmct_cfg = yaml.safe_load(f)
        predict_mtmct(detector, reid_model, FLAGS.mtmct_dir, mtmct_cfg)

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, reid_model, img_list)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            reid_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')

            reid_model_dir = FLAGS.reid_model_dir
            reid_model_info = {
                'model_name': reid_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(reid_model, img_list, reid_model_info, name='ReID')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()