mot_sde_infer.py 26.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18
import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20
import glob
21 22 23 24 25
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
26
from preprocess import decode_image
27 28
from .utils import argsparser, Timer, get_current_memory_mb, _is_valid_video, video2frames
from .det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor
29 30 31 32 33

# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
34

35 36
from mot.tracker import JDETracker, DeepSORTTracker
from mot.utils import MOTTimer, write_mot_results, flow_statistic, get_crops, clip_box
37
from .visualize import plot_tracking, plot_tracking_dict
38

F
Feng Ni 已提交
39 40 41 42
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

43 44 45 46 47

class SDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
48
        tracker_config (str): tracker config path
49
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
50
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
51
        batch_size (int): size of pre batch in inference
52 53 54 55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
59 60
        reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
        mtmct_dir (str): MTMCT dir, default None, set for doing MTMCT
61 62 63 64
    """

    def __init__(self,
                 model_dir,
65
                 tracker_config,
66
                 device='CPU',
67
                 run_mode='paddle',
68 69
                 batch_size=1,
                 trt_min_shape=1,
70 71
                 trt_max_shape=1280,
                 trt_opt_shape=640,
72 73
                 trt_calib_mode=False,
                 cpu_threads=1,
74 75 76 77 78
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
                 reid_model_dir=None,
                 mtmct_dir=None):
79 80 81 82 83 84 85 86 87 88
        super(SDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
89 90 91 92 93 94 95
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

96
        # reid config
97 98 99 100 101 102
        self.use_reid = False if reid_model_dir is None else True
        if self.use_reid:
            self.reid_pred_config = self.set_config(reid_model_dir)
            self.reid_predictor, self.config = load_predictor(
                reid_model_dir,
                run_mode=run_mode,
103
                batch_size=50,  # reid_batch_size
104 105 106 107 108 109 110 111 112
                min_subgraph_size=self.reid_pred_config.min_subgraph_size,
                device=device,
                use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn)
113 114 115
        else:
            self.reid_pred_config = None
            self.reid_predictor = None
116

117 118 119 120 121 122
        assert tracker_config is not None, 'Note that tracker_config should be set.'
        self.tracker_config = tracker_config
        tracker_cfg = yaml.safe_load(open(self.tracker_config))
        cfg = tracker_cfg[tracker_cfg['type']]

        # tracker config
123 124
        self.use_deepsort_tracker = True if tracker_cfg[
            'type'] == 'DeepSORTTracker' else False
125 126
        if self.use_deepsort_tracker:
            # use DeepSORTTracker
127 128
            if self.reid_pred_config is not None and hasattr(
                    self.reid_pred_config, 'tracker'):
129 130
                cfg = self.reid_pred_config.tracker
            budget = cfg.get('budget', 100)
131 132
            max_age = cfg.get('max_age', 30)
            max_iou_distance = cfg.get('max_iou_distance', 0.7)
133 134 135
            matching_threshold = cfg.get('matching_threshold', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
136 137

            self.tracker = DeepSORTTracker(
138
                budget=budget,
139 140
                max_age=max_age,
                max_iou_distance=max_iou_distance,
141 142
                matching_threshold=matching_threshold,
                min_box_area=min_box_area,
143
                vertical_ratio=vertical_ratio, )
144
        else:
145
            # use ByteTracker
146 147
            use_byte = cfg.get('use_byte', False)
            det_thresh = cfg.get('det_thresh', 0.3)
148 149 150 151 152 153 154 155
            min_box_area = cfg.get('min_box_area', 200)
            vertical_ratio = cfg.get('vertical_ratio', 1.6)
            match_thres = cfg.get('match_thres', 0.9)
            conf_thres = cfg.get('conf_thres', 0.6)
            low_conf_thres = cfg.get('low_conf_thres', 0.1)

            self.tracker = JDETracker(
                use_byte=use_byte,
156
                det_thresh=det_thresh,
157 158 159 160 161
                num_classes=self.num_classes,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                match_thres=match_thres,
                conf_thres=conf_thres,
162 163
                low_conf_thres=low_conf_thres, )

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        self.do_mtmct = False if mtmct_dir is None else True
        self.mtmct_dir = mtmct_dir

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def reidprocess(self, det_results, repeats=1):
        pred_dets = det_results['boxes']
        pred_xyxys = pred_dets[:, 2:6]

        ori_image = det_results['ori_image']
        ori_image_shape = ori_image.shape[:2]
        pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
183 184

        if len(keep_idx[0]) == 0:
185 186 187
            det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
            det_results['embeddings'] = None
            return det_results
F
Feng Ni 已提交
188

189 190
        pred_dets = pred_dets[keep_idx[0]]
        pred_xyxys = pred_dets[:, 2:6]
191

192
        w, h = self.tracker.input_size
193
        crops = get_crops(pred_xyxys, ori_image, w, h)
F
Feng Ni 已提交
194

195
        # to keep fast speed, only use topk crops
196
        crops = crops[:50]  # reid_batch_size
197 198
        det_results['crops'] = np.array(crops).astype('float32')
        det_results['boxes'] = pred_dets[:50]
F
Feng Ni 已提交
199

200
        input_names = self.reid_predictor.get_input_names()
201
        for i in range(len(input_names)):
202 203
            input_tensor = self.reid_predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(det_results[input_names[i]])
204

W
wangguanzhong 已提交
205
        # model prediction
206
        for i in range(repeats):
207 208
            self.reid_predictor.run()
            output_names = self.reid_predictor.get_output_names()
209 210
            feature_tensor = self.reid_predictor.get_output_handle(output_names[
                0])
211 212
            pred_embs = feature_tensor.copy_to_cpu()

213 214 215 216 217 218 219
        det_results['embeddings'] = pred_embs
        return det_results

    def tracking(self, det_results):
        pred_dets = det_results['boxes']
        pred_embs = det_results.get('embeddings', None)

220
        if self.use_deepsort_tracker:
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
            # use DeepSORTTracker, only support singe class
            self.tracker.predict()
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs, online_scores, online_ids = [], [], []
            if self.do_mtmct:
                online_tlbrs, online_feats = [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
                    continue
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
                if self.do_mtmct:
                    online_tlbrs.append(t.to_tlbr())
                    online_feats.append(t.feat)

            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            if self.do_mtmct:
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']

                tracking_outs['feat_data'] = {}
253 254
                for _tlbr, _id, _feat in zip(online_tlbrs, online_ids,
                                             online_feats):
255 256 257 258 259 260 261 262
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
263
            return tracking_outs
264
        else:
265 266 267 268
            # use ByteTracker, support multiple class
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
269
            if self.do_mtmct:
270 271
                online_tlbrs, online_feats = defaultdict(list), defaultdict(
                    list)
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
            online_targets_dict = self.tracker.update(pred_dets, pred_embs)
            for cls_id in range(self.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
                        continue
                    if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > self.tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
287 288 289 290 291 292 293 294 295 296 297 298 299 300
                    if self.do_mtmct:
                        online_tlbrs[cls_id].append(t.tlbr)
                        online_feats[cls_id].append(t.curr_feat)

            if self.do_mtmct:
                assert self.num_classes == 1, 'MTMCT only support single class.'
                tracking_outs = {
                    'online_tlwhs': online_tlwhs[0],
                    'online_scores': online_scores[0],
                    'online_ids': online_ids[0],
                }
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']
                tracking_outs['feat_data'] = {}
301 302
                for _tlbr, _id, _feat in zip(online_tlbrs[0], online_ids[0],
                                             online_feats[0]):
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
                return tracking_outs
            else:
                tracking_outs = {
                    'online_tlwhs': online_tlwhs,
                    'online_scores': online_scores,
                    'online_ids': online_ids,
                }
                return tracking_outs
319

320 321 322 323 324 325 326 327 328 329
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True,
                      seq_name=None):
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        if self.do_mtmct:
330
            mot_features_dict = {}  # cid_tid_fid feats
331
        else:
332 333 334 335 336 337 338
            mot_results = []
        for frame_id, img_file in enumerate(image_list):
            if self.do_mtmct:
                if frame_id % 10 == 0:
                    print('Tracking frame: %d' % (frame_id))
            batch_image_list = [img_file]  # bs=1 in MOT model
            frame, _ = decode_image(img_file, {})
F
Feng Ni 已提交
339
            if run_benchmark:
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
W
wangguanzhong 已提交
376

377
            else:
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1
F
Feng Ni 已提交
400 401 402 403

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']
404

405 406 407 408 409 410 411 412 413 414
            if self.do_mtmct:
                feat_data_dict = tracking_outs['feat_data']
                mot_features_dict = dict(mot_features_dict, **feat_data_dict)
            else:
                mot_results.append([online_tlwhs, online_scores, online_ids])

            if visual:
                if frame_id % 10 == 0:
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})
415 416
                if isinstance(online_tlwhs, defaultdict):
                    im = plot_tracking_dict(
417
                        frame,
418
                        num_classes,
419 420 421
                        online_tlwhs,
                        online_ids,
                        online_scores,
422 423
                        frame_id=frame_id,
                        ids2names=[])
424
                else:
425
                    im = plot_tracking(
426 427 428 429
                        frame,
                        online_tlwhs,
                        online_ids,
                        online_scores,
430
                        frame_id=frame_id)
431 432 433 434 435
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
436

437 438 439 440
        if self.do_mtmct:
            return mot_features_dict
        else:
            return mot_results
F
Feng Ni 已提交
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
459
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
460 461 462 463 464 465 466 467 468 469 470 471 472
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # support single class and multi classes
        num_classes = self.num_classes
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1
473

474 475
            timer.tic()
            seq_name = video_out_name.split('.')[0]
476 477
            mot_results = self.predict_image(
                [frame], visual=False, seq_name=seq_name)
478 479
            timer.toc()

480 481
            online_tlwhs, online_scores, online_ids = mot_results[
                0]  # bs=1 in MOT model
482
            fps = 1. / timer.duration
483 484
            if num_classes == 1 and self.use_reid:
                # use DeepSORTTracker, only support singe class
485 486
                results[0].append(
                    (frame_id + 1, online_tlwhs, online_scores, online_ids))
487 488 489 490 491 492 493 494 495 496 497
                im = plot_tracking(
                    frame,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps)
            else:
                # use ByteTracker, support multiple class
                for cls_id in range(num_classes):
                    results[cls_id].append(
498 499
                        (frame_id + 1, online_tlwhs[cls_id],
                         online_scores[cls_id], online_ids[cls_id]))
500 501 502 503 504 505 506 507 508
                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps,
                    ids2names=[])
509

510 511 512 513 514
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
515 516
        writer.release()

517 518 519 520 521 522 523
    def predict_mtmct(self, mtmct_dir, mtmct_cfg):
        cameras_bias = mtmct_cfg['cameras_bias']
        cid_bias = parse_bias(cameras_bias)
        scene_cluster = list(cid_bias.keys())
        # 1.zone releated parameters
        use_zone = mtmct_cfg.get('use_zone', False)
        zone_path = mtmct_cfg.get('zone_path', None)
524

525 526 527
        # 2.tricks parameters, can be used for other mtmct dataset
        use_ff = mtmct_cfg.get('use_ff', False)
        use_rerank = mtmct_cfg.get('use_rerank', False)
F
Feng Ni 已提交
528

529 530 531
        # 3.camera releated parameters
        use_camera = mtmct_cfg.get('use_camera', False)
        use_st_filter = mtmct_cfg.get('use_st_filter', False)
F
Feng Ni 已提交
532

533 534 535
        # 4.zone releated parameters
        use_roi = mtmct_cfg.get('use_roi', False)
        roi_dir = mtmct_cfg.get('roi_dir', False)
F
Feng Ni 已提交
536

537 538
        mot_list_breaks = []
        cid_tid_dict = dict()
F
Feng Ni 已提交
539

540 541 542
        output_dir = self.output_dir
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
F
Feng Ni 已提交
543

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        seqs = os.listdir(mtmct_dir)
        for seq in sorted(seqs):
            fpath = os.path.join(mtmct_dir, seq)
            if os.path.isfile(fpath) and _is_valid_video(fpath):
                seq = seq.split('.')[-2]
                print('ffmpeg processing of video {}'.format(fpath))
                frames_path = video2frames(
                    video_path=fpath, outpath=mtmct_dir, frame_rate=25)
                fpath = os.path.join(mtmct_dir, seq)

            if os.path.isdir(fpath) == False:
                print('{} is not a image folder.'.format(fpath))
                continue
            if os.path.exists(os.path.join(fpath, 'img1')):
                fpath = os.path.join(fpath, 'img1')
559 560
            assert os.path.isdir(fpath), '{} should be a directory'.format(
                fpath)
561 562 563 564 565
            image_list = glob.glob(os.path.join(fpath, '*.jpg'))
            image_list.sort()
            assert len(image_list) > 0, '{} has no images.'.format(fpath)
            print('start tracking seq: {}'.format(seq))

566 567
            mot_features_dict = self.predict_image(
                image_list, visual=False, seq_name=seq)
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

            cid = int(re.sub('[a-z,A-Z]', "", seq))
            tid_data, mot_list_break = trajectory_fusion(
                mot_features_dict,
                cid,
                cid_bias,
                use_zone=use_zone,
                zone_path=zone_path)
            mot_list_breaks.append(mot_list_break)
            # single seq process
            for line in tid_data:
                tracklet = tid_data[line]
                tid = tracklet['tid']
                if (cid, tid) not in cid_tid_dict:
                    cid_tid_dict[(cid, tid)] = tracklet

        map_tid = sub_cluster(
            cid_tid_dict,
F
Feng Ni 已提交
586
            scene_cluster,
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_camera=use_camera,
            use_st_filter=use_st_filter)

        pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
        if use_camera:
            gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
        else:
            gen_res(
                pred_mtmct_file,
                scene_cluster,
                map_tid,
                mot_list_breaks,
                use_roi=use_roi,
                roi_dir=roi_dir)
F
Feng Ni 已提交
603

604
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
F
Feng Ni 已提交
605 606 607 608 609 610 611 612
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
613
            camera_results,
F
Feng Ni 已提交
614 615 616 617
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
618

619
def main():
620 621 622 623 624 625 626
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    detector = SDE_Detector(
        FLAGS.model_dir,
        FLAGS.tracker_config,
627 628
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
629
        batch_size=FLAGS.batch_size,
630 631 632 633 634
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
635 636 637 638
        enable_mkldnn=FLAGS.enable_mkldnn,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir,
        reid_model_dir=FLAGS.reid_model_dir,
639
        mtmct_dir=FLAGS.mtmct_dir, )
640 641 642

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
643
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
F
Feng Ni 已提交
644
    elif FLAGS.mtmct_dir is not None:
645
        with open(FLAGS.mtmct_cfg) as f:
F
Feng Ni 已提交
646
            mtmct_cfg = yaml.safe_load(f)
647
        detector.predict_mtmct(FLAGS.mtmct_dir, mtmct_cfg)
648 649
    else:
        # predict from image
650 651
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
652
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
653
        seq_name = FLAGS.image_dir.split('/')[-1]
654 655
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
656 657 658 659 660

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
661 662 663
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
664 665
                'precision': mode.split('_')[-1]
            }
666
            bench_log(detector, img_list, model_info, name='MOT')
667 668 669 670 671 672 673 674 675 676 677 678


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()