mot_sde_infer.py 36.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20 21 22 23 24 25 26 27
import numpy as np
from collections import defaultdict

import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
28
from utils import argsparser, Timer, get_current_memory_mb, _is_valid_video, video2frames
29 30 31 32 33 34
from det_infer import Detector, DetectorPicoDet, get_test_images, print_arguments, PredictConfig
from det_infer import load_predictor
from benchmark_utils import PaddleInferBenchmark
from visualize import plot_tracking

from mot.tracker import DeepSORTTracker
F
Feng Ni 已提交
35
from mot.utils import MOTTimer, write_mot_results, flow_statistic, scale_coords, clip_box, preprocess_reid
36

F
Feng Ni 已提交
37 38 39 40
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}


def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


class SDE_Detector(Detector):
    """
64 65
    Detector of SDE methods

66 67 68 69 70
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
71
        batch_size (int): size of per batch in inference, default is 1 in tracking models
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
105
        assert batch_size == 1, "The detector of tracking models only supports batch_size=1 now"
106 107
        self.pred_config = pred_config

108 109 110 111 112 113
    def postprocess(self,
                    boxes,
                    ori_image_shape,
                    threshold,
                    inputs,
                    scaled=False):
114 115 116 117 118 119 120 121 122 123 124 125
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        if not scaled:
            # scaled means whether the coords after detector outputs
            # have been scaled back to the original image, set True 
            # in general detector, set False in JDE YOLOv3.
126 127 128
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape'][0]
            scale_factor = inputs['scale_factor'][0]
129 130 131 132 133
            pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
                                       scale_factor)
        else:
            pred_bboxes = boxes[:, 2:]

F
Feng Ni 已提交
134 135
        pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

        return pred_dets, pred_xyxys

152 153 154 155 156
    def predict(self,
                image_path,
                ori_image_shape,
                threshold=0.5,
                scaled=False,
W
wangguanzhong 已提交
157 158
                repeats=1,
                add_timer=True):
159 160
        '''
        Args:
F
Feng Ni 已提交
161 162 163
            image_path (list[str]): path of images, only support one image path
                (batch_size=1) in tracking model
            ori_image_shape (list[int]: original image shape
164 165 166
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
W
wangguanzhong 已提交
167 168 169
            repeats (int): repeat number for prediction
            add_timer (bool): whether add timer during prediction
           
170
        Returns:
171 172
            pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
            pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
173
        '''
W
wangguanzhong 已提交
174 175 176
        # preprocess
        if add_timer:
            self.det_times.preprocess_time_s.start()
F
Feng Ni 已提交
177
        inputs = self.preprocess(image_path)
178 179 180 181 182

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
183 184 185
        if add_timer:
            self.det_times.preprocess_time_s.end()
            self.det_times.inference_time_s.start()
186

W
wangguanzhong 已提交
187
        # model prediction
188 189 190 191 192
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()
W
wangguanzhong 已提交
193 194 195
        if add_timer:
            self.det_times.inference_time_s.end(repeats=repeats)
            self.det_times.postprocess_time_s.start()
196

W
wangguanzhong 已提交
197
        # postprocess
198 199 200 201 202
        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            pred_dets, pred_xyxys = self.postprocess(
203
                boxes, ori_image_shape, threshold, inputs, scaled=scaled)
W
wangguanzhong 已提交
204 205 206
        if add_timer:
            self.det_times.postprocess_time_s.end()
            self.det_times.img_num += 1
207 208 209 210 211
        return pred_dets, pred_xyxys


class SDE_DetectorPicoDet(DetectorPicoDet):
    """
212 213 214
    PicoDet of SDE methods, the postprocess of PicoDet has not been exported as
        other detectors, so do postprocess here.

215 216 217 218 219
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
220
        batch_size (int): size of per batch in inference, default is 1 in tracking models
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_DetectorPicoDet, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
254
        assert batch_size == 1, "The detector of tracking models only supports batch_size=1 now"
255 256
        self.pred_config = pred_config

257
    def postprocess(self, boxes, ori_image_shape, threshold):
258 259 260 261 262 263 264 265 266 267
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        pred_bboxes = boxes[:, 2:]

268
        pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
269 270 271 272 273 274 275 276 277 278 279 280 281
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)
282

283 284
        return pred_dets, pred_xyxys

285 286 287 288 289
    def predict(self,
                image_path,
                ori_image_shape,
                threshold=0.5,
                scaled=False,
W
wangguanzhong 已提交
290 291
                repeats=1,
                add_timer=True):
292 293
        '''
        Args:
294 295 296
            image_path (list[str]): path of images, only support one image path
                (batch_size=1) in tracking model
            ori_image_shape (list[int]: original image shape
297 298 299
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
W
wangguanzhong 已提交
300 301
            repeats (int): repeat number for prediction
            add_timer (bool): whether add timer during prediction
302
        Returns:
303 304
            pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
            pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
305
        '''
W
wangguanzhong 已提交
306 307 308
        # preprocess
        if add_timer:
            self.det_times.preprocess_time_s.start()
309
        inputs = self.preprocess(image_path)
310 311 312 313 314

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
315 316 317
        if add_timer:
            self.det_times.preprocess_time_s.end()
            self.det_times.inference_time_s.start()
318

W
wangguanzhong 已提交
319
        # model prediction
320 321 322 323 324 325 326 327 328 329 330 331 332
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
333 334 335
        if add_timer:
            self.det_times.inference_time_s.end(repeats=repeats)
            self.det_times.postprocess_time_s.start()
336

W
wangguanzhong 已提交
337
        # postprocess
338
        self.picodet_postprocess = PicoDetPostProcess(
339 340 341 342 343
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
344 345
        boxes, boxes_num = self.picodet_postprocess(np_score_list,
                                                    np_boxes_list)
346 347 348 349 350

        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
351 352
            pred_dets, pred_xyxys = self.postprocess(boxes, ori_image_shape,
                                                     threshold)
W
wangguanzhong 已提交
353 354 355
        if add_timer:
            self.det_times.postprocess_time_s.end()
            self.det_times.img_num += 1
356 357 358 359 360

        return pred_dets, pred_xyxys


class SDE_ReID(object):
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    """
    ReID of SDE methods

    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        batch_size (int): size of per batch in inference, default 50 means at most
            50 sub images can be made a batch and send into ReID model
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=50,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
            batch_size=batch_size,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
        self.batch_size = batch_size
        assert pred_config.tracker, "Tracking model should have tracker"
        pt = pred_config.tracker
        max_age = pt['max_age'] if 'max_age' in pt else 30
        max_iou_distance = pt[
            'max_iou_distance'] if 'max_iou_distance' in pt else 0.7
        self.tracker = DeepSORTTracker(
            max_age=max_age, max_iou_distance=max_iou_distance)

    def get_crops(self, xyxy, ori_img):
        w, h = self.tracker.input_size
        self.det_times.preprocess_time_s.start()
        crops = []
        xyxy = xyxy.astype(np.int64)
        ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
        for i, bbox in enumerate(xyxy):
            crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
            crops.append(crop)
        crops = preprocess_reid(crops, w, h)
        self.det_times.preprocess_time_s.end()

        return crops

    def preprocess(self, crops):
        # to keep fast speed, only use topk crops
        crops = crops[:self.batch_size]
        inputs = {}
        inputs['crops'] = np.array(crops).astype('float32')
        return inputs

    def postprocess(self, pred_dets, pred_embs):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)

        online_tlwhs, online_scores, online_ids = [], [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
                continue
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
450 451
            if tlwh[2] * tlwh[3] <= tracker.min_box_area:
                continue
452 453 454 455 456 457 458
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

F
Feng Ni 已提交
459 460 461 462 463 464 465 466 467 468 469
        tracking_outs = {
            'online_tlwhs': online_tlwhs,
            'online_scores': online_scores,
            'online_ids': online_ids,
        }
        return tracking_outs

    def postprocess_mtmct(self, pred_dets, pred_embs, frame_id, seq_name):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)
470

F
Feng Ni 已提交
471 472 473 474 475 476 477 478
        online_tlwhs, online_scores, online_ids = [], [], []
        online_tlbrs, online_feats = [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
                continue
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
479 480
            if tlwh[2] * tlwh[3] <= tracker.min_box_area:
                continue
F
Feng Ni 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

            online_tlbrs.append(t.to_tlbr())
            online_feats.append(t.feat)

        tracking_outs = {
            'online_tlwhs': online_tlwhs,
            'online_scores': online_scores,
            'online_ids': online_ids,
            'feat_data': {},
        }
        for _tlbr, _id, _feat in zip(online_tlbrs, online_ids, online_feats):
            feat_data = {}
            feat_data['bbox'] = _tlbr
            feat_data['frame'] = f"{frame_id:06d}"
            feat_data['id'] = _id
            _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
            feat_data['imgname'] = _imgname
            feat_data['feat'] = _feat
            tracking_outs['feat_data'].update({_imgname: feat_data})
        return tracking_outs

    def predict(self,
                crops,
                pred_dets,
                repeats=1,
W
wangguanzhong 已提交
512
                add_timer=True,
F
Feng Ni 已提交
513 514 515
                MTMCT=False,
                frame_id=0,
                seq_name=''):
W
wangguanzhong 已提交
516 517 518
        # preprocess
        if add_timer:
            self.det_times.preprocess_time_s.start()
519 520 521 522 523 524
        inputs = self.preprocess(crops)
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

W
wangguanzhong 已提交
525 526 527
        if add_timer:
            self.det_times.preprocess_time_s.end()
            self.det_times.inference_time_s.start()
528

W
wangguanzhong 已提交
529
        # model prediction
530 531 532 533 534
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            pred_embs = feature_tensor.copy_to_cpu()
W
wangguanzhong 已提交
535 536 537
        if add_timer:
            self.det_times.inference_time_s.end(repeats=repeats)
            self.det_times.postprocess_time_s.start()
538

W
wangguanzhong 已提交
539
        # postprocess
F
Feng Ni 已提交
540 541 542 543 544
        if MTMCT == False:
            tracking_outs = self.postprocess(pred_dets, pred_embs)
        else:
            tracking_outs = self.postprocess_mtmct(pred_dets, pred_embs,
                                                   frame_id, seq_name)
W
wangguanzhong 已提交
545 546 547
        if add_timer:
            self.det_times.postprocess_time_s.end()
            self.det_times.img_num += 1
548

F
Feng Ni 已提交
549
        return tracking_outs
550 551 552 553 554 555


def predict_image(detector, reid_model, image_list):
    image_list.sort()
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
556
        ori_image_shape = list(frame.shape[:2])
557
        if FLAGS.run_benchmark:
W
wangguanzhong 已提交
558
            # warmup
559
            pred_dets, pred_xyxys = detector.predict(
560 561 562 563
                [img_file],
                ori_image_shape,
                FLAGS.threshold,
                FLAGS.scaled,
W
wangguanzhong 已提交
564 565 566 567 568 569 570 571 572 573 574
                repeats=10,
                add_timer=False)
            # run benchmark
            pred_dets, pred_xyxys = detector.predict(
                [img_file],
                ori_image_shape,
                FLAGS.threshold,
                FLAGS.scaled,
                repeats=10,
                add_timer=True)

575 576 577 578 579 580
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
581 582
            pred_dets, pred_xyxys = detector.predict(
                [img_file], ori_image_shape, FLAGS.threshold, FLAGS.scaled)
583 584 585 586 587 588 589 590 591 592

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(i))
            online_im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            if FLAGS.run_benchmark:
W
wangguanzhong 已提交
593
                # warmup
F
Feng Ni 已提交
594
                tracking_outs = reid_model.predict(
W
wangguanzhong 已提交
595 596 597 598 599
                    crops, pred_dets, repeats=10, add_timer=False)
                # run benchmark 
                tracking_outs = reid_model.predict(
                    crops, pred_dets, repeats=10, add_timer=True)

600
            else:
F
Feng Ni 已提交
601 602 603 604 605 606
                tracking_outs = reid_model.predict(crops, pred_dets)

                online_tlwhs = tracking_outs['online_tlwhs']
                online_scores = tracking_outs['online_scores']
                online_ids = tracking_outs['online_ids']

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
                online_im = plot_tracking(
                    frame, online_tlwhs, online_ids, online_scores, frame_id=i)

        if FLAGS.save_images:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(FLAGS.output_dir, img_name)
            cv2.imwrite(out_path, online_im)
            print("save result to: " + out_path)


def predict_video(detector, reid_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    # Get Video info : resolution, fps, frame count
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    if not FLAGS.save_images:
637 638
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
639 640 641 642
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    frame_id = 0
    timer = MOTTimer()
    results = defaultdict(list)
643 644 645 646 647 648 649 650 651
    id_set = set()
    interval_id_set = set()
    in_id_list = list()
    out_id_list = list()
    prev_center = dict()
    records = list()
    entrance = [0, height / 2., width, height / 2.]
    video_fps = fps

652 653 654 655 656
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
657 658 659
        ori_image_shape = list(frame.shape[:2])
        pred_dets, pred_xyxys = detector.predict([frame], ori_image_shape,
                                                 FLAGS.threshold, FLAGS.scaled)
660 661 662 663 664 665 666 667 668

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            timer.toc()
            im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)
F
Feng Ni 已提交
669 670 671 672 673 674
            tracking_outs = reid_model.predict(crops, pred_dets)

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']

675 676
            results[0].append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
677 678 679 680 681 682 683 684 685 686 687 688 689
            # NOTE: just implement flow statistic for one class
            result = (frame_id + 1, online_tlwhs, online_scores, online_ids)
            statistic = flow_statistic(
                result, FLAGS.secs_interval, FLAGS.do_entrance_counting,
                video_fps, entrance, id_set, interval_id_set, in_id_list,
                out_id_list, prev_center, records)
            id_set = statistic['id_set']
            interval_id_set = statistic['interval_id_set']
            in_id_list = statistic['in_id_list']
            out_id_list = statistic['out_id_list']
            prev_center = statistic['prev_center']
            records = statistic['records']

690 691
            timer.toc()

692
            fps = 1. / timer.duration
693 694 695 696 697 698
            im = plot_tracking(
                frame,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
699 700 701
                fps=fps,
                do_entrance_counting=FLAGS.do_entrance_counting,
                entrance=entrance)
702 703 704 705 706 707 708 709 710 711 712

        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
        else:
            writer.write(im)

        frame_id += 1
713
        print('detect frame:%d, fps: %f' % (frame_id, fps))
714 715 716 717 718 719 720 721 722 723 724

        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)

725 726 727 728 729 730 731 732
        result_filename = os.path.join(
            FLAGS.output_dir, video_name.split('.')[-2] + '_flow_statistic.txt')
        f = open(result_filename, 'w')
        for line in records:
            f.write(line)
        print('Flow statistic save in {}'.format(result_filename))
        f.close()

733 734 735 736 737 738 739 740 741 742
    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()


F
Feng Ni 已提交
743 744 745 746 747 748 749 750 751 752 753 754
def predict_mtmct_seq(detector, reid_model, seq_name, output_dir):
    fpath = os.path.join(FLAGS.mtmct_dir, seq_name)
    if os.path.exists(os.path.join(fpath, 'img1')):
        fpath = os.path.join(fpath, 'img1')

    assert os.path.isdir(fpath), '{} should be a directory'.format(fpath)
    image_list = os.listdir(fpath)
    image_list.sort()
    assert len(image_list) > 0, '{} has no images.'.format(fpath)

    results = defaultdict(list)
    mot_features_dict = {}  # cid_tid_fid feats
755 756
    print('Totally {} frames found in seq {}.'.format(
        len(image_list), seq_name))
F
Feng Ni 已提交
757 758 759 760 761

    for frame_id, img_file in enumerate(image_list):
        if frame_id % 40 == 0:
            print('Processing frame {} of seq {}.'.format(frame_id, seq_name))
        frame = cv2.imread(os.path.join(fpath, img_file))
F
Feng Ni 已提交
762 763
        ori_image_shape = list(frame.shape[:2])
        frame_path = os.path.join(fpath, img_file)
764 765
        pred_dets, pred_xyxys = detector.predict([frame_path], ori_image_shape,
                                                 FLAGS.threshold, FLAGS.scaled)
F
Feng Ni 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            online_im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            tracking_outs = reid_model.predict(
                crops,
                pred_dets,
                MTMCT=True,
                frame_id=frame_id,
                seq_name=seq_name)

            feat_data_dict = tracking_outs['feat_data']
            mot_features_dict = dict(mot_features_dict, **feat_data_dict)

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']

            online_im = plot_tracking(frame, online_tlwhs, online_ids,
                                      online_scores, frame_id)
            results[0].append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))

        if FLAGS.save_images:
            save_dir = os.path.join(output_dir, seq_name)
            if not os.path.exists(save_dir): os.makedirs(save_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(save_dir, img_name)
            cv2.imwrite(out_path, online_im)

    if FLAGS.save_mot_txts:
        result_filename = os.path.join(output_dir, seq_name + '.txt')
        write_mot_results(result_filename, results)

    return mot_features_dict


def predict_mtmct(detector, reid_model, mtmct_dir, mtmct_cfg):
    MTMCT = mtmct_cfg['MTMCT']
    assert MTMCT == True, 'predict_mtmct should be used for MTMCT.'

    cameras_bias = mtmct_cfg['cameras_bias']
    cid_bias = parse_bias(cameras_bias)
    scene_cluster = list(cid_bias.keys())

    # 1.zone releated parameters
    use_zone = mtmct_cfg['use_zone']
    zone_path = mtmct_cfg['zone_path']

    # 2.tricks parameters, can be used for other mtmct dataset
    use_ff = mtmct_cfg['use_ff']
    use_rerank = mtmct_cfg['use_rerank']

    # 3.camera releated parameters
    use_camera = mtmct_cfg['use_camera']
    use_st_filter = mtmct_cfg['use_st_filter']

    # 4.zone releated parameters
    use_roi = mtmct_cfg['use_roi']
    roi_dir = mtmct_cfg['roi_dir']

    mot_list_breaks = []
    cid_tid_dict = dict()

    output_dir = FLAGS.output_dir
    if not os.path.exists(output_dir): os.makedirs(output_dir)

    seqs = os.listdir(mtmct_dir)
    seqs.sort()

    for seq in seqs:
        fpath = os.path.join(mtmct_dir, seq)
        if os.path.isfile(fpath) and _is_valid_video(fpath):
            ext = seq.split('.')[-1]
            seq = seq.split('.')[-2]
            print('ffmpeg processing of video {}'.format(fpath))
847 848
            frames_path = video2frames(
                video_path=fpath, outpath=mtmct_dir, frame_rate=25)
F
Feng Ni 已提交
849 850 851 852 853 854
            fpath = os.path.join(mtmct_dir, seq)

        if os.path.isdir(fpath) == False:
            print('{} is not a image folder.'.format(fpath))
            continue

855 856
        mot_features_dict = predict_mtmct_seq(detector, reid_model, seq,
                                              output_dir)
F
Feng Ni 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

        cid = int(re.sub('[a-z,A-Z]', "", seq))
        tid_data, mot_list_break = trajectory_fusion(
            mot_features_dict,
            cid,
            cid_bias,
            use_zone=use_zone,
            zone_path=zone_path)
        mot_list_breaks.append(mot_list_break)
        # single seq process
        for line in tid_data:
            tracklet = tid_data[line]
            tid = tracklet['tid']
            if (cid, tid) not in cid_tid_dict:
                cid_tid_dict[(cid, tid)] = tracklet

    map_tid = sub_cluster(
        cid_tid_dict,
        scene_cluster,
        use_ff=use_ff,
        use_rerank=use_rerank,
        use_camera=use_camera,
        use_st_filter=use_st_filter)

    pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
    if use_camera:
        gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
    else:
        gen_res(
            pred_mtmct_file,
            scene_cluster,
            map_tid,
            mot_list_breaks,
            use_roi=use_roi,
            roi_dir=roi_dir)

    if FLAGS.save_images:
894
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
F
Feng Ni 已提交
895 896 897 898 899 900 901 902
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
903
            camera_results,
F
Feng Ni 已提交
904 905 906 907
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
908 909 910 911 912
    # evalution metrics
    data_root_gt = os.path.join(mtmct_dir, '..', 'gt', 'gt.txt')
    if os.path.exists(data_root_gt):
        print_mtmct_result(data_root_gt, pred_mtmct_file)

F
Feng Ni 已提交
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector_func = 'SDE_Detector'
    if pred_config.arch == 'PicoDet':
        detector_func = 'SDE_DetectorPicoDet'

    detector = eval(detector_func)(pred_config,
                                   FLAGS.model_dir,
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
                                   enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig(FLAGS.reid_model_dir)
    reid_model = SDE_ReID(
        pred_config,
        FLAGS.reid_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.reid_batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, reid_model, FLAGS.camera_id)
F
Feng Ni 已提交
949 950 951 952 953 954 955

    elif FLAGS.mtmct_dir is not None:
        mtmct_cfg_file = FLAGS.mtmct_cfg
        with open(mtmct_cfg_file) as f:
            mtmct_cfg = yaml.safe_load(f)
        predict_mtmct(detector, reid_model, FLAGS.mtmct_dir, mtmct_cfg)

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, reid_model, img_list)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            reid_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')

            reid_model_dir = FLAGS.reid_model_dir
            reid_model_info = {
                'model_name': reid_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(reid_model, img_list, reid_model_info, name='ReID')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()