mot_sde_infer.py 26.6 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17 18
import os
import time
import yaml
import cv2
F
Feng Ni 已提交
19
import re
20
import glob
21 22 23 24 25
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
26 27 28 29 30 31 32 33
from preprocess import decode_image
from utils import argsparser, Timer, get_current_memory_mb, _is_valid_video, video2frames
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig, load_predictor

# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
34

35 36 37
from mot.tracker import JDETracker, DeepSORTTracker
from mot.utils import MOTTimer, write_mot_results, flow_statistic, get_crops, clip_box
from visualize import plot_tracking, plot_tracking_dict
38

F
Feng Ni 已提交
39 40 41 42
from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

43 44 45 46 47

class SDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
48
        tracker_config (str): tracker config path
49
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
50
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
51
        batch_size (int): size of pre batch in inference
52 53 54 55 56 57 58
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
59 60
        reid_model_dir (str): reid model dir, default None for ByteTrack, but set for DeepSORT
        mtmct_dir (str): MTMCT dir, default None, set for doing MTMCT
61 62 63 64
    """

    def __init__(self,
                 model_dir,
65
                 tracker_config,
66
                 device='CPU',
67
                 run_mode='paddle',
68 69
                 batch_size=1,
                 trt_min_shape=1,
70 71
                 trt_max_shape=1280,
                 trt_opt_shape=640,
72 73
                 trt_calib_mode=False,
                 cpu_threads=1,
74 75 76 77 78
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
                 reid_model_dir=None,
                 mtmct_dir=None):
79 80 81 82 83 84 85 86 87 88
        super(SDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
89 90 91 92 93 94 95
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

96
        # reid config
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        self.use_reid = False if reid_model_dir is None else True
        if self.use_reid:
            self.reid_pred_config = self.set_config(reid_model_dir)
            self.reid_predictor, self.config = load_predictor(
                reid_model_dir,
                run_mode=run_mode,
                batch_size=50, # reid_batch_size
                min_subgraph_size=self.reid_pred_config.min_subgraph_size,
                device=device,
                use_dynamic_shape=self.reid_pred_config.use_dynamic_shape,
                trt_min_shape=trt_min_shape,
                trt_max_shape=trt_max_shape,
                trt_opt_shape=trt_opt_shape,
                trt_calib_mode=trt_calib_mode,
                cpu_threads=cpu_threads,
                enable_mkldnn=enable_mkldnn)
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        else:
            self.reid_pred_config = None
            self.reid_predictor = None
        
        assert tracker_config is not None, 'Note that tracker_config should be set.'
        self.tracker_config = tracker_config
        tracker_cfg = yaml.safe_load(open(self.tracker_config))
        cfg = tracker_cfg[tracker_cfg['type']]

        # tracker config
        self.use_deepsort_tracker = True if tracker_cfg['type'] == 'DeepSORTTracker' else False
        if self.use_deepsort_tracker:
            # use DeepSORTTracker
            if self.reid_pred_config is not None and hasattr(self.reid_pred_config, 'tracker'):
                cfg = self.reid_pred_config.tracker
            budget = cfg.get('budget', 100)
129 130
            max_age = cfg.get('max_age', 30)
            max_iou_distance = cfg.get('max_iou_distance', 0.7)
131 132 133
            matching_threshold = cfg.get('matching_threshold', 0.2)
            min_box_area = cfg.get('min_box_area', 0)
            vertical_ratio = cfg.get('vertical_ratio', 0)
134 135

            self.tracker = DeepSORTTracker(
136
                budget=budget,
137 138
                max_age=max_age,
                max_iou_distance=max_iou_distance,
139 140 141
                matching_threshold=matching_threshold,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
142
            )
143
        else:
144
            # use ByteTracker
145 146
            use_byte = cfg.get('use_byte', False)
            det_thresh = cfg.get('det_thresh', 0.3)
147 148 149 150 151 152 153 154
            min_box_area = cfg.get('min_box_area', 200)
            vertical_ratio = cfg.get('vertical_ratio', 1.6)
            match_thres = cfg.get('match_thres', 0.9)
            conf_thres = cfg.get('conf_thres', 0.6)
            low_conf_thres = cfg.get('low_conf_thres', 0.1)

            self.tracker = JDETracker(
                use_byte=use_byte,
155
                det_thresh=det_thresh,
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
                num_classes=self.num_classes,
                min_box_area=min_box_area,
                vertical_ratio=vertical_ratio,
                match_thres=match_thres,
                conf_thres=conf_thres,
                low_conf_thres=low_conf_thres,
            )
        
        self.do_mtmct = False if mtmct_dir is None else True
        self.mtmct_dir = mtmct_dir

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def reidprocess(self, det_results, repeats=1):
        pred_dets = det_results['boxes']
        pred_xyxys = pred_dets[:, 2:6]

        ori_image = det_results['ori_image']
        ori_image_shape = ori_image.shape[:2]
        pred_xyxys, keep_idx = clip_box(pred_xyxys, ori_image_shape)
183 184

        if len(keep_idx[0]) == 0:
185 186 187
            det_results['boxes'] = np.zeros((1, 6), dtype=np.float32)
            det_results['embeddings'] = None
            return det_results
F
Feng Ni 已提交
188

189 190
        pred_dets = pred_dets[keep_idx[0]]
        pred_xyxys = pred_dets[:, 2:6]
191

192
        w, h = self.tracker.input_size
193
        crops = get_crops(pred_xyxys, ori_image, w, h)
F
Feng Ni 已提交
194

195 196 197 198
        # to keep fast speed, only use topk crops
        crops = crops[:50] # reid_batch_size
        det_results['crops'] = np.array(crops).astype('float32')
        det_results['boxes'] = pred_dets[:50]
F
Feng Ni 已提交
199

200
        input_names = self.reid_predictor.get_input_names()
201
        for i in range(len(input_names)):
202 203
            input_tensor = self.reid_predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(det_results[input_names[i]])
204

W
wangguanzhong 已提交
205
        # model prediction
206
        for i in range(repeats):
207 208 209
            self.reid_predictor.run()
            output_names = self.reid_predictor.get_output_names()
            feature_tensor = self.reid_predictor.get_output_handle(output_names[0])
210 211
            pred_embs = feature_tensor.copy_to_cpu()

212 213 214 215 216 217 218
        det_results['embeddings'] = pred_embs
        return det_results

    def tracking(self, det_results):
        pred_dets = det_results['boxes']
        pred_embs = det_results.get('embeddings', None)

219
        if self.use_deepsort_tracker:
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
            # use DeepSORTTracker, only support singe class
            self.tracker.predict()
            online_targets = self.tracker.update(pred_dets, pred_embs)
            online_tlwhs, online_scores, online_ids = [], [], []
            if self.do_mtmct:
                online_tlbrs, online_feats = [], []
            for t in online_targets:
                if not t.is_confirmed() or t.time_since_update > 1:
                    continue
                tlwh = t.to_tlwh()
                tscore = t.score
                tid = t.track_id
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs.append(tlwh)
                online_scores.append(tscore)
                online_ids.append(tid)
                if self.do_mtmct:
                    online_tlbrs.append(t.to_tlbr())
                    online_feats.append(t.feat)

            tracking_outs = {
                'online_tlwhs': online_tlwhs,
                'online_scores': online_scores,
                'online_ids': online_ids,
            }
            if self.do_mtmct:
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']

                tracking_outs['feat_data'] = {}
                for _tlbr, _id, _feat in zip(online_tlbrs, online_ids, online_feats):
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
261
            return tracking_outs
262
        else:
263 264 265 266
            # use ByteTracker, support multiple class
            online_tlwhs = defaultdict(list)
            online_scores = defaultdict(list)
            online_ids = defaultdict(list)
267 268
            if self.do_mtmct:
                online_tlbrs, online_feats = defaultdict(list), defaultdict(list)
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            online_targets_dict = self.tracker.update(pred_dets, pred_embs)
            for cls_id in range(self.num_classes):
                online_targets = online_targets_dict[cls_id]
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    tscore = t.score
                    if tlwh[2] * tlwh[3] <= self.tracker.min_box_area:
                        continue
                    if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                            3] > self.tracker.vertical_ratio:
                        continue
                    online_tlwhs[cls_id].append(tlwh)
                    online_ids[cls_id].append(tid)
                    online_scores[cls_id].append(tscore)
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
                    if self.do_mtmct:
                        online_tlbrs[cls_id].append(t.tlbr)
                        online_feats[cls_id].append(t.curr_feat)

            if self.do_mtmct:
                assert self.num_classes == 1, 'MTMCT only support single class.'
                tracking_outs = {
                    'online_tlwhs': online_tlwhs[0],
                    'online_scores': online_scores[0],
                    'online_ids': online_ids[0],
                }
                seq_name = det_results['seq_name']
                frame_id = det_results['frame_id']
                tracking_outs['feat_data'] = {}
                for _tlbr, _id, _feat in zip(online_tlbrs[0], online_ids[0], online_feats[0]):
                    feat_data = {}
                    feat_data['bbox'] = _tlbr
                    feat_data['frame'] = f"{frame_id:06d}"
                    feat_data['id'] = _id
                    _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
                    feat_data['imgname'] = _imgname
                    feat_data['feat'] = _feat
                    tracking_outs['feat_data'].update({_imgname: feat_data})
                return tracking_outs
            else:
                tracking_outs = {
                    'online_tlwhs': online_tlwhs,
                    'online_scores': online_scores,
                    'online_ids': online_ids,
                }
                return tracking_outs
315

316 317 318 319 320 321 322 323 324 325 326
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True,
                      seq_name=None):
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        if self.do_mtmct:
            mot_features_dict = {} # cid_tid_fid feats
327
        else:
328 329 330 331 332 333 334
            mot_results = []
        for frame_id, img_file in enumerate(image_list):
            if self.do_mtmct:
                if frame_id % 10 == 0:
                    print('Tracking frame: %d' % (frame_id))
            batch_image_list = [img_file]  # bs=1 in MOT model
            frame, _ = decode_image(img_file, {})
F
Feng Ni 已提交
335
            if run_benchmark:
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
W
wangguanzhong 已提交
372

373
            else:
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                if self.use_reid:
                    det_result['frame_id'] = frame_id
                    det_result['seq_name'] = seq_name
                    det_result['ori_image'] = frame
                    det_result = self.reidprocess(det_result)
                tracking_outs = self.tracking(det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1
F
Feng Ni 已提交
396 397 398 399

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']
400

401 402 403 404 405 406 407 408 409 410
            if self.do_mtmct:
                feat_data_dict = tracking_outs['feat_data']
                mot_features_dict = dict(mot_features_dict, **feat_data_dict)
            else:
                mot_results.append([online_tlwhs, online_scores, online_ids])

            if visual:
                if frame_id % 10 == 0:
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})
411 412
                if isinstance(online_tlwhs, defaultdict):
                    im = plot_tracking_dict(
413
                        frame,
414
                        num_classes,
415 416 417
                        online_tlwhs,
                        online_ids,
                        online_scores,
418 419
                        frame_id=frame_id,
                        ids2names=[])
420
                else:
421
                    im = plot_tracking(
422 423 424 425
                        frame,
                        online_tlwhs,
                        online_ids,
                        online_scores,
426
                        frame_id=frame_id)
427 428 429 430 431 432 433 434 435 436
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
        
        if self.do_mtmct:
            return mot_features_dict
        else:
            return mot_results
F
Feng Ni 已提交
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # support single class and multi classes
        num_classes = self.num_classes
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1
469

470 471 472
            timer.tic()
            seq_name = video_out_name.split('.')[0]
            mot_results = self.predict_image([frame], visual=False, seq_name=seq_name)
473 474
            timer.toc()

475
            online_tlwhs, online_scores, online_ids = mot_results[0] # bs=1 in MOT model
476
            fps = 1. / timer.duration
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
            if num_classes == 1 and self.use_reid:
                # use DeepSORTTracker, only support singe class
                results[0].append((frame_id + 1, online_tlwhs, online_scores, online_ids))
                im = plot_tracking(
                    frame,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps)
            else:
                # use ByteTracker, support multiple class
                for cls_id in range(num_classes):
                    results[cls_id].append(
                        (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                        online_ids[cls_id]))
                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    fps=fps,
                    ids2names=[])
502

503 504 505 506 507
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
508 509
        writer.release()

510 511 512 513 514 515 516
    def predict_mtmct(self, mtmct_dir, mtmct_cfg):
        cameras_bias = mtmct_cfg['cameras_bias']
        cid_bias = parse_bias(cameras_bias)
        scene_cluster = list(cid_bias.keys())
        # 1.zone releated parameters
        use_zone = mtmct_cfg.get('use_zone', False)
        zone_path = mtmct_cfg.get('zone_path', None)
517

518 519 520
        # 2.tricks parameters, can be used for other mtmct dataset
        use_ff = mtmct_cfg.get('use_ff', False)
        use_rerank = mtmct_cfg.get('use_rerank', False)
F
Feng Ni 已提交
521

522 523 524
        # 3.camera releated parameters
        use_camera = mtmct_cfg.get('use_camera', False)
        use_st_filter = mtmct_cfg.get('use_st_filter', False)
F
Feng Ni 已提交
525

526 527 528
        # 4.zone releated parameters
        use_roi = mtmct_cfg.get('use_roi', False)
        roi_dir = mtmct_cfg.get('roi_dir', False)
F
Feng Ni 已提交
529

530 531
        mot_list_breaks = []
        cid_tid_dict = dict()
F
Feng Ni 已提交
532

533 534 535
        output_dir = self.output_dir
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
F
Feng Ni 已提交
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        seqs = os.listdir(mtmct_dir)
        for seq in sorted(seqs):
            fpath = os.path.join(mtmct_dir, seq)
            if os.path.isfile(fpath) and _is_valid_video(fpath):
                seq = seq.split('.')[-2]
                print('ffmpeg processing of video {}'.format(fpath))
                frames_path = video2frames(
                    video_path=fpath, outpath=mtmct_dir, frame_rate=25)
                fpath = os.path.join(mtmct_dir, seq)

            if os.path.isdir(fpath) == False:
                print('{} is not a image folder.'.format(fpath))
                continue
            if os.path.exists(os.path.join(fpath, 'img1')):
                fpath = os.path.join(fpath, 'img1')
            assert os.path.isdir(fpath), '{} should be a directory'.format(fpath)
            image_list = glob.glob(os.path.join(fpath, '*.jpg'))
            image_list.sort()
            assert len(image_list) > 0, '{} has no images.'.format(fpath)
            print('start tracking seq: {}'.format(seq))

            mot_features_dict = self.predict_image(image_list, visual=False, seq_name=seq)

            cid = int(re.sub('[a-z,A-Z]', "", seq))
            tid_data, mot_list_break = trajectory_fusion(
                mot_features_dict,
                cid,
                cid_bias,
                use_zone=use_zone,
                zone_path=zone_path)
            mot_list_breaks.append(mot_list_break)
            # single seq process
            for line in tid_data:
                tracklet = tid_data[line]
                tid = tracklet['tid']
                if (cid, tid) not in cid_tid_dict:
                    cid_tid_dict[(cid, tid)] = tracklet

        map_tid = sub_cluster(
            cid_tid_dict,
F
Feng Ni 已提交
577
            scene_cluster,
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
            use_ff=use_ff,
            use_rerank=use_rerank,
            use_camera=use_camera,
            use_st_filter=use_st_filter)

        pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
        if use_camera:
            gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
        else:
            gen_res(
                pred_mtmct_file,
                scene_cluster,
                map_tid,
                mot_list_breaks,
                use_roi=use_roi,
                roi_dir=roi_dir)
F
Feng Ni 已提交
594

595
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
F
Feng Ni 已提交
596 597 598 599 600 601 602 603
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
604
            camera_results,
F
Feng Ni 已提交
605 606 607 608
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

F
Feng Ni 已提交
609

610
def main():
611 612 613 614 615 616 617
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    detector = SDE_Detector(
        FLAGS.model_dir,
        FLAGS.tracker_config,
618 619
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
620
        batch_size=FLAGS.batch_size,
621 622 623 624 625
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
626 627 628 629 630 631
        enable_mkldnn=FLAGS.enable_mkldnn,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir,
        reid_model_dir=FLAGS.reid_model_dir,
        mtmct_dir=FLAGS.mtmct_dir,
    )
632 633 634

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
635
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
F
Feng Ni 已提交
636
    elif FLAGS.mtmct_dir is not None:
637
        with open(FLAGS.mtmct_cfg) as f:
F
Feng Ni 已提交
638
            mtmct_cfg = yaml.safe_load(f)
639
        detector.predict_mtmct(FLAGS.mtmct_dir, mtmct_cfg)
640 641
    else:
        # predict from image
642 643
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "--batch_size should be 1 in MOT models."
644
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
645 646
        seq_name = FLAGS.image_dir.split('/')[-1]
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10, seq_name=seq_name)
647 648 649 650 651

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
652 653 654
            model_dir = FLAGS.model_dir
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
655 656
                'precision': mode.split('_')[-1]
            }
657
            bench_log(detector, img_list, model_info, name='MOT')
658 659 660 661 662 663 664 665 666 667 668 669


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()