operator.h 15.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
22
#include "op_info.h"
Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/framework.pb.h"
25
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
26
#include "paddle/framework/scope.h"
Q
Qiao Longfei 已提交
27
#include "paddle/framework/shape_inference.h"
Q
qijun 已提交
28 29 30
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
31
#include "paddle/platform/variant.h"
Q
qijun 已提交
32
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
33 34 35 36

namespace paddle {
namespace framework {

37
/// If a variable is a empty variable, that name will be used.
38
constexpr char kEmptyVarName[] = "@EMPTY@";
39 40 41

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
42
constexpr char kTempVarName[] = "@TEMP@";
43 44 45 46

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
47
constexpr char kGradVarSuffix[] = "@GRAD";
48 49

/// Variables with this suffix are supposed to be filled up with zeros.
50
constexpr char kZeroVarSuffix[] = "@ZERO";
51 52 53 54 55

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
56
class OperatorBase;
57 58
class InferShapeContext;
class ExecutionContext;
59

Q
Qiao Longfei 已提交
60 61 62
extern const Tensor* GetTensorFromVar(const Variable* var);
extern Tensor* GetTensorFromVar(Variable* var);

Q
Qiao Longfei 已提交
63 64 65 66 67 68 69 70
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
71 72
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
73

Q
Qiao Longfei 已提交
74 75 76
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
77
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
78 79 80 81 82
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

83
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
84 85 86

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
87
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
88 89

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
90
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
91 92
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
93 94
  virtual bool IsNetOp() const { return false; }

95 96
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
97 98 99
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
100 101
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
102

Y
Yu Yang 已提交
103
  //! Get a input with argument's name described in `op_proto`
104
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
105
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
106
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
107

Q
qijun 已提交
108 109
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
110
  //! Get a output with argument's name described in `op_proto`
111
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
112 113
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
114
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
115

Y
Yu Yang 已提交
116
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
117

Q
qiaolongfei 已提交
118
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
119
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
120 121
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
122
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
123 124
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
125

Q
qiaolongfei 已提交
126
 protected:
Q
Qiao Longfei 已提交
127
  std::string type_;
D
dongzhihong 已提交
128
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
129
  // I (Inputs)opear
D
dongzhihong 已提交
130 131
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
132
  VariableNameMap inputs_;
Y
Yu Yang 已提交
133

D
dongzhihong 已提交
134 135
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
136
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
137
  AttributeMap attrs_;
138 139 140 141

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
142 143
};

Y
Yu Yang 已提交
144 145
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
146
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
147
#define DEFINE_OP_CLONE_METHOD(cls)                       \
Y
Yu Yang 已提交
148
  std::unique_ptr<OperatorBase> Clone() const final {     \
Y
Yu Yang 已提交
149
    return std::unique_ptr<OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
150
  }
Y
Yu Yang 已提交
151

Y
Yu Yang 已提交
152 153 154 155
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
156 157
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
158 159 160
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
161
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
162

163 164
class NOP : public OperatorBase {
 public:
165
  using OperatorBase::OperatorBase;
166 167 168
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
169 170 171
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
172 173
};

174
class InferShapeContext {
Y
Yan Chunwei 已提交
175
 public:
176 177
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
178

Q
qiaolongfei 已提交
179 180 181 182
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
183
  template <typename T>
Y
Yu Yang 已提交
184 185
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
186 187
  }

Y
Yu Yang 已提交
188
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
189
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
190 191
  }

Y
Yu Yang 已提交
192
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
193
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
194 195
  }

196
  const Variable* InputVar(const std::string& name) const {
197
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
198
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
199 200
  }

201
  Variable* OutputVar(const std::string& name) const {
202
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
203
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
204 205
  }

206 207
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
208 209
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
210
    res.reserve(names.size());
211 212
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
213 214
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
215
                   });
Y
Yan Chunwei 已提交
216 217 218
    return res;
  }

219
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
220
    auto names = op_.Outputs(name);
221
    std::vector<Variable*> res;
222
    res.reserve(names.size());
223 224
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
225 226
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
227
                   });
Y
Yan Chunwei 已提交
228 229 230
    return res;
  }

231 232
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
233
    auto* var = InputVar(name);
234
    return var == nullptr ? nullptr : &var->Get<T>();
235 236 237 238
  }

  template <typename T>
  T* Output(const std::string& name) const {
239
    auto var = OutputVar(name);
240
    return var == nullptr ? nullptr : var->GetMutable<T>();
241 242 243 244 245 246 247 248
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
249
                   [&](const std::string& sub_name) {
250
                     auto var = scope_.FindVar(sub_name);
251
                     return var == nullptr ? nullptr : &var->Get<T>();
252 253 254 255 256
                   });
    return res;
  }

  template <typename T>
257
  std::vector<T*> MultiOutput(const std::string& name) const {
258
    auto names = op_.Outputs(name);
259
    std::vector<T*> res;
260 261
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
262
                   [&](const std::string& sub_name) {
263
                     auto var = scope_.FindVar(sub_name);
264
                     return var == nullptr ? nullptr : var->GetMutable<T>();
265 266 267 268
                   });
    return res;
  }

269 270 271 272 273 274
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
275
    if (!in_var->IsType<LoDTensor>()) return;
276
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
277
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
278 279 280
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
281 282
  }

Q
qiaolongfei 已提交
283
 private:
284
  const OperatorBase& op_;
285
  const Scope& scope_;
286 287
};

288 289 290 291 292 293 294
template <>
const Tensor* InferShapeContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
    const std::string& name) const;

295 296 297 298 299 300 301
template <>
Tensor* InferShapeContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
    const std::string& name) const;

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

317
class ExecutionContext : public InferShapeContext {
318
 public:
319
  ExecutionContext(const OperatorBase& op, const Scope& scope,
320
                   const platform::DeviceContext& device_context)
321
      : InferShapeContext(op, scope), device_context_(device_context) {}
322

Q
qijun 已提交
323 324 325
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
326
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
327

328
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
329

330
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
331
    return device_context_;
Q
qijun 已提交
332
  }
Q
qijun 已提交
333

334 335
 private:
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
336 337
};

Q
Qiao Longfei 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
class RuntimeInferShapeContext : public InferShapeContextBase {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const {
    auto ipt = op_.Input(name);
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const {
    auto ipt = op_.Output(name);
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  DDim GetInputDim(const std::string& name) const {
    return GetDim(op_.Input(name));
  }

  void SetInputDim(const std::string& name, const DDim& dim) {
    SetDim(op_.Input(name), dim);
  }

  DDim GetOutputDim(const std::string& name) const {
    return GetDim(op_.Output(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

 private:
  template <bool Allocate>
  Tensor* GetTensor(const std::string& name) const {
    Tensor* t = nullptr;
    auto* var = scope_.FindVar(name);
    if (!var->IsType<LoDTensor>() && !var->IsType<Tensor>()) {
      if (Allocate) {
        t = var->GetMutable<LoDTensor>();
      } else {
        PADDLE_THROW("Variable(%s) should be tensor", name);
      }
    } else {
      t = GetTensorFromVar(scope_.FindVar(name));
    }
    return t;
  }

  DDim GetDim(const std::string& name) const {
    return GetTensor<false>(name)->dims();
  }

  void SetDim(const std::string& name, const DDim& dim) {
    GetTensor<true>(name)->Resize(dim);
  }

  const OperatorBase& op_;
  const Scope& scope_;
};

Q
qijun 已提交
410 411
class OpKernel {
 public:
Q
qijun 已提交
412
  /**
413
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
414 415
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
416
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
417 418
   */

419
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
420 421 422 423

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
424 425
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
426 427
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
428

Y
Yu Yang 已提交
429
    OpKernelKey() = default;
L
liaogang 已提交
430
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
431 432 433
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
434 435 436
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
437 438 439 440 441 442 443 444 445 446 447
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
448

Y
Yu Yang 已提交
449 450
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
451 452
      : OperatorBase(type, inputs, outputs, attrs) {}

Q
Qiao Longfei 已提交
453
  // runtime infershape
454
  void InferShape(const Scope& scope) const override {
Q
Qiao Longfei 已提交
455 456
    auto c = RuntimeInferShapeContext(*this, scope);
    InferShape(&c);
457 458
  }

Y
Yu Yang 已提交
459
  void Run(const Scope& scope,
Y
Yu Yang 已提交
460
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
461
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
462
    opKernel->Compute(ExecutionContext(*this, scope, dev_ctx));
Q
Qiao Longfei 已提交
463 464
  }

Y
Yu Yang 已提交
465 466 467 468
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
469
  }
Y
Yan Chunwei 已提交
470

471 472 473 474 475 476
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
477
 protected:
Q
Qiao Longfei 已提交
478
  virtual void InferShape(InferShapeContextBase* ctx) const = 0;
Q
Qiao Longfei 已提交
479 480 481 482
};

}  // namespace framework
}  // namespace paddle