optimizer.py 12.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
W
Wenyu 已提交
20
import weakref
Q
qingqing01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
import paddle
import paddle.nn as nn

import paddle.optimizer as optimizer
import paddle.regularizer as regularizer

from ppdet.core.workspace import register, serializable

__all__ = ['LearningRate', 'OptimizerBuilder']

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


35 36 37 38 39 40 41 42 43 44 45
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_epochs (int): max epochs for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iters is much larger than the warmup iter
    """

S
shangliang Xu 已提交
46
    def __init__(self, max_epochs=1000, use_warmup=True, eta_min=0.):
47 48
        self.max_epochs = max_epochs
        self.use_warmup = use_warmup
W
Wenyu 已提交
49
        self.eta_min = eta_min
50 51 52 53 54 55 56 57 58 59 60

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
        assert base_lr is not None, "either base LR or values should be provided"

        max_iters = self.max_epochs * int(step_per_epoch)

        if boundary is not None and value is not None and self.use_warmup:
M
minghaoBD 已提交
61
            warmup_iters = len(boundary)
62 63 64
            for i in range(int(boundary[-1]), max_iters):
                boundary.append(i)

M
minghaoBD 已提交
65 66 67
                decayed_lr = base_lr * 0.5 * (math.cos(
                    (i - warmup_iters) * math.pi /
                    (max_iters - warmup_iters)) + 1)
S
shangliang Xu 已提交
68
                decayed_lr = decayed_lr if decayed_lr > self.eta_min else self.eta_min
69 70 71
                value.append(decayed_lr)
            return optimizer.lr.PiecewiseDecay(boundary, value)

W
Wenyu 已提交
72 73
        return optimizer.lr.CosineAnnealingDecay(
            base_lr, T_max=max_iters, eta_min=self.eta_min)
74 75


Q
qingqing01 已提交
76 77 78 79 80 81 82 83 84 85
@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float | list): decay factor
        milestones (list): steps at which to decay learning rate
    """

86 87 88 89 90
    def __init__(self,
                 gamma=[0.1, 0.01],
                 milestones=[8, 11],
                 values=None,
                 use_warmup=True):
Q
qingqing01 已提交
91 92 93 94 95 96 97 98
        super(PiecewiseDecay, self).__init__()
        if type(gamma) is not list:
            self.gamma = []
            for i in range(len(milestones)):
                self.gamma.append(gamma / 10**i)
        else:
            self.gamma = gamma
        self.milestones = milestones
99 100
        self.values = values
        self.use_warmup = use_warmup
Q
qingqing01 已提交
101 102 103 104 105 106

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
107
        if boundary is not None and self.use_warmup:
Q
qingqing01 已提交
108
            boundary.extend([int(step_per_epoch) * i for i in self.milestones])
109 110 111
        else:
            # do not use LinearWarmup
            boundary = [int(step_per_epoch) * i for i in self.milestones]
G
George Ni 已提交
112
            value = [base_lr]  # during step[0, boundary[0]] is base_lr
Q
qingqing01 已提交
113

S
shangliang Xu 已提交
114
        # self.values is setted directly in config
115 116 117 118 119
        if self.values is not None:
            assert len(self.milestones) + 1 == len(self.values)
            return optimizer.lr.PiecewiseDecay(boundary, self.values)

        # value is computed by self.gamma
120 121 122
        value = value if value is not None else [base_lr]
        for i in self.gamma:
            value.append(base_lr * i)
Q
qingqing01 已提交
123 124 125 126 127 128 129 130 131 132 133 134

        return optimizer.lr.PiecewiseDecay(boundary, value)


@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
135 136
        epochs (int|None): use epochs as warm up steps, the priority
            of `epochs` is higher than `steps`. Default: None.
Q
qingqing01 已提交
137 138
    """

139
    def __init__(self, steps=500, start_factor=1. / 3, epochs=None):
Q
qingqing01 已提交
140 141 142
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor
143
        self.epochs = epochs
Q
qingqing01 已提交
144

G
George Ni 已提交
145
    def __call__(self, base_lr, step_per_epoch):
Q
qingqing01 已提交
146 147
        boundary = []
        value = []
148 149 150 151 152
        warmup_steps = self.epochs * step_per_epoch \
            if self.epochs is not None else self.steps
        for i in range(warmup_steps + 1):
            if warmup_steps > 0:
                alpha = i / warmup_steps
153 154 155
                factor = self.start_factor * (1 - alpha) + alpha
                lr = base_lr * factor
                value.append(lr)
Q
qingqing01 已提交
156 157 158 159 160
            if i > 0:
                boundary.append(i)
        return boundary, value


G
George Ni 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
@serializable
class BurninWarmup(object):
    """
    Warm up learning rate in burnin mode
    Args:
        steps (int): warm up steps
    """

    def __init__(self, steps=1000):
        super(BurninWarmup, self).__init__()
        self.steps = steps

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        burnin = min(self.steps, step_per_epoch)
        for i in range(burnin + 1):
            factor = (i * 1.0 / burnin)**4
            lr = base_lr * factor
            value.append(lr)
            if i > 0:
                boundary.append(i)
        return boundary, value


Q
qingqing01 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
        self.schedulers = schedulers

    def __call__(self, step_per_epoch):
205 206 207 208 209
        assert len(self.schedulers) >= 1
        if not self.schedulers[0].use_warmup:
            return self.schedulers[0](base_lr=self.base_lr,
                                      step_per_epoch=step_per_epoch)

S
shangliang Xu 已提交
210
        # TODO: split warmup & decay
Q
qingqing01 已提交
211
        # warmup
G
George Ni 已提交
212
        boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
Q
qingqing01 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        # decay
        decay_lr = self.schedulers[0](self.base_lr, boundary, value,
                                      step_per_epoch)
        return decay_lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles
    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
                 clip_grad_by_norm=None,
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
        self.clip_grad_by_norm = clip_grad_by_norm
        self.regularizer = regularizer
        self.optimizer = optimizer

W
Wenyu 已提交
239
    def __call__(self, learning_rate, model=None):
Q
qingqing01 已提交
240
        if self.clip_grad_by_norm is not None:
W
wangxinxin08 已提交
241
            grad_clip = nn.ClipGradByGlobalNorm(
Q
qingqing01 已提交
242 243 244
                clip_norm=self.clip_grad_by_norm)
        else:
            grad_clip = None
245
        if self.regularizer and self.regularizer != 'None':
Q
qingqing01 已提交
246 247 248 249 250 251 252 253 254
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None

        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
255 256
        if optim_type != 'AdamW':
            optim_args['weight_decay'] = regularization
Q
qingqing01 已提交
257
        op = getattr(optimizer, optim_type)
W
Wenyu 已提交
258

W
Wenyu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        if 'param_groups' in optim_args:
            assert isinstance(optim_args['param_groups'], list), ''

            param_groups = optim_args.pop('param_groups')

            params, visited = [], []
            for group in param_groups:
                assert isinstance(group,
                                  dict) and 'params' in group and isinstance(
                                      group['params'], list), ''
                _params = {
                    n: p
                    for n, p in model.named_parameters()
                    if any([k in n for k in group['params']])
                }
                _group = group.copy()
                _group.update({'params': list(_params.values())})

                params.append(_group)
                visited.extend(list(_params.keys()))

            ext_params = [
                p for n, p in model.named_parameters() if n not in visited
            ]

            if len(ext_params) < len(model.parameters()):
                params.append({'params': ext_params})

            elif len(ext_params) > len(model.parameters()):
                raise RuntimeError

W
Wenyu 已提交
290 291 292
        else:
            params = model.parameters()

Q
qingqing01 已提交
293 294 295 296
        return op(learning_rate=learning_rate,
                  parameters=params,
                  grad_clip=grad_clip,
                  **optim_args)
W
wangxinxin08 已提交
297 298 299


class ModelEMA(object):
G
Guanghua Yu 已提交
300 301 302 303 304 305 306 307
    """
    Exponential Weighted Average for Deep Neutal Networks
    Args:
        model (nn.Layer): Detector of model.
        decay (int):  The decay used for updating ema parameter.
            Ema's parameter are updated with the formula:
           `ema_param = decay * ema_param + (1 - decay) * cur_param`.
            Defaults is 0.9998.
S
shangliang Xu 已提交
308 309
        use_thres_step (bool): Whether set decay by thres_step or not
        cycle_epoch (int): The epoch of interval to reset ema_param and
G
Guanghua Yu 已提交
310
            step. Defaults is -1, which means not reset. Its function is to
S
shangliang Xu 已提交
311
            add a regular effect to ema, which is set according to experience
G
Guanghua Yu 已提交
312 313 314 315 316 317 318 319
            and is effective when the total training epoch is large.
    """

    def __init__(self,
                 model,
                 decay=0.9998,
                 use_thres_step=False,
                 cycle_epoch=-1):
W
wangxinxin08 已提交
320
        self.step = 0
G
Guanghua Yu 已提交
321
        self.epoch = 0
W
wangxinxin08 已提交
322 323 324 325 326
        self.decay = decay
        self.state_dict = dict()
        for k, v in model.state_dict().items():
            self.state_dict[k] = paddle.zeros_like(v)
        self.use_thres_step = use_thres_step
G
Guanghua Yu 已提交
327 328
        self.cycle_epoch = cycle_epoch

W
Wenyu 已提交
329 330 331 332 333
        self._model_state = {
            k: weakref.ref(p)
            for k, p in model.state_dict().items()
        }

G
Guanghua Yu 已提交
334 335 336 337 338
    def reset(self):
        self.step = 0
        self.epoch = 0
        for k, v in self.state_dict.items():
            self.state_dict[k] = paddle.zeros_like(v)
W
wangxinxin08 已提交
339

S
shangliang Xu 已提交
340
    def resume(self, state_dict, step=0):
S
shangliang Xu 已提交
341 342 343 344
        for k, v in state_dict.items():
            self.state_dict[k] = v
        self.step = step

W
Wenyu 已提交
345
    def update(self, model=None):
W
wangxinxin08 已提交
346 347 348 349 350
        if self.use_thres_step:
            decay = min(self.decay, (1 + self.step) / (10 + self.step))
        else:
            decay = self.decay
        self._decay = decay
W
Wenyu 已提交
351 352 353 354 355 356 357 358

        if model is not None:
            model_dict = model.state_dict()
        else:
            model_dict = {k: p() for k, p in self._model_state.items()}
            assert all(
                [v is not None for _, v in model_dict.items()]), 'python gc.'

W
wangxinxin08 已提交
359
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
360 361 362
            v = decay * v + (1 - decay) * model_dict[k]
            v.stop_gradient = True
            self.state_dict[k] = v
W
wangxinxin08 已提交
363 364 365
        self.step += 1

    def apply(self):
366 367
        if self.step == 0:
            return self.state_dict
W
wangxinxin08 已提交
368 369
        state_dict = dict()
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
370 371 372
            v = v / (1 - self._decay**self.step)
            v.stop_gradient = True
            state_dict[k] = v
G
Guanghua Yu 已提交
373 374 375 376
        self.epoch += 1
        if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
            self.reset()

W
wangxinxin08 已提交
377
        return state_dict