optimizer.py 9.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn

import paddle.optimizer as optimizer
import paddle.regularizer as regularizer

from ppdet.core.workspace import register, serializable

__all__ = ['LearningRate', 'OptimizerBuilder']

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_epochs (int): max epochs for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iters is much larger than the warmup iter
    """

    def __init__(self, max_epochs=1000, use_warmup=True):
        self.max_epochs = max_epochs
        self.use_warmup = use_warmup

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
        assert base_lr is not None, "either base LR or values should be provided"

        max_iters = self.max_epochs * int(step_per_epoch)

        if boundary is not None and value is not None and self.use_warmup:
            for i in range(int(boundary[-1]), max_iters):
                boundary.append(i)

                decayed_lr = base_lr * 0.5 * (
                    math.cos(i * math.pi / max_iters) + 1)
                value.append(decayed_lr)
            return optimizer.lr.PiecewiseDecay(boundary, value)

        return optimizer.lr.CosineAnnealingDecay(base_lr, T_max=max_iters)


Q
qingqing01 已提交
70 71 72 73 74 75 76 77 78 79
@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float | list): decay factor
        milestones (list): steps at which to decay learning rate
    """

80 81 82 83 84
    def __init__(self,
                 gamma=[0.1, 0.01],
                 milestones=[8, 11],
                 values=None,
                 use_warmup=True):
Q
qingqing01 已提交
85 86 87 88 89 90 91 92
        super(PiecewiseDecay, self).__init__()
        if type(gamma) is not list:
            self.gamma = []
            for i in range(len(milestones)):
                self.gamma.append(gamma / 10**i)
        else:
            self.gamma = gamma
        self.milestones = milestones
93 94
        self.values = values
        self.use_warmup = use_warmup
Q
qingqing01 已提交
95 96 97 98 99 100

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
101
        if boundary is not None and self.use_warmup:
Q
qingqing01 已提交
102
            boundary.extend([int(step_per_epoch) * i for i in self.milestones])
103 104 105
        else:
            # do not use LinearWarmup
            boundary = [int(step_per_epoch) * i for i in self.milestones]
G
George Ni 已提交
106
            value = [base_lr]  # during step[0, boundary[0]] is base_lr
Q
qingqing01 已提交
107

108 109 110 111 112 113
        # self.values is setted directly in config 
        if self.values is not None:
            assert len(self.milestones) + 1 == len(self.values)
            return optimizer.lr.PiecewiseDecay(boundary, self.values)

        # value is computed by self.gamma
114 115 116
        value = value if value is not None else [base_lr]
        for i in self.gamma:
            value.append(base_lr * i)
Q
qingqing01 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        return optimizer.lr.PiecewiseDecay(boundary, value)


@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
    """

    def __init__(self, steps=500, start_factor=1. / 3):
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor

G
George Ni 已提交
136
    def __call__(self, base_lr, step_per_epoch):
Q
qingqing01 已提交
137 138 139
        boundary = []
        value = []
        for i in range(self.steps + 1):
140 141 142 143 144
            if self.steps > 0:
                alpha = i / self.steps
                factor = self.start_factor * (1 - alpha) + alpha
                lr = base_lr * factor
                value.append(lr)
Q
qingqing01 已提交
145 146 147 148 149
            if i > 0:
                boundary.append(i)
        return boundary, value


G
George Ni 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
@serializable
class BurninWarmup(object):
    """
    Warm up learning rate in burnin mode
    Args:
        steps (int): warm up steps
    """

    def __init__(self, steps=1000):
        super(BurninWarmup, self).__init__()
        self.steps = steps

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        burnin = min(self.steps, step_per_epoch)
        for i in range(burnin + 1):
            factor = (i * 1.0 / burnin)**4
            lr = base_lr * factor
            value.append(lr)
            if i > 0:
                boundary.append(i)
        return boundary, value


Q
qingqing01 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
        self.schedulers = schedulers

    def __call__(self, step_per_epoch):
194 195 196 197 198
        assert len(self.schedulers) >= 1
        if not self.schedulers[0].use_warmup:
            return self.schedulers[0](base_lr=self.base_lr,
                                      step_per_epoch=step_per_epoch)

Q
qingqing01 已提交
199 200
        # TODO: split warmup & decay 
        # warmup
G
George Ni 已提交
201
        boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
Q
qingqing01 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        # decay
        decay_lr = self.schedulers[0](self.base_lr, boundary, value,
                                      step_per_epoch)
        return decay_lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles
    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
                 clip_grad_by_norm=None,
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
        self.clip_grad_by_norm = clip_grad_by_norm
        self.regularizer = regularizer
        self.optimizer = optimizer

    def __call__(self, learning_rate, params=None):
        if self.clip_grad_by_norm is not None:
W
wangxinxin08 已提交
230
            grad_clip = nn.ClipGradByGlobalNorm(
Q
qingqing01 已提交
231 232 233
                clip_norm=self.clip_grad_by_norm)
        else:
            grad_clip = None
234
        if self.regularizer and self.regularizer != 'None':
Q
qingqing01 已提交
235 236 237 238 239 240 241 242 243
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None

        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
244 245
        if optim_type != 'AdamW':
            optim_args['weight_decay'] = regularization
Q
qingqing01 已提交
246 247 248 249 250
        op = getattr(optimizer, optim_type)
        return op(learning_rate=learning_rate,
                  parameters=params,
                  grad_clip=grad_clip,
                  **optim_args)
W
wangxinxin08 已提交
251 252 253


class ModelEMA(object):
G
Guanghua Yu 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    """
    Exponential Weighted Average for Deep Neutal Networks
    Args:
        model (nn.Layer): Detector of model.
        decay (int):  The decay used for updating ema parameter.
            Ema's parameter are updated with the formula:
           `ema_param = decay * ema_param + (1 - decay) * cur_param`.
            Defaults is 0.9998.
        use_thres_step (bool): Whether set decay by thres_step or not 
        cycle_epoch (int): The epoch of interval to reset ema_param and 
            step. Defaults is -1, which means not reset. Its function is to
            add a regular effect to ema, which is set according to experience 
            and is effective when the total training epoch is large.
    """

    def __init__(self,
                 model,
                 decay=0.9998,
                 use_thres_step=False,
                 cycle_epoch=-1):
W
wangxinxin08 已提交
274
        self.step = 0
G
Guanghua Yu 已提交
275
        self.epoch = 0
W
wangxinxin08 已提交
276 277 278 279 280
        self.decay = decay
        self.state_dict = dict()
        for k, v in model.state_dict().items():
            self.state_dict[k] = paddle.zeros_like(v)
        self.use_thres_step = use_thres_step
G
Guanghua Yu 已提交
281 282 283 284 285 286 287
        self.cycle_epoch = cycle_epoch

    def reset(self):
        self.step = 0
        self.epoch = 0
        for k, v in self.state_dict.items():
            self.state_dict[k] = paddle.zeros_like(v)
W
wangxinxin08 已提交
288 289 290 291 292 293 294 295 296

    def update(self, model):
        if self.use_thres_step:
            decay = min(self.decay, (1 + self.step) / (10 + self.step))
        else:
            decay = self.decay
        self._decay = decay
        model_dict = model.state_dict()
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
297 298 299
            v = decay * v + (1 - decay) * model_dict[k]
            v.stop_gradient = True
            self.state_dict[k] = v
W
wangxinxin08 已提交
300 301 302
        self.step += 1

    def apply(self):
303 304
        if self.step == 0:
            return self.state_dict
W
wangxinxin08 已提交
305 306
        state_dict = dict()
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
307 308 309
            v = v / (1 - self._decay**self.step)
            v.stop_gradient = True
            state_dict[k] = v
G
Guanghua Yu 已提交
310 311 312 313
        self.epoch += 1
        if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
            self.reset()

W
wangxinxin08 已提交
314
        return state_dict