optimizer.py 11.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
W
Wenyu 已提交
20
import weakref
Q
qingqing01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
import paddle
import paddle.nn as nn

import paddle.optimizer as optimizer
import paddle.regularizer as regularizer

from ppdet.core.workspace import register, serializable

__all__ = ['LearningRate', 'OptimizerBuilder']

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


35 36 37 38 39 40 41 42 43 44 45
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_epochs (int): max epochs for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iters is much larger than the warmup iter
    """

W
Wenyu 已提交
46
    def __init__(self, max_epochs=1000, use_warmup=True, eta_min=0):
47 48
        self.max_epochs = max_epochs
        self.use_warmup = use_warmup
W
Wenyu 已提交
49
        self.eta_min = eta_min
50 51 52 53 54 55 56 57 58 59 60

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
        assert base_lr is not None, "either base LR or values should be provided"

        max_iters = self.max_epochs * int(step_per_epoch)

        if boundary is not None and value is not None and self.use_warmup:
M
minghaoBD 已提交
61
            warmup_iters = len(boundary)
62 63 64
            for i in range(int(boundary[-1]), max_iters):
                boundary.append(i)

M
minghaoBD 已提交
65 66 67
                decayed_lr = base_lr * 0.5 * (math.cos(
                    (i - warmup_iters) * math.pi /
                    (max_iters - warmup_iters)) + 1)
68 69 70
                value.append(decayed_lr)
            return optimizer.lr.PiecewiseDecay(boundary, value)

W
Wenyu 已提交
71 72
        return optimizer.lr.CosineAnnealingDecay(
            base_lr, T_max=max_iters, eta_min=self.eta_min)
73 74


Q
qingqing01 已提交
75 76 77 78 79 80 81 82 83 84
@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float | list): decay factor
        milestones (list): steps at which to decay learning rate
    """

85 86 87 88 89
    def __init__(self,
                 gamma=[0.1, 0.01],
                 milestones=[8, 11],
                 values=None,
                 use_warmup=True):
Q
qingqing01 已提交
90 91 92 93 94 95 96 97
        super(PiecewiseDecay, self).__init__()
        if type(gamma) is not list:
            self.gamma = []
            for i in range(len(milestones)):
                self.gamma.append(gamma / 10**i)
        else:
            self.gamma = gamma
        self.milestones = milestones
98 99
        self.values = values
        self.use_warmup = use_warmup
Q
qingqing01 已提交
100 101 102 103 104 105

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
106
        if boundary is not None and self.use_warmup:
Q
qingqing01 已提交
107
            boundary.extend([int(step_per_epoch) * i for i in self.milestones])
108 109 110
        else:
            # do not use LinearWarmup
            boundary = [int(step_per_epoch) * i for i in self.milestones]
G
George Ni 已提交
111
            value = [base_lr]  # during step[0, boundary[0]] is base_lr
Q
qingqing01 已提交
112

113 114 115 116 117 118
        # self.values is setted directly in config 
        if self.values is not None:
            assert len(self.milestones) + 1 == len(self.values)
            return optimizer.lr.PiecewiseDecay(boundary, self.values)

        # value is computed by self.gamma
119 120 121
        value = value if value is not None else [base_lr]
        for i in self.gamma:
            value.append(base_lr * i)
Q
qingqing01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

        return optimizer.lr.PiecewiseDecay(boundary, value)


@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
    """

    def __init__(self, steps=500, start_factor=1. / 3):
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor

G
George Ni 已提交
141
    def __call__(self, base_lr, step_per_epoch):
Q
qingqing01 已提交
142 143 144
        boundary = []
        value = []
        for i in range(self.steps + 1):
145 146 147 148 149
            if self.steps > 0:
                alpha = i / self.steps
                factor = self.start_factor * (1 - alpha) + alpha
                lr = base_lr * factor
                value.append(lr)
Q
qingqing01 已提交
150 151 152 153 154
            if i > 0:
                boundary.append(i)
        return boundary, value


G
George Ni 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
@serializable
class BurninWarmup(object):
    """
    Warm up learning rate in burnin mode
    Args:
        steps (int): warm up steps
    """

    def __init__(self, steps=1000):
        super(BurninWarmup, self).__init__()
        self.steps = steps

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        burnin = min(self.steps, step_per_epoch)
        for i in range(burnin + 1):
            factor = (i * 1.0 / burnin)**4
            lr = base_lr * factor
            value.append(lr)
            if i > 0:
                boundary.append(i)
        return boundary, value


Q
qingqing01 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
        self.schedulers = schedulers

    def __call__(self, step_per_epoch):
199 200 201 202 203
        assert len(self.schedulers) >= 1
        if not self.schedulers[0].use_warmup:
            return self.schedulers[0](base_lr=self.base_lr,
                                      step_per_epoch=step_per_epoch)

Q
qingqing01 已提交
204 205
        # TODO: split warmup & decay 
        # warmup
G
George Ni 已提交
206
        boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
Q
qingqing01 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        # decay
        decay_lr = self.schedulers[0](self.base_lr, boundary, value,
                                      step_per_epoch)
        return decay_lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles
    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
                 clip_grad_by_norm=None,
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
        self.clip_grad_by_norm = clip_grad_by_norm
        self.regularizer = regularizer
        self.optimizer = optimizer

W
Wenyu 已提交
233
    def __call__(self, learning_rate, model=None):
Q
qingqing01 已提交
234
        if self.clip_grad_by_norm is not None:
W
wangxinxin08 已提交
235
            grad_clip = nn.ClipGradByGlobalNorm(
Q
qingqing01 已提交
236 237 238
                clip_norm=self.clip_grad_by_norm)
        else:
            grad_clip = None
239
        if self.regularizer and self.regularizer != 'None':
Q
qingqing01 已提交
240 241 242 243 244 245 246 247 248
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None

        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
249 250
        if optim_type != 'AdamW':
            optim_args['weight_decay'] = regularization
Q
qingqing01 已提交
251
        op = getattr(optimizer, optim_type)
W
Wenyu 已提交
252

W
Wenyu 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
        if 'param_groups' in optim_args:
            assert isinstance(optim_args['param_groups'], list), ''

            param_groups = optim_args.pop('param_groups')

            params, visited = [], []
            for group in param_groups:
                assert isinstance(group,
                                  dict) and 'params' in group and isinstance(
                                      group['params'], list), ''
                _params = {
                    n: p
                    for n, p in model.named_parameters()
                    if any([k in n for k in group['params']])
                }
                _group = group.copy()
                _group.update({'params': list(_params.values())})

                params.append(_group)
                visited.extend(list(_params.keys()))

            ext_params = [
                p for n, p in model.named_parameters() if n not in visited
            ]

            if len(ext_params) < len(model.parameters()):
                params.append({'params': ext_params})

            elif len(ext_params) > len(model.parameters()):
                raise RuntimeError

W
Wenyu 已提交
284 285 286
        else:
            params = model.parameters()

Q
qingqing01 已提交
287 288 289 290
        return op(learning_rate=learning_rate,
                  parameters=params,
                  grad_clip=grad_clip,
                  **optim_args)
W
wangxinxin08 已提交
291 292 293


class ModelEMA(object):
G
Guanghua Yu 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    """
    Exponential Weighted Average for Deep Neutal Networks
    Args:
        model (nn.Layer): Detector of model.
        decay (int):  The decay used for updating ema parameter.
            Ema's parameter are updated with the formula:
           `ema_param = decay * ema_param + (1 - decay) * cur_param`.
            Defaults is 0.9998.
        use_thres_step (bool): Whether set decay by thres_step or not 
        cycle_epoch (int): The epoch of interval to reset ema_param and 
            step. Defaults is -1, which means not reset. Its function is to
            add a regular effect to ema, which is set according to experience 
            and is effective when the total training epoch is large.
    """

    def __init__(self,
                 model,
                 decay=0.9998,
                 use_thres_step=False,
                 cycle_epoch=-1):
W
wangxinxin08 已提交
314
        self.step = 0
G
Guanghua Yu 已提交
315
        self.epoch = 0
W
wangxinxin08 已提交
316 317 318 319 320
        self.decay = decay
        self.state_dict = dict()
        for k, v in model.state_dict().items():
            self.state_dict[k] = paddle.zeros_like(v)
        self.use_thres_step = use_thres_step
G
Guanghua Yu 已提交
321 322
        self.cycle_epoch = cycle_epoch

W
Wenyu 已提交
323 324 325 326 327
        self._model_state = {
            k: weakref.ref(p)
            for k, p in model.state_dict().items()
        }

G
Guanghua Yu 已提交
328 329 330 331 332
    def reset(self):
        self.step = 0
        self.epoch = 0
        for k, v in self.state_dict.items():
            self.state_dict[k] = paddle.zeros_like(v)
W
wangxinxin08 已提交
333

W
Wenyu 已提交
334
    def update(self, model=None):
W
wangxinxin08 已提交
335 336 337 338 339
        if self.use_thres_step:
            decay = min(self.decay, (1 + self.step) / (10 + self.step))
        else:
            decay = self.decay
        self._decay = decay
W
Wenyu 已提交
340 341 342 343 344 345 346 347

        if model is not None:
            model_dict = model.state_dict()
        else:
            model_dict = {k: p() for k, p in self._model_state.items()}
            assert all(
                [v is not None for _, v in model_dict.items()]), 'python gc.'

W
wangxinxin08 已提交
348
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
349 350 351
            v = decay * v + (1 - decay) * model_dict[k]
            v.stop_gradient = True
            self.state_dict[k] = v
W
wangxinxin08 已提交
352 353 354
        self.step += 1

    def apply(self):
355 356
        if self.step == 0:
            return self.state_dict
W
wangxinxin08 已提交
357 358
        state_dict = dict()
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
359 360 361
            v = v / (1 - self._decay**self.step)
            v.stop_gradient = True
            state_dict[k] = v
G
Guanghua Yu 已提交
362 363 364 365
        self.epoch += 1
        if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
            self.reset()

W
wangxinxin08 已提交
366
        return state_dict