optimizer.py 11.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn

import paddle.optimizer as optimizer
import paddle.regularizer as regularizer

from ppdet.core.workspace import register, serializable

__all__ = ['LearningRate', 'OptimizerBuilder']

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


34 35 36 37 38 39 40 41 42 43 44
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_epochs (int): max epochs for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iters is much larger than the warmup iter
    """

W
Wenyu 已提交
45
    def __init__(self, max_epochs=1000, use_warmup=True, eta_min=0):
46 47
        self.max_epochs = max_epochs
        self.use_warmup = use_warmup
W
Wenyu 已提交
48
        self.eta_min = eta_min
49 50 51 52 53 54 55 56 57 58 59

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
        assert base_lr is not None, "either base LR or values should be provided"

        max_iters = self.max_epochs * int(step_per_epoch)

        if boundary is not None and value is not None and self.use_warmup:
M
minghaoBD 已提交
60
            warmup_iters = len(boundary)
61 62 63
            for i in range(int(boundary[-1]), max_iters):
                boundary.append(i)

M
minghaoBD 已提交
64 65 66
                decayed_lr = base_lr * 0.5 * (math.cos(
                    (i - warmup_iters) * math.pi /
                    (max_iters - warmup_iters)) + 1)
67 68 69
                value.append(decayed_lr)
            return optimizer.lr.PiecewiseDecay(boundary, value)

W
Wenyu 已提交
70 71
        return optimizer.lr.CosineAnnealingDecay(
            base_lr, T_max=max_iters, eta_min=self.eta_min)
72 73


Q
qingqing01 已提交
74 75 76 77 78 79 80 81 82 83
@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float | list): decay factor
        milestones (list): steps at which to decay learning rate
    """

84 85 86 87 88
    def __init__(self,
                 gamma=[0.1, 0.01],
                 milestones=[8, 11],
                 values=None,
                 use_warmup=True):
Q
qingqing01 已提交
89 90 91 92 93 94 95 96
        super(PiecewiseDecay, self).__init__()
        if type(gamma) is not list:
            self.gamma = []
            for i in range(len(milestones)):
                self.gamma.append(gamma / 10**i)
        else:
            self.gamma = gamma
        self.milestones = milestones
97 98
        self.values = values
        self.use_warmup = use_warmup
Q
qingqing01 已提交
99 100 101 102 103 104

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
105
        if boundary is not None and self.use_warmup:
Q
qingqing01 已提交
106
            boundary.extend([int(step_per_epoch) * i for i in self.milestones])
107 108 109
        else:
            # do not use LinearWarmup
            boundary = [int(step_per_epoch) * i for i in self.milestones]
G
George Ni 已提交
110
            value = [base_lr]  # during step[0, boundary[0]] is base_lr
Q
qingqing01 已提交
111

112 113 114 115 116 117
        # self.values is setted directly in config 
        if self.values is not None:
            assert len(self.milestones) + 1 == len(self.values)
            return optimizer.lr.PiecewiseDecay(boundary, self.values)

        # value is computed by self.gamma
118 119 120
        value = value if value is not None else [base_lr]
        for i in self.gamma:
            value.append(base_lr * i)
Q
qingqing01 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

        return optimizer.lr.PiecewiseDecay(boundary, value)


@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
    """

    def __init__(self, steps=500, start_factor=1. / 3):
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor

G
George Ni 已提交
140
    def __call__(self, base_lr, step_per_epoch):
Q
qingqing01 已提交
141 142 143
        boundary = []
        value = []
        for i in range(self.steps + 1):
144 145 146 147 148
            if self.steps > 0:
                alpha = i / self.steps
                factor = self.start_factor * (1 - alpha) + alpha
                lr = base_lr * factor
                value.append(lr)
Q
qingqing01 已提交
149 150 151 152 153
            if i > 0:
                boundary.append(i)
        return boundary, value


G
George Ni 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
@serializable
class BurninWarmup(object):
    """
    Warm up learning rate in burnin mode
    Args:
        steps (int): warm up steps
    """

    def __init__(self, steps=1000):
        super(BurninWarmup, self).__init__()
        self.steps = steps

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        burnin = min(self.steps, step_per_epoch)
        for i in range(burnin + 1):
            factor = (i * 1.0 / burnin)**4
            lr = base_lr * factor
            value.append(lr)
            if i > 0:
                boundary.append(i)
        return boundary, value


Q
qingqing01 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
        self.schedulers = schedulers

    def __call__(self, step_per_epoch):
198 199 200 201 202
        assert len(self.schedulers) >= 1
        if not self.schedulers[0].use_warmup:
            return self.schedulers[0](base_lr=self.base_lr,
                                      step_per_epoch=step_per_epoch)

Q
qingqing01 已提交
203 204
        # TODO: split warmup & decay 
        # warmup
G
George Ni 已提交
205
        boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
Q
qingqing01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        # decay
        decay_lr = self.schedulers[0](self.base_lr, boundary, value,
                                      step_per_epoch)
        return decay_lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles
    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
                 clip_grad_by_norm=None,
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
        self.clip_grad_by_norm = clip_grad_by_norm
        self.regularizer = regularizer
        self.optimizer = optimizer

W
Wenyu 已提交
232
    def __call__(self, learning_rate, model=None):
Q
qingqing01 已提交
233
        if self.clip_grad_by_norm is not None:
W
wangxinxin08 已提交
234
            grad_clip = nn.ClipGradByGlobalNorm(
Q
qingqing01 已提交
235 236 237
                clip_norm=self.clip_grad_by_norm)
        else:
            grad_clip = None
238
        if self.regularizer and self.regularizer != 'None':
Q
qingqing01 已提交
239 240 241 242 243 244 245 246 247
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None

        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
248 249
        if optim_type != 'AdamW':
            optim_args['weight_decay'] = regularization
Q
qingqing01 已提交
250
        op = getattr(optimizer, optim_type)
W
Wenyu 已提交
251

W
Wenyu 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        if 'param_groups' in optim_args:
            assert isinstance(optim_args['param_groups'], list), ''

            param_groups = optim_args.pop('param_groups')

            params, visited = [], []
            for group in param_groups:
                assert isinstance(group,
                                  dict) and 'params' in group and isinstance(
                                      group['params'], list), ''
                _params = {
                    n: p
                    for n, p in model.named_parameters()
                    if any([k in n for k in group['params']])
                }
                _group = group.copy()
                _group.update({'params': list(_params.values())})

                params.append(_group)
                visited.extend(list(_params.keys()))

            ext_params = [
                p for n, p in model.named_parameters() if n not in visited
            ]

            if len(ext_params) < len(model.parameters()):
                params.append({'params': ext_params})

            elif len(ext_params) > len(model.parameters()):
                raise RuntimeError

W
Wenyu 已提交
283 284 285
        else:
            params = model.parameters()

Q
qingqing01 已提交
286 287 288 289
        return op(learning_rate=learning_rate,
                  parameters=params,
                  grad_clip=grad_clip,
                  **optim_args)
W
wangxinxin08 已提交
290 291 292


class ModelEMA(object):
G
Guanghua Yu 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    """
    Exponential Weighted Average for Deep Neutal Networks
    Args:
        model (nn.Layer): Detector of model.
        decay (int):  The decay used for updating ema parameter.
            Ema's parameter are updated with the formula:
           `ema_param = decay * ema_param + (1 - decay) * cur_param`.
            Defaults is 0.9998.
        use_thres_step (bool): Whether set decay by thres_step or not 
        cycle_epoch (int): The epoch of interval to reset ema_param and 
            step. Defaults is -1, which means not reset. Its function is to
            add a regular effect to ema, which is set according to experience 
            and is effective when the total training epoch is large.
    """

    def __init__(self,
                 model,
                 decay=0.9998,
                 use_thres_step=False,
                 cycle_epoch=-1):
W
wangxinxin08 已提交
313
        self.step = 0
G
Guanghua Yu 已提交
314
        self.epoch = 0
W
wangxinxin08 已提交
315 316 317 318 319
        self.decay = decay
        self.state_dict = dict()
        for k, v in model.state_dict().items():
            self.state_dict[k] = paddle.zeros_like(v)
        self.use_thres_step = use_thres_step
G
Guanghua Yu 已提交
320 321 322 323 324 325 326
        self.cycle_epoch = cycle_epoch

    def reset(self):
        self.step = 0
        self.epoch = 0
        for k, v in self.state_dict.items():
            self.state_dict[k] = paddle.zeros_like(v)
W
wangxinxin08 已提交
327 328 329 330 331 332 333 334 335

    def update(self, model):
        if self.use_thres_step:
            decay = min(self.decay, (1 + self.step) / (10 + self.step))
        else:
            decay = self.decay
        self._decay = decay
        model_dict = model.state_dict()
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
336 337 338
            v = decay * v + (1 - decay) * model_dict[k]
            v.stop_gradient = True
            self.state_dict[k] = v
W
wangxinxin08 已提交
339 340 341
        self.step += 1

    def apply(self):
342 343
        if self.step == 0:
            return self.state_dict
W
wangxinxin08 已提交
344 345
        state_dict = dict()
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
346 347 348
            v = v / (1 - self._decay**self.step)
            v.stop_gradient = True
            state_dict[k] = v
G
Guanghua Yu 已提交
349 350 351 352
        self.epoch += 1
        if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
            self.reset()

W
wangxinxin08 已提交
353
        return state_dict