optimizer.py 10.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn

import paddle.optimizer as optimizer
import paddle.regularizer as regularizer

from ppdet.core.workspace import register, serializable

__all__ = ['LearningRate', 'OptimizerBuilder']

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_epochs (int): max epochs for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iters is much larger than the warmup iter
    """

    def __init__(self, max_epochs=1000, use_warmup=True):
        self.max_epochs = max_epochs
        self.use_warmup = use_warmup

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
        assert base_lr is not None, "either base LR or values should be provided"

        max_iters = self.max_epochs * int(step_per_epoch)

        if boundary is not None and value is not None and self.use_warmup:
M
minghaoBD 已提交
59
            warmup_iters = len(boundary)
60 61 62
            for i in range(int(boundary[-1]), max_iters):
                boundary.append(i)

M
minghaoBD 已提交
63 64 65
                decayed_lr = base_lr * 0.5 * (math.cos(
                    (i - warmup_iters) * math.pi /
                    (max_iters - warmup_iters)) + 1)
66 67 68 69 70 71
                value.append(decayed_lr)
            return optimizer.lr.PiecewiseDecay(boundary, value)

        return optimizer.lr.CosineAnnealingDecay(base_lr, T_max=max_iters)


Q
qingqing01 已提交
72 73 74 75 76 77 78 79 80 81
@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float | list): decay factor
        milestones (list): steps at which to decay learning rate
    """

82 83 84 85 86
    def __init__(self,
                 gamma=[0.1, 0.01],
                 milestones=[8, 11],
                 values=None,
                 use_warmup=True):
Q
qingqing01 已提交
87 88 89 90 91 92 93 94
        super(PiecewiseDecay, self).__init__()
        if type(gamma) is not list:
            self.gamma = []
            for i in range(len(milestones)):
                self.gamma.append(gamma / 10**i)
        else:
            self.gamma = gamma
        self.milestones = milestones
95 96
        self.values = values
        self.use_warmup = use_warmup
Q
qingqing01 已提交
97 98 99 100 101 102

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
103
        if boundary is not None and self.use_warmup:
Q
qingqing01 已提交
104
            boundary.extend([int(step_per_epoch) * i for i in self.milestones])
105 106 107
        else:
            # do not use LinearWarmup
            boundary = [int(step_per_epoch) * i for i in self.milestones]
G
George Ni 已提交
108
            value = [base_lr]  # during step[0, boundary[0]] is base_lr
Q
qingqing01 已提交
109

110 111 112 113 114 115
        # self.values is setted directly in config 
        if self.values is not None:
            assert len(self.milestones) + 1 == len(self.values)
            return optimizer.lr.PiecewiseDecay(boundary, self.values)

        # value is computed by self.gamma
116 117 118
        value = value if value is not None else [base_lr]
        for i in self.gamma:
            value.append(base_lr * i)
Q
qingqing01 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

        return optimizer.lr.PiecewiseDecay(boundary, value)


@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
    """

    def __init__(self, steps=500, start_factor=1. / 3):
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor

G
George Ni 已提交
138
    def __call__(self, base_lr, step_per_epoch):
Q
qingqing01 已提交
139 140 141
        boundary = []
        value = []
        for i in range(self.steps + 1):
142 143 144 145 146
            if self.steps > 0:
                alpha = i / self.steps
                factor = self.start_factor * (1 - alpha) + alpha
                lr = base_lr * factor
                value.append(lr)
Q
qingqing01 已提交
147 148 149 150 151
            if i > 0:
                boundary.append(i)
        return boundary, value


G
George Ni 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
@serializable
class BurninWarmup(object):
    """
    Warm up learning rate in burnin mode
    Args:
        steps (int): warm up steps
    """

    def __init__(self, steps=1000):
        super(BurninWarmup, self).__init__()
        self.steps = steps

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        burnin = min(self.steps, step_per_epoch)
        for i in range(burnin + 1):
            factor = (i * 1.0 / burnin)**4
            lr = base_lr * factor
            value.append(lr)
            if i > 0:
                boundary.append(i)
        return boundary, value


Q
qingqing01 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
        self.schedulers = schedulers

    def __call__(self, step_per_epoch):
196 197 198 199 200
        assert len(self.schedulers) >= 1
        if not self.schedulers[0].use_warmup:
            return self.schedulers[0](base_lr=self.base_lr,
                                      step_per_epoch=step_per_epoch)

Q
qingqing01 已提交
201 202
        # TODO: split warmup & decay 
        # warmup
G
George Ni 已提交
203
        boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
Q
qingqing01 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        # decay
        decay_lr = self.schedulers[0](self.base_lr, boundary, value,
                                      step_per_epoch)
        return decay_lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles
    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
                 clip_grad_by_norm=None,
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
        self.clip_grad_by_norm = clip_grad_by_norm
        self.regularizer = regularizer
        self.optimizer = optimizer

W
Wenyu 已提交
230
    def __call__(self, learning_rate, model=None):
Q
qingqing01 已提交
231
        if self.clip_grad_by_norm is not None:
W
wangxinxin08 已提交
232
            grad_clip = nn.ClipGradByGlobalNorm(
Q
qingqing01 已提交
233 234 235
                clip_norm=self.clip_grad_by_norm)
        else:
            grad_clip = None
236
        if self.regularizer and self.regularizer != 'None':
Q
qingqing01 已提交
237 238 239 240 241 242 243 244 245
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None

        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
246 247
        if optim_type != 'AdamW':
            optim_args['weight_decay'] = regularization
Q
qingqing01 已提交
248
        op = getattr(optimizer, optim_type)
W
Wenyu 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

        if 'without_weight_decay_params' in optim_args:
            keys = optim_args['without_weight_decay_params']
            params = [{
                'params': [
                    p for n, p in model.named_parameters()
                    if any([k in n for k in keys])
                ],
                'weight_decay': 0.
            }, {
                'params': [
                    p for n, p in model.named_parameters()
                    if all([k not in n for k in keys])
                ]
            }]
            del optim_args['without_weight_decay_params']
        else:
            params = model.parameters()

Q
qingqing01 已提交
268 269 270 271
        return op(learning_rate=learning_rate,
                  parameters=params,
                  grad_clip=grad_clip,
                  **optim_args)
W
wangxinxin08 已提交
272 273 274


class ModelEMA(object):
G
Guanghua Yu 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    """
    Exponential Weighted Average for Deep Neutal Networks
    Args:
        model (nn.Layer): Detector of model.
        decay (int):  The decay used for updating ema parameter.
            Ema's parameter are updated with the formula:
           `ema_param = decay * ema_param + (1 - decay) * cur_param`.
            Defaults is 0.9998.
        use_thres_step (bool): Whether set decay by thres_step or not 
        cycle_epoch (int): The epoch of interval to reset ema_param and 
            step. Defaults is -1, which means not reset. Its function is to
            add a regular effect to ema, which is set according to experience 
            and is effective when the total training epoch is large.
    """

    def __init__(self,
                 model,
                 decay=0.9998,
                 use_thres_step=False,
                 cycle_epoch=-1):
W
wangxinxin08 已提交
295
        self.step = 0
G
Guanghua Yu 已提交
296
        self.epoch = 0
W
wangxinxin08 已提交
297 298 299 300 301
        self.decay = decay
        self.state_dict = dict()
        for k, v in model.state_dict().items():
            self.state_dict[k] = paddle.zeros_like(v)
        self.use_thres_step = use_thres_step
G
Guanghua Yu 已提交
302 303 304 305 306 307 308
        self.cycle_epoch = cycle_epoch

    def reset(self):
        self.step = 0
        self.epoch = 0
        for k, v in self.state_dict.items():
            self.state_dict[k] = paddle.zeros_like(v)
W
wangxinxin08 已提交
309 310 311 312 313 314 315 316 317

    def update(self, model):
        if self.use_thres_step:
            decay = min(self.decay, (1 + self.step) / (10 + self.step))
        else:
            decay = self.decay
        self._decay = decay
        model_dict = model.state_dict()
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
318 319 320
            v = decay * v + (1 - decay) * model_dict[k]
            v.stop_gradient = True
            self.state_dict[k] = v
W
wangxinxin08 已提交
321 322 323
        self.step += 1

    def apply(self):
324 325
        if self.step == 0:
            return self.state_dict
W
wangxinxin08 已提交
326 327
        state_dict = dict()
        for k, v in self.state_dict.items():
W
wangxinxin08 已提交
328 329 330
            v = v / (1 - self._decay**self.step)
            v.stop_gradient = True
            state_dict[k] = v
G
Guanghua Yu 已提交
331 332 333 334
        self.epoch += 1
        if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
            self.reset()

W
wangxinxin08 已提交
335
        return state_dict