layers.py 256.6 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnAvgInclPadPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
151
    'factorization_machine',
Q
qijun 已提交
152
]
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159


class LayerType(object):
    """
    Layer type enumerations.
    """

160 161 162 163 164 165 166 167
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
168
    POOLING_AVG = 'average'
169
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
170
    COST = 'cost'
171 172
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
173
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
174
    HSIGMOID = 'hsigmoid'
175 176 177 178 179
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
180
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
181
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
182
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
183 184 185
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
186
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
187 188 189 190
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
191
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
192 193 194 195 196 197 198

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
199
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
200 201 202
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
203
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
204
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
205
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
206
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
207 208 209 210 211 212 213 214 215 216 217

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
218
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
219
    BLOCK_EXPAND = "blockexpand"
220
    MAXOUT = "maxout"
Q
qijun 已提交
221
    SPP_LAYER = "spp"
D
dangqingqing 已提交
222
    PAD_LAYER = "pad"
W
wwhu 已提交
223
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
224
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
225 226 227

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
228 229
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
230
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
231 232 233 234 235

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
236
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
237

238 239 240
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

241 242
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
243
    HUBER_REGRESSION = 'huber_regression'
244
    HUBER_CLASSIFICATION = 'huber_classification'
245 246
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
247
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
248 249 250 251 252 253
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
254
    SWITCH_ORDER_LAYER = 'switch_order'
255
    CROP_LAYER = 'crop'
C
caoying03 已提交
256
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
257
    CLIP_LAYER = 'clip'
258
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
259

260
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
261
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
262

263
    RESIZE = 'resize'
Y
yangyaming 已提交
264
    SUB_SEQ_LAYER = 'subseq'
265

Y
yangyaming 已提交
266
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
Z
zhangjinchao01 已提交
267

268 269
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
290
    """
L
Luo Tao 已提交
291
    PaddlePaddle supports three sequence types:
292 293 294

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
295 296
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
297

L
Luo Tao 已提交
298
    Accordingly, AggregateLevel supports two modes:
299

L
Luo Tao 已提交
300
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
301
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
302 303
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
304
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
305 306 307
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
308 309
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
310 311 312
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
335
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
336 337
    """

Q
qijun 已提交
338 339 340 341 342 343 344 345 346
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
347
                 reverse=None):
Z
zhangjinchao01 已提交
348 349
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
350
        assert size is not None
Z
zhangjinchao01 已提交
351 352
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
353
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
354
        self.layer_type = layer_type
355 356
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
365
        self.reverse = reverse
Z
zhangjinchao01 已提交
366

367 368 369 370 371 372 373 374
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

375 376 377 378
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

379 380 381 382 383 384 385 386
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
387 388 389

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
390
DEVICE = 'device'
Z
zhangjinchao01 已提交
391 392 393


def layer_support(*attrs):
394
    attrs_list = list(attrs)
395
    attrs_list.append(DEVICE)
Q
qijun 已提交
396

Z
zhangjinchao01 已提交
397 398 399
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
400
            for attr in attrs_list:
Z
zhangjinchao01 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
417 418 419 420 421
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
452
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
453 454 455 456 457 458 459 460
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
461 462
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
463 464 465 466
    proj.origin = input
    return proj


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
488
    :param input: The input of this layer.
489 490 491 492 493 494 495 496
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
497 498
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
499 500 501 502
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
533
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
534 535 536 537 538 539 540 541
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
542 543
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
544 545 546 547
    proj.origin = input
    return proj


548
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
578
    :param input: The input of this layer.
579
    :type input: LayerOutput
Z
zhangjinchao01 已提交
580 581
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
582
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
583 584 585 586 587 588
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
589 590
        if size is None:
            size = input.size - offset
Q
qijun 已提交
591
        proj = IdentityOffsetProjection(
592
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
593 594 595 596
        proj.origin = input
    return proj


597 598
def slice_projection(input, slices):
    """
599 600
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
601 602

    .. math::
603
       output = [input.slices()]
604 605 606 607 608 609 610 611 612

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
613
    :param input: The input of this layer.
614 615 616 617
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
618
    :type slices: pair of int
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
651
    :param input: The input of this layer.
X
xuwei06 已提交
652 653 654 655 656 657
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
658
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
659 660 661 662
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
663
@wrap_param_attr_default()
664
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
665
    """
666
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
680
    :param input: The input of this layer.
681 682 683 684 685 686
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
687 688
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
689
    proj.origin = input
690
    return proj
Z
zhangjinchao01 已提交
691

692 693

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
694 695
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
696

Z
zhangjinchao01 已提交
697
    .. math::
L
Luo Tao 已提交
698
       out.row[i] += scale * (a.row[i] .* b.row[i])
699

Z
zhangjinchao01 已提交
700 701
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
702

Z
zhangjinchao01 已提交
703
    The example usage is:
704

Z
zhangjinchao01 已提交
705
    .. code-block:: python
706

L
Luo Tao 已提交
707
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
708

709 710 711 712
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
713 714
    :param scale: config scalar, default value is one.
    :type scale: float
715 716
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
717
    """
718 719 720
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
721
    a = kwargs.get('x', a)  # For Backward capacity.
722 723 724 725 726 727
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
728
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
729
    op.origin = [a, b]
730
    return op
Z
zhangjinchao01 已提交
731

732

Z
zhangjinchao01 已提交
733
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
734 735 736
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
751
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
752 753 754 755 756 757 758 759 760
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
761
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
773 774 775 776 777 778
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
792
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
793 794 795 796 797 798
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
799
        :param act: Activation type.
Z
zhangjinchao01 已提交
800
        :type act: BaseActivation
R
ranqiu 已提交
801 802 803
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
804
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
805 806 807
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
808 809 810 811 812 813 814
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
815 816 817 818 819
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

820
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
821 822 823 824 825 826 827 828
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
829
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
830
            self.inputs.append(other)
831 832 833 834
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
835 836 837 838 839 840 841 842
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

843
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
844 845
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
846
        assert len(self.inputs) != 0
847
        ml = MixedLayer(
Z
zhangjinchao01 已提交
848 849 850 851 852
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
853
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
854 855 856
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
857
        self.finalized = True
Z
zhangjinchao01 已提交
858 859 860 861 862 863


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
864 865 866 867 868
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
896
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
897
                  then this function will just return layer's name.
898
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
899
    :type act: BaseActivation
R
ranqiu 已提交
900 901 902
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
903
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
904 905 906 907 908 909 910 911 912
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
913 914 915 916 917 918
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
919
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
920 921 922 923 924 925 926 927
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
928 929
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
930 931 932 933 934 935 936
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
937
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
938

R
ranqiu 已提交
939
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
940 941 942
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
943
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
944
    :type height: int | None
L
Luo Tao 已提交
945
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
946
    :type width: int | None
Z
zhangjinchao01 已提交
947 948
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
949
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
950 951
    :rtype: LayerOutput
    """
Q
qijun 已提交
952 953 954 955
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
956
        depth=depth,
L
Luo Tao 已提交
957 958
        height=height,
        width=width,
Q
qijun 已提交
959
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
960

C
chengduoZH 已提交
961 962
    if depth is None:
        depth = 1
963 964
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
965 966
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
967
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
968 969

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
970 971 972 973


@wrap_name_default("embedding")
@wrap_param_attr_default()
974
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
975 976 977 978
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

979
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
980
    :type name: basestring
R
ranqiu 已提交
981
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
982 983 984 985 986
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
987
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
988
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
989
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
990
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
991 992
    :rtype: LayerOutput
    """
Q
qijun 已提交
993 994 995 996 997 998
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1008 1009 1010 1011 1012 1013 1014
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1027
    which is equal to:
Z
zhangjinchao01 已提交
1028 1029 1030 1031 1032 1033

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1034
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1035
    :type name: basestring
R
ranqiu 已提交
1036 1037
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1038 1039
    :param size: The layer dimension.
    :type size: int
1040
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1041 1042 1043
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1044 1045 1046
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1047
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1048
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1049
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1051 1052 1053 1054
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1055
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1056 1057
        param_attr = [param_attr]
    else:
1058
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1059 1060
            assert len(input) == len(param_attr)
        else:
1061
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1062
                logger.fatal(
W
wangmeng28 已提交
1063 1064 1065 1066 1067
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1068 1069
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1070
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1071 1072

    Layer(
Q
qijun 已提交
1073 1074 1075
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1076 1077 1078 1079 1080
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1081 1082 1083
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1084

1085

1086
@wrap_name_default("print")
1087
def printer_layer(input, format=None, name=None):
1088 1089
    """
    Print the output value of input layers. This layer is useful for debugging.
1090

1091
    :param name: The name of this layer. It is optional.
1092
    :type name: basestring
R
ranqiu 已提交
1093 1094
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1095
    :return: LayerOutput
1096
    """
1097 1098 1099 1100 1101
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1102 1103 1104

    Layer(
        name=name,
1105
        format=format,
1106
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1107
        inputs=[l.name for l in input], )
1108
    # this layer don't return anything, can not be input of other layer.
1109

X
xuwei06 已提交
1110 1111 1112 1113 1114 1115 1116
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1117

Y
yuan 已提交
1118
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1119
def priorbox_layer(input,
G
gaoyuan 已提交
1120
                   image,
G
gaoyuan 已提交
1121 1122 1123 1124 1125
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1126 1127 1128
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1129
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1130
    :type name: basestring
R
ranqiu 已提交
1131
    :param input: The input of this layer.
Y
yuan 已提交
1132
    :type input: LayerOutput
G
gaoyuan 已提交
1133 1134
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1146
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1147 1148 1149
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1150
        inputs=[input.name, image.name],
Y
yuan 已提交
1151 1152 1153 1154 1155 1156
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1157 1158
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1159
        parents=[input, image],
G
gaoyuan 已提交
1160 1161 1162
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1178
    :param name: The name of this layer. It is optional.
1179
    :type name: basestring
Y
yangyaming 已提交
1180 1181
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1182
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1183
    :type input_conf: LayerOutput | List of LayerOutput
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1205
    input_loc_num = len(input_loc)
1206 1207 1208 1209 1210 1211

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1212
    input_conf_num = len(input_conf)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1250 1251
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1252

1253
    :param name: The name of this layer. It is optional.
1254
    :type name: basestring
Y
yangyaming 已提交
1255 1256
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1257
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1258
    :type input_conf: LayerOutput | List of LayerOutput.
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1280
    input_loc_num = len(input_loc)
1281 1282 1283 1284 1285 1286

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1287 1288
    input_conf_num = len(input_conf)

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1317 1318 1319 1320 1321 1322
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1323
                   num_channels=None,
G
guosheng 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1341 1342
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1343 1344
    :return: LayerOutput
    """
G
guosheng 已提交
1345 1346 1347 1348
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1349 1350 1351 1352 1353 1354
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1355 1356
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1357 1358
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1359 1360


1361 1362
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1363 1364 1365 1366 1367
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1368

1369
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1370
    :type name: basestring
R
ranqiu 已提交
1371
    :param input: The input of this layer.
G
gaoyuan 已提交
1372 1373 1374 1375 1376
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1377
    assert input.num_filters is not None
G
gaoyuan 已提交
1378 1379
    Layer(
        name=name,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1393 1394
    return LayerOutput(
        name,
1395
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1396 1397 1398 1399 1400
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1401 1402 1403 1404
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1405 1406 1407 1408
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1409
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1410
                  stride=-1,
Z
zhangjinchao01 已提交
1411 1412 1413 1414
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1415 1416
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1417 1418 1419
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1420
    operation. Note that for sequence with sub-sequence, the default value
1421 1422
    of stride is -1.

Z
zhangjinchao01 已提交
1423 1424 1425 1426 1427 1428
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1429
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1430

L
Luo Tao 已提交
1431 1432
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1433
    :type agg_level: AggregateLevel
1434
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1435
    :type name: basestring
R
ranqiu 已提交
1436
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1437 1438 1439
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1440
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1441
    :param stride: The step size between successive pooling regions.
1442
    :type stride: Int
R
ranqiu 已提交
1443 1444 1445
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1446
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1447
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1448
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1449
    :return: LayerOutput object.
Y
Yu Yang 已提交
1450
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1451 1452
    """
    extra_dict = dict()
1453
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1454 1455
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1456 1457 1458 1459
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1460 1461
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1462 1463 1464
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1465 1466 1467 1468 1469 1470
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1471
        stride=stride,
Q
qijun 已提交
1472
        **extra_dict)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474 1475
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1476

Q
qijun 已提交
1477

Z
zhangjinchao01 已提交
1478 1479
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1480
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1481 1482
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1483
@layer_support()
Q
qijun 已提交
1484 1485
def lstmemory(input,
              name=None,
1486
              size=None,
Q
qijun 已提交
1487 1488 1489 1490 1491 1492
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1493 1494 1495 1496 1497 1498 1499 1500
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1501
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1502

L
luotao02 已提交
1503
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1504

L
luotao02 已提交
1505
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1506

L
luotao02 已提交
1507
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1508

L
luotao02 已提交
1509
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1510 1511


C
caoying03 已提交
1512
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1513
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1514 1515 1516 1517
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1518

C
caoying03 已提交
1519
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1520 1521
    to config a simple plain lstm layer.

R
ranqiu 已提交
1522 1523 1524
    Reference:
        `Generating Sequences With Recurrent Neural Networks
        <https://arxiv.org/pdf/1308.0850.pdf>`_
Z
zhangjinchao01 已提交
1525

R
ranqiu 已提交
1526
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1527
    :type name: basestring
R
ranqiu 已提交
1528
    :param size: DEPRECATED. The dimension of the lstm cell.
1529
    :type size: int
R
ranqiu 已提交
1530
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1531
    :type input: LayerOutput
R
ranqiu 已提交
1532
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1533
    :type reverse: bool
1534
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1535
    :type act: BaseActivation
R
ranqiu 已提交
1536 1537
    :param gate_act: Activation type of this layer's gates. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
1538
    :type gate_act: BaseActivation
R
ranqiu 已提交
1539
    :param state_act: Activation type of the state. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1540
    :type state_act: BaseActivation
R
ranqiu 已提交
1541 1542 1543
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1544
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1545 1546 1547 1548
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1549
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1550
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1551 1552 1553 1554 1555 1556
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1557
    assert input.size is not None and input.size % 4 == 0
1558

1559 1560 1561 1562 1563
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1564 1565 1566
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1567

Q
qijun 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1578

Q
qijun 已提交
1579 1580 1581 1582 1583
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1584

Z
zhangjinchao01 已提交
1585 1586 1587

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1588
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1589 1590
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1591
@layer_support()
Q
qijun 已提交
1592
def grumemory(input,
1593
              size=None,
Q
qijun 已提交
1594 1595 1596 1597 1598 1599
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1621 1622
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1623 1624 1625 1626 1627

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1628 1629 1630
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1631 1632 1633 1634 1635

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1636
    NOTE: In PaddlePaddle's implementation, the multiplication operations
R
ranqiu 已提交
1637 1638
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not performed
    in gate_recurrent layer. Consequently, an additional mixed_layer with
C
caoying03 已提交
1639 1640
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1641

R
ranqiu 已提交
1642 1643 1644
    Reference:
        `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
        <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1645 1646 1647 1648 1649 1650 1651

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

R
ranqiu 已提交
1652 1653
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
1654
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1655
    :type input: LayerOutput.
R
ranqiu 已提交
1656
    :param size: DEPRECATED. The dimension of the gru cell.
1657
    :type size: int
R
ranqiu 已提交
1658
    :param reverse: Whether the input sequence is processed in a reverse order.
Z
zhangjinchao01 已提交
1659
    :type reverse: bool
R
ranqiu 已提交
1660
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1661 1662
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
R
ranqiu 已提交
1663 1664 1665
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation. This activation affects the :math:`z_t`
                     and :math:`r_t`. It is the :math:`\\sigma` in the above formula.
Z
zhangjinchao01 已提交
1666
    :type gate_act: BaseActivation
R
ranqiu 已提交
1667 1668 1669
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1670
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1671 1672 1673 1674
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
1675
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1676
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1677 1678 1679 1680
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1681 1682 1683 1684 1685 1686
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1687 1688 1689
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1690

Q
qijun 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1700

Q
qijun 已提交
1701 1702 1703 1704 1705
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1706

Z
zhangjinchao01 已提交
1707 1708 1709

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1710 1711
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1712
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1713
             stride=-1,
Z
zhangjinchao01 已提交
1714 1715 1716 1717
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

R
ranqiu 已提交
1718 1719 1720 1721
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the last value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1722

L
Luo Tao 已提交
1723 1724 1725 1726 1727 1728
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1729
    :param agg_level: Aggregated level
R
ranqiu 已提交
1730
    :type agg_level: AggregateLevel
1731
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1732
    :type name: basestring
R
ranqiu 已提交
1733
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1734
    :type input: LayerOutput
L
Luo Tao 已提交
1735
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1736 1737 1738 1739
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1740
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1741 1742
    :rtype: LayerOutput
    """
1743 1744 1745 1746 1747 1748
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1749
    if agg_level == AggregateLevel.TO_SEQUENCE:
1750 1751
        assert stride == -1

Z
zhangjinchao01 已提交
1752 1753 1754 1755 1756
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1757
        stride=stride,
Q
qijun 已提交
1758 1759 1760 1761 1762 1763
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1764 1765 1766 1767


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1768 1769
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1770
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1771
              stride=-1,
Z
zhangjinchao01 已提交
1772 1773 1774 1775
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

R
ranqiu 已提交
1776 1777 1778 1779
    If stride > 0, this layer will slide a window whose size is determined by stride,
    and return the first value of the sequence in the window as the output. Thus, a
    long sequence will be shortened. Note that for sequence with sub-sequence, the
    default value of stride is -1.
1780

L
Luo Tao 已提交
1781 1782 1783 1784 1785 1786
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1787
    :param agg_level: aggregation level
R
ranqiu 已提交
1788
    :type agg_level: AggregateLevel
1789
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1790
    :type name: basestring
R
ranqiu 已提交
1791
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1792
    :type input: LayerOutput
L
Luo Tao 已提交
1793
    :param stride: The step size between successive pooling regions.
R
ranqiu 已提交
1794 1795 1796
    :type stride: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1797
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1798
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1799 1800
    :rtype: LayerOutput
    """
1801 1802 1803 1804 1805 1806 1807

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1808
    if agg_level == AggregateLevel.TO_SEQUENCE:
1809 1810
        assert stride == -1

Z
zhangjinchao01 已提交
1811 1812 1813 1814 1815
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1816
        stride=stride,
Q
qijun 已提交
1817 1818 1819 1820 1821 1822
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1823 1824 1825


class ExpandLevel(object):
1826 1827 1828 1829 1830
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1831 1832
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1833 1834
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1835 1836
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1837 1838
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1839 1840
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1841 1842
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1843

1844

Z
zhangjinchao01 已提交
1845 1846
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1847 1848
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1849 1850
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1851
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1852 1853
                 layer_attr=None):
    """
R
ranqiu 已提交
1854 1855
    A layer for expanding dense data or (sequence data where the length of each
    sequence is one) to sequence data.
Z
zhangjinchao01 已提交
1856 1857 1858 1859 1860 1861 1862

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1863
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1864

R
ranqiu 已提交
1865
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1866
    :type input: LayerOutput
R
ranqiu 已提交
1867 1868 1869
    :param expand_as: Expand the input according to this layer's sequence infomation. And
                      after the operation, the input expanded will have the same number of
                      elememts as this layer.
Z
zhangjinchao01 已提交
1870
    :type expand_as: LayerOutput
1871
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1872
    :type name: basestring
R
ranqiu 已提交
1873 1874 1875
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1876
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
1877
    :param expand_level: Whether the input layer is a sequence or the element of a sequence.
Z
zhangjinchao01 已提交
1878
    :type expand_level: ExpandLevel
R
ranqiu 已提交
1879 1880
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
1881
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1882
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1892 1893 1894 1895 1896 1897
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1898 1899


X
xuwei06 已提交
1900
@wrap_name_default()
X
xuwei06 已提交
1901
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1902
@layer_support()
X
xuwei06 已提交
1903 1904 1905
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1906
                 act=None,
X
xuwei06 已提交
1907 1908
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1909
    """
X
xuwei06 已提交
1910
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1911

X
xuwei06 已提交
1912
    If as_row_vector:
R
ranqiu 已提交
1913

X
xuwei06 已提交
1914
    .. math::
X
xuwei06 已提交
1915
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
R
ranqiu 已提交
1916

X
xuwei06 已提交
1917
    If not as_row_vector:
R
ranqiu 已提交
1918

X
xuwei06 已提交
1919 1920 1921
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1922 1923 1924 1925 1926

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1927
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1928

R
ranqiu 已提交
1929
    :param input: The input of this layer.
X
xuwei06 已提交
1930
    :type input: LayerOutput
R
ranqiu 已提交
1931
    :param num_repeats: The times of repeating the input.
X
xuwei06 已提交
1932
    :type num_repeats: int
1933
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
1934 1935 1936 1937 1938
    :type name: basestring
    :param as_row_vector: Whether to treat the input as row vectors or not. If
                          the parameter is set to True, the repeating operation
                          will be performed in the column direction. Otherwise,
                          it will be performed in the row direction.
X
xuwei06 已提交
1939
    :type as_row_vector: bool
1940
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1941
    :type act: BaseActivation
R
ranqiu 已提交
1942 1943
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
1944 1945 1946 1947 1948 1949 1950 1951
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1952
        active_type=act.name,
X
xuwei06 已提交
1953
        num_filters=num_repeats,
X
xuwei06 已提交
1954
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1955
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1956 1957 1958 1959 1960
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1961
        activation=act,
Q
qijun 已提交
1962 1963
        parents=[input])

X
xuwei06 已提交
1964

1965 1966 1967
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1968
@layer_support(ERROR_CLIPPING, DROPOUT)
1969 1970 1971 1972 1973 1974 1975 1976
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1977
    the dimension of each instance is M, and the input reshape_size is N, then the
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1988
    :param input: The input of this layer.
1989
    :type input: LayerOutput
R
ranqiu 已提交
1990
    :param reshape_size: The dimension of the reshaped sequence.
1991
    :type reshape_size: int
1992
    :param name: The name of this layer. It is optional.
1993
    :type name: basestring
1994
    :param act: Activation type. IdentityActivation is the default activation.
1995
    :type act: BaseActivation
R
ranqiu 已提交
1996 1997
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
1998
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1999 2000 2001
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2002
    :type bias_attr: ParameterAttribute | None | bool | Any
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2021 2022 2023 2024
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
R
ranqiu 已提交
2025
    This layer performs linear interpolation on two inputs,
Z
zhangjinchao01 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2041 2042
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2043 2044
    :param weight: Weight layer.
    :type weight: LayerOutput
2045
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2046
    :type name: basestring
R
ranqiu 已提交
2047 2048
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2049
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2051 2052
    :rtype: LayerOutput
    """
2053
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2054
    assert len(input) == 2
2055 2056 2057 2058 2059 2060 2061
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2062 2063 2064 2065
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2066 2067 2068 2069 2070 2071
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2072 2073


L
liaogang 已提交
2074 2075 2076 2077 2078 2079 2080 2081
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
R
ranqiu 已提交
2082
    This layer implements bilinear interpolation on convolutional layer's output.
L
liaogang 已提交
2083 2084 2085 2086 2087 2088 2089

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2090
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2091

R
ranqiu 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    :param input: The input of this layer.
    :type input: LayerOutput.
    :param out_size_x: The width of the output.
    :type out_size_x: int
    :param out_size_y: The height of the output.
    :type out_size_y: int
    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
L
liaogang 已提交
2103
    :return: LayerOutput object.
R
ranqiu 已提交
2104
    :rtype: LayerOutput
L
liaogang 已提交
2105 2106 2107 2108
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2109
    assert input.num_filters is not None
L
liaogang 已提交
2110
    num_channels = input.num_filters
Q
qijun 已提交
2111 2112 2113 2114 2115 2116 2117
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2118
                channels=num_channels)),
Q
qijun 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2128

Z
zhangjinchao01 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

R
ranqiu 已提交
2139 2140
    where :math:`x` is an input vector, :math:`w` is a scalar exponent,
    and :math:`y` is an output vector.
Z
zhangjinchao01 已提交
2141 2142 2143 2144 2145 2146 2147

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2148
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2149
    :type input: LayerOutput
R
ranqiu 已提交
2150
    :param weight: The exponent of the power.
Z
zhangjinchao01 已提交
2151
    :type weight: LayerOutput
2152
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2153
    :type name: basestring
R
ranqiu 已提交
2154 2155
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2156
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2157
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2158 2159
    :rtype: LayerOutput
    """
2160 2161 2162
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2163 2164 2165
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2166
        inputs=[weight.name, input.name],
Q
qijun 已提交
2167 2168 2169
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2170 2171 2172 2173 2174 2175


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2176
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2177 2178

    .. math::
2179
       y  = w x
Z
zhangjinchao01 已提交
2180

2181 2182 2183 2184 2185
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2186 2187 2188 2189 2190 2191 2192

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2193
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2194
    :type input: LayerOutput
R
ranqiu 已提交
2195
    :param weight: The weight of each sample.
Z
zhangjinchao01 已提交
2196
    :type weight: LayerOutput
2197
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2198
    :type name: basestring
R
ranqiu 已提交
2199 2200
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2201
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2202
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2203 2204
    :rtype: LayerOutput
    """
2205 2206 2207
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2208 2209 2210 2211
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2212 2213 2214
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2215 2216 2217 2218 2219 2220


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2221
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2234
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2235
    :type input: LayerOutput
2236
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2237
    :type name: basestring
R
ranqiu 已提交
2238 2239
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2240
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2241
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2242 2243 2244 2245 2246 2247
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2248 2249 2250
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2251 2252


2253 2254
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2255
def rotate_layer(input, height, width, name=None, layer_attr=None):
2256
    """
H
Haonan 已提交
2257 2258
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2259 2260

    .. math::
H
Haonan 已提交
2261
       y(j,i,:) = x(M-i-1,j,:)
2262

H
Haonan 已提交
2263
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2264 2265 2266 2267 2268 2269

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2270 2271
                          height=100,
                          width=100)
2272

R
ranqiu 已提交
2273
    :param input: The input of this layer.
2274
    :type input: LayerOutput
R
ranqiu 已提交
2275
    :param height: The height of the sample matrix.
2276
    :type height: int
R
ranqiu 已提交
2277 2278
    :param width: The width of the sample matrix.
    :type width: int
2279
    :param name: The name of this layer. It is optional.
2280
    :type name: basestring
R
ranqiu 已提交
2281 2282
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
2283 2284 2285 2286 2287
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2288 2289 2290
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2291
        width=width,
H
Haonan 已提交
2292 2293 2294 2295 2296 2297 2298 2299
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2300 2301


Z
zhangjinchao01 已提交
2302 2303
@wrap_name_default()
@layer_support()
2304
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2305 2306 2307 2308
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2309
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2310 2311 2312 2313 2314
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2315

2316 2317
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2318

L
Luo Tao 已提交
2319 2320 2321 2322 2323 2324
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2325
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2326
    :type name: basestring
R
ranqiu 已提交
2327
    :param a: The first input of this layer.
Z
zhangjinchao01 已提交
2328
    :type a: LayerOutput
R
ranqiu 已提交
2329
    :param b: The second input of this layer.
Z
zhangjinchao01 已提交
2330
    :type b: LayerOutput
R
ranqiu 已提交
2331
    :param scale: The scale of the cosine similarity. 1 is the default value.
Z
zhangjinchao01 已提交
2332
    :type scale: float
R
ranqiu 已提交
2333
    :param size: The dimension of this layer. NOTE size_a * size should equal size_b.
Z
zhangjinchao01 已提交
2334
    :type size: int
R
ranqiu 已提交
2335
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2336
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2337
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2338 2339
    :rtype: LayerOutput
    """
2340
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2341 2342 2343 2344 2345 2346
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2347
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2348
    else:
2349 2350
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2351 2352 2353 2354 2355 2356
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2357
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2358
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2359

2360

C
caoying03 已提交
2361 2362 2363 2364
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2365
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2366
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2397
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2398 2399 2400
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2401
        inputs=[x.name, y.name],
C
caoying03 已提交
2402 2403 2404 2405
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2406 2407
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2408
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2409
@layer_support()
Q
qijun 已提交
2410 2411
def hsigmoid(input,
             label,
2412
             num_classes=None,
Q
qijun 已提交
2413 2414 2415 2416
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2417 2418 2419
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
R
ranqiu 已提交
2420 2421 2422 2423

    Reference:
        `Hierarchical Probabilistic Neural Network Language Model
        <http://www.gatsby.ucl.ac.uk/aistats/fullpapers/208.pdf>`_
Z
zhangjinchao01 已提交
2424 2425 2426 2427 2428 2429

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2430
                        label=data_layer)
Z
zhangjinchao01 已提交
2431

R
ranqiu 已提交
2432 2433
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
2434
    :param label: The input label.
Z
zhangjinchao01 已提交
2435
    :type label: LayerOutput
R
ranqiu 已提交
2436 2437 2438 2439
    :param num_classes: The number of classes. And it should be larger than 2. If the parameter
                        is not set or set to None, its actual value will be automatically set to
                        the number of labels.
    :type num_classes: int
2440
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2441
    :type name: basestring
R
ranqiu 已提交
2442 2443 2444
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2445
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2446 2447 2448
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
2449
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2450
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2451 2452 2453 2454
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2455 2456 2457 2458 2459 2460 2461 2462 2463
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2464 2465 2466
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2467 2468 2469 2470 2471
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2472 2473
    ipts_for_layer = []
    parents = []
2474
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2475
        assert isinstance(each_input, LayerOutput)
2476
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2477 2478 2479 2480
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2481
    l = Layer(
Z
zhangjinchao01 已提交
2482 2483 2484 2485 2486
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2487 2488 2489
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2490

2491

Z
zhangjinchao01 已提交
2492 2493 2494 2495 2496
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2506
                   dilation=1,
Q
qijun 已提交
2507 2508 2509 2510 2511 2512 2513
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2514
                   dilation_y=None,
2515 2516
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2517
    """
2518
    Convolution layer for image. Paddle can support both square and non-square
2519
    input currently.
Z
zhangjinchao01 已提交
2520 2521 2522 2523

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2524

2525
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2526
    and non-square input currently.
2527

X
xuwei06 已提交
2528
    The details of convolution transpose layer,
2529 2530 2531
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2532 2533 2534 2535
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2536 2537
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2538
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2539 2540 2541
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2542

L
Luo Tao 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2553
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2554
    :type name: basestring
R
ranqiu 已提交
2555
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2556
    :type input: LayerOutput
R
ranqiu 已提交
2557 2558 2559 2560 2561 2562
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2563
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2564 2565 2566
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2567
    :param num_filters: Each filter group's number of filter
2568
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2569
    :type act: BaseActivation
R
ranqiu 已提交
2570
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2571
    :type groups: int
R
ranqiu 已提交
2572 2573 2574 2575 2576
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2577
    :type stride: int | tuple | list
R
ranqiu 已提交
2578
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2579
    :type stride_y: int
R
ranqiu 已提交
2580 2581 2582 2583 2584
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2585
    :type padding: int | tuple | list
R
ranqiu 已提交
2586
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2587
    :type padding_y: int
R
ranqiu 已提交
2588 2589 2590 2591 2592
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2593
    :type dilation: int | tuple | list
R
ranqiu 已提交
2594
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2595
    :type dilation_y: int
R
ranqiu 已提交
2596 2597 2598
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2599
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2600 2601 2602
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2603
    :type num_channels: int
R
ranqiu 已提交
2604 2605
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2606
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2607
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2608
    :type shared_biases: bool
R
ranqiu 已提交
2609 2610
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2611
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2612
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2613
    :type trans: bool
R
ranqiu 已提交
2614 2615 2616 2617 2618
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2619
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2620 2621 2622 2623 2624
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2625

Z
zhangjinchao01 已提交
2626
    if filter_size_y is None:
2627 2628 2629 2630 2631 2632
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2633
    if stride_y is None:
2634 2635 2636 2637 2638 2639
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2640
    if padding_y is None:
2641 2642 2643 2644 2645 2646
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2647 2648 2649 2650 2651 2652 2653
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2654 2655
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2656
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2657 2658 2659 2660
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2661

2662
    if layer_type:
W
wanghaoshuang 已提交
2663
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2664 2665 2666
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2667
        if trans:
2668
            assert layer_type in ["exconvt", "cudnn_convt"]
2669 2670 2671 2672 2673
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2674

X
xuwei06 已提交
2675
    l = Layer(
Z
zhangjinchao01 已提交
2676
        name=name,
Q
qijun 已提交
2677 2678 2679 2680 2681
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2682
                dilation=dilation,
Q
qijun 已提交
2683 2684 2685 2686 2687
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2688
                dilation_y=dilation_y,
Q
qijun 已提交
2689 2690
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2691 2692 2693 2694
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2695
        type=lt,
Q
qijun 已提交
2696 2697 2698 2699 2700 2701 2702 2703
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2704 2705 2706 2707


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2718
                   padding_y=None,
2719
                   ceil_mode=True,
2720
                   exclude_mode=None):
Z
zhangjinchao01 已提交
2721 2722 2723
    """
    Image pooling Layer.

R
ranqiu 已提交
2724
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2725 2726 2727

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2728 2729 2730 2731
    - ceil_mode=True:

    ..  math::

C
chengduoZH 已提交
2732 2733
        w = 1 + \frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y}
L
Luo Tao 已提交
2734 2735 2736 2737 2738

    - ceil_mode=False:

    ..  math::

C
chengduoZH 已提交
2739 2740
        w = 1 + \frac{floor(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y}
L
Luo Tao 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2756
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2757
    :type padding: int
R
ranqiu 已提交
2758 2759 2760 2761
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2762
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2763
    :type input: LayerOutput
R
ranqiu 已提交
2764
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2765
    :type pool_size: int
R
ranqiu 已提交
2766 2767 2768 2769 2770 2771 2772
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2773
    :type num_channels: int
R
ranqiu 已提交
2774
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2775
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2776
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2777
    :type stride: int
R
ranqiu 已提交
2778 2779 2780 2781 2782
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2783
    :type layer_attr: ExtraLayerAttribute
2784
    :param ceil_mode: Whether to use the ceil function to calculate output height and width.
R
ranqiu 已提交
2785 2786
                      True is the default. If it is set to False, the floor function will
                      be used.
2787
    :type ceil_mode: bool
2788
    :param exclude_mode: Whether to exclude the padding cells when calculating, but only 
2789 2790 2791
                         work when pool_type is AvgPooling. If None, also exclude the padding 
                         cells. If use cudnn, use CudnnAvgPooling or CudnnAvgInclPadPooling 
                         as pool_type to identify the mode.
2792
    :type exclude_mode: bool
D
dangqingqing 已提交
2793 2794
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2805
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
2806
                               CudnnMaxPooling, CudnnAvgInclPadPooling], \
X
xzl 已提交
2807
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2808

2809
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2810
        if (
Y
Yu Yang 已提交
2811
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2812
        else pool_type.name
2813 2814 2815 2816
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2817
    l = Layer(
Z
zhangjinchao01 已提交
2818 2819
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2832
                    padding_y=padding_y))
Q
qijun 已提交
2833
        ],
2834
        ceil_mode=ceil_mode,
2835
        exclude_mode=exclude_mode,
Q
qijun 已提交
2836 2837 2838 2839 2840 2841 2842
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2843 2844


C
chengduoZH 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

C
chengduoZH 已提交
2873 2874 2875
        w = 1 + \frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} \\\\
        d = 1 + \frac{ceil(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z}
C
chengduoZH 已提交
2876 2877 2878 2879 2880

    - ceil_mode=False:

    ..  math::

C
chengduoZH 已提交
2881 2882 2883
        w = 1 + \frac{floor(input\_width + 2 * padding - pool\_size)}{stride} \\\\
        h = 1 + \frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} \\\\
        d = 1 + \frac{floor(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z} \\\\
C
chengduoZH 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2897
    :type padding: int | tuple | list
R
ranqiu 已提交
2898
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2899
    :type name: basestring.
R
ranqiu 已提交
2900
    :param input: The input of this layer.
C
chengduoZH 已提交
2901
    :type input: LayerOutput
R
ranqiu 已提交
2902 2903
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2904
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2905 2906 2907
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2908
    :type num_channels: int
R
ranqiu 已提交
2909
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2910
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2911 2912 2913
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2914
    :type stride: int | tuple | list
R
ranqiu 已提交
2915 2916 2917 2918 2919
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2920
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2921 2922 2923
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2993 2994
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2995 2996 2997 2998 2999 3000
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
3001
    """
R
ranqiu 已提交
3002 3003 3004
    A layer performs spatial pyramid pooling.

    Reference:
R
ranqiu 已提交
3005
        `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
R
ranqiu 已提交
3006
        <https://arxiv.org/abs/1406.4729>`_
Q
qijun 已提交
3007

L
Luo Tao 已提交
3008 3009 3010 3011
    The example usage is:

    ..  code-block:: python

3012 3013 3014
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
3015 3016
                        pool_type=MaxPooling())

3017
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
3018
    :type name: basestring
R
ranqiu 已提交
3019
    :param input: The input of this layer.
Q
qijun 已提交
3020
    :type input: LayerOutput
R
ranqiu 已提交
3021 3022 3023
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
3024
    :type num_channels: int
R
ranqiu 已提交
3025
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
3026
    :type scale: BasePoolingType
R
ranqiu 已提交
3027
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
3028
    :type pyramid_height: int
R
ranqiu 已提交
3029 3030
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3048
    l = Layer(
Q
qijun 已提交
3049 3050
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3051 3052 3053 3054 3055
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3056
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3068 3069 3070 3071
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3072
    l = Layer(
Q
qijun 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3092 3093 3094 3095


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3096 3097 3098 3099 3100 3101
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3102
                      layer_attr=None):
Z
zhangjinchao01 已提交
3103
    """
3104
    Response normalization across feature maps.
R
ranqiu 已提交
3105 3106

    Reference:
R
ranqiu 已提交
3107
        `ImageNet Classification with Deep Convolutional Neural Networks
R
ranqiu 已提交
3108
        <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_
Z
zhangjinchao01 已提交
3109

L
Luo Tao 已提交
3110 3111 3112
    The example usage is:

    ..  code-block:: python
3113

L
Luo Tao 已提交
3114 3115
        norm = img_cmrnorm_layer(input=net, size=5)

3116
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3117
    :type name: basestring
R
ranqiu 已提交
3118
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3119
    :type input: LayerOutput
3120
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3121
    :type size: int
D
dangqingqing 已提交
3122
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3123
    :type scale: float
D
dangqingqing 已提交
3124
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3125
    :type power: float
R
ranqiu 已提交
3126 3127 3128 3129 3130
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3131
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3132
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3133 3134 3135
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3136
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3137 3138 3139


@wrap_bias_attr_default()
3140 3141
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3142 3143
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3144
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3145 3146 3147
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3148
                     img3D=False,
Q
qijun 已提交
3149 3150 3151 3152
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3153
                     batch_norm_type=None,
P
peterzhang2029 已提交
3154
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3155
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3156 3157
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3158
    """
R
ranqiu 已提交
3159
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3173
    Reference:
R
ranqiu 已提交
3174
        `Batch Normalization: Accelerating Deep Network Training by Reducing
R
ranqiu 已提交
3175
        Internal Covariate Shift
R
ranqiu 已提交
3176
        <http://arxiv.org/abs/1502.03167>`_
Z
zhangjinchao01 已提交
3177

L
Luo Tao 已提交
3178 3179 3180
    The example usage is:

    ..  code-block:: python
3181

L
Luo Tao 已提交
3182 3183
        norm = batch_norm_layer(input=net, act=ReluActivation())

3184
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3185
    :type name: basestring
R
ranqiu 已提交
3186
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3187
    :type input: LayerOutput
3188 3189 3190 3191 3192
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3193 3194
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3195
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3196 3197 3198
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3199
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3200
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3201
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3202
    :type act: BaseActivation
R
ranqiu 已提交
3203 3204 3205
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3206
    :type num_channels: int
R
ranqiu 已提交
3207 3208 3209 3210
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3211
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3212 3213
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3214
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3215 3216
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3217
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3218 3219 3220 3221 3222 3223
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3224
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3225
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3226
    :type epsilon: float.
R
ranqiu 已提交
3227 3228
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3229
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3230 3231
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3232
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3242
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3243
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3244

X
xuwei06 已提交
3245
    l = Layer(
Z
zhangjinchao01 已提交
3246
        name=name,
C
chengduoZH 已提交
3247
        img3D=img3D,
Q
qijun 已提交
3248 3249
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3250 3251 3252 3253
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3254
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3255 3256
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3257
        mean_var_names=mean_var_names,
Q
qijun 已提交
3258
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3259

Q
qijun 已提交
3260 3261 3262 3263 3264 3265 3266
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3288
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3289
    :type input: LayerOutput
3290
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3291
    :type name: basestring
R
ranqiu 已提交
3292 3293 3294
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3295
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3296 3297 3298 3299 3300 3301
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3302 3303 3304
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3305 3306


G
guosheng 已提交
3307 3308 3309 3310 3311 3312 3313
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
R
ranqiu 已提交
3314
       out[i] = \\frac{in[i]} {\\sqrt{\\sum_{k=1}^N in[k]^{2}}}
G
guosheng 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3325
    :param input: The input of this layer.
G
guosheng 已提交
3326
    :type input: LayerOutput
3327
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3328
    :type name: basestring
R
ranqiu 已提交
3329 3330
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3344 3345 3346
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3347
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3348
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3367 3368 3369
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3370

C
caoying03 已提交
3371 3372 3373
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3374

3375
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3376
    :type name: basestring
R
ranqiu 已提交
3377
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3378
                 LayerOutput.
R
ranqiu 已提交
3379
    :type input: LayerOutput | list | tuple
3380
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3381
    :type act: BaseActivation
R
ranqiu 已提交
3382 3383 3384
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3385
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3386 3387
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3388
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3389
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3390 3391 3392 3393 3394 3395
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3396
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3397 3398 3399 3400 3401 3402 3403
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3404
    l = Layer(
Q
qijun 已提交
3405 3406 3407
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3408 3409
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3410
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3411

Q
qijun 已提交
3412 3413 3414 3415 3416 3417 3418
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3419 3420 3421 3422


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3423
@layer_support(DROPOUT, ERROR_CLIPPING)
3424
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3425
    """
R
ranqiu 已提交
3426 3427
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3428

3429 3430 3431 3432 3433 3434
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3435
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3436
    :type name: basestring
R
ranqiu 已提交
3437
    :param input: The input layers or projections
R
ranqiu 已提交
3438
    :type input: list | tuple | collections.Sequence
3439
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3440
    :type act: BaseActivation
R
ranqiu 已提交
3441 3442
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3443
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3444
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3445 3446 3447 3448 3449 3450 3451 3452
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3453
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3454 3455

    def __is_type__(o, tp):
3456
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3478 3479
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3480

Q
qijun 已提交
3481 3482
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3483

3484 3485
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3486

3487
    layer = Layer(
Q
qijun 已提交
3488 3489
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3490 3491
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3492
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3493
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3494

3495
    sz = layer.config.size
Z
zhangjinchao01 已提交
3496

Q
qijun 已提交
3497 3498 3499 3500 3501 3502 3503 3504
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3505 3506
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3507
@wrap_bias_attr_default(has_bias=False)
3508
@layer_support(DROPOUT, ERROR_CLIPPING)
3509 3510 3511
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3512
    Concatenate sequence a and sequence b.
3513

3514
    Inputs:
X
xuwei06 已提交
3515
      - a = [a1, a2, ..., am]
3516
      - b = [b1, b2, ..., bn]
3517

X
xuwei06 已提交
3518 3519 3520 3521
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3522 3523 3524 3525 3526 3527 3528

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3529
    :param name: The name of this layer. It is optional.
3530
    :type name: basestring
R
ranqiu 已提交
3531
    :param a: The first input sequence layer
3532
    :type a: LayerOutput
R
ranqiu 已提交
3533
    :param b: The second input sequence layer
3534
    :type b: LayerOutput
3535
    :param act: Activation type. IdentityActivation is the default activation.
3536
    :type act: BaseActivation
R
ranqiu 已提交
3537 3538
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3539
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3540 3541 3542
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3543
    :type bias_attr: ParameterAttribute | None | bool | Any
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3565
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3566 3567
def memory(name,
           size,
3568
           memory_name=None,
Q
qijun 已提交
3569 3570 3571 3572
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3573 3574
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3575
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3576

R
ranqiu 已提交
3577
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3578

R
ranqiu 已提交
3579 3580
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3581

R
ranqiu 已提交
3582 3583
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3584

R
ranqiu 已提交
3585
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3586

3587 3588 3589 3590 3591
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3592 3593
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3594 3595

    .. code-block:: python
L
Liu Yiqun 已提交
3596

3597 3598 3599 3600
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3601
    :param name: The name of the layer which this memory remembers.
3602 3603
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3604
    :type name: basestring
R
ranqiu 已提交
3605
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3606
    :type size: int
R
ranqiu 已提交
3607
    :param memory_name: The name of the memory. It is ignored when name is provided.
3608
    :type memory_name: basestring
3609
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3610
    :type is_seq: bool
R
ranqiu 已提交
3611 3612
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3613
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3614 3615 3616 3617
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3618
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3619 3620
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3621
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3622 3623
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3624
    :type boot_with_const_id: int
R
ranqiu 已提交
3625
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3636 3637
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3638

3639 3640 3641 3642 3643 3644 3645 3646
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3647 3648

    lout = LayerOutput(
3649
        name=memory_name,
Q
qijun 已提交
3650 3651 3652
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3653 3654 3655 3656
    return lout


@wrap_bias_attr_default()
3657 3658
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3659 3660 3661
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3662 3663
def lstm_step_layer(input,
                    state,
3664
                    size=None,
Q
qijun 已提交
3665 3666 3667 3668 3669 3670
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3671
    """
3672 3673
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3674 3675 3676

    ..  math::

3677
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3678

3679
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3680

3681
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3682

3683
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3684

L
luotao02 已提交
3685
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3686 3687


L
luotao02 已提交
3688
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3689
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3690
    input vectors.
Z
zhangjinchao01 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3701
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3702
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3703 3704
    :code:`get_output_layer` to extract this output.

3705
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3706
    :type name: basestring
R
ranqiu 已提交
3707 3708
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3709
    :type size: int
R
ranqiu 已提交
3710
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3711
    :type input: LayerOutput
3712
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3713
    :type state: LayerOutput
3714
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3715
    :type act: BaseActivation
3716 3717
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3718
    :type gate_act: BaseActivation
3719 3720
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3721
    :type state_act: BaseActivation
R
ranqiu 已提交
3722 3723 3724
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3725
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3726
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3727
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3728
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3729 3730
    :rtype: LayerOutput
    """
3731 3732 3733

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3734 3735 3736 3737 3738 3739 3740
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3741
        size=state.size,
Q
qijun 已提交
3742 3743
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3744

Q
qijun 已提交
3745 3746 3747 3748 3749 3750 3751
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3752 3753 3754


@wrap_bias_attr_default()
W
wangyang59 已提交
3755
@wrap_param_attr_default()
Q
qijun 已提交
3756
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3757 3758 3759
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3760 3761 3762 3763 3764 3765 3766
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3767
                   param_attr=None,
Q
qijun 已提交
3768
                   layer_attr=None):
Z
zhangjinchao01 已提交
3769 3770
    """

R
ranqiu 已提交
3771
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3772
    :type input: LayerOutput
R
ranqiu 已提交
3773 3774 3775 3776 3777 3778
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3779 3780
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3781
    :type act: BaseActivation
3782
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3783
    :type name: basestring
3784 3785
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3786
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3787 3788 3789 3790
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3791
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3792 3793 3794 3795
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3796
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3797 3798 3799 3800 3801 3802 3803 3804
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3805 3806 3807 3808
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3809
        # backward model compatibility.
3810
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3811 3812 3813 3814
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3815
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3816
    return LayerOutput(
Q
qijun 已提交
3817 3818
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3819
        parents=[input, output_mem],
Q
qijun 已提交
3820 3821
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3822 3823


Y
Yu Yang 已提交
3824 3825 3826 3827
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3828
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3840
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3841 3842
    and DROPOUT.

3843
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3844 3845 3846 3847 3848 3849
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3850
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3851
    :type name: basestring
3852 3853
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3854
    :type act: BaseActivation
3855 3856
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3857
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3858 3859 3860 3861
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3862
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3863 3864 3865 3866 3867
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3868
    :rtype: LayerOutput
Y
Yu Yang 已提交
3869 3870 3871 3872 3873 3874
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3875
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3876 3877 3878 3879
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3880

Y
Yu Yang 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3918 3919 3920 3921
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3922 3923 3924 3925
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3926

3927
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3928
    :type name: basestring
R
ranqiu 已提交
3929
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3930 3931
                   multiple outputs.
    :type input: LayerOutput
3932
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3933
    :type arg_name: basestring
R
ranqiu 已提交
3934 3935
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3936
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3937 3938 3939 3940 3941 3942 3943
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3944 3945 3946 3947 3948 3949 3950
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3951

Q
qijun 已提交
3952 3953 3954 3955 3956
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3957 3958 3959 3960 3961 3962 3963


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3964 3965 3966 3967 3968 3969 3970
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3971
    """
3972 3973
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3974

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3990
    :param input: The input of this layer.
3991
    :type input: LayerOutput
3992
    :param act: Activation type. TanhActivation is the default activation.
3993
    :type act: BaseActivation
C
caoying03 已提交
3994
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
3995 3996 3997
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3998
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3999 4000
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
4001
    :type param_attr: ParameterAttribute
4002
    :param name: The name of this layer. It is optional.
4003
    :type name: basestring
R
ranqiu 已提交
4004 4005
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4006
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4007
    :return: LayerOutput object.
4008
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4009
    """
Q
qijun 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
4025 4026 4027 4028 4029


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4030
    and can be a sequence or non-sequence.
4031 4032
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4033
    """
4034

Z
zhangjinchao01 已提交
4035 4036 4037
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4038
        assert input.size is not None
Z
zhangjinchao01 已提交
4039
        if size is not None:
4040
            assert input.size == size
Z
zhangjinchao01 已提交
4041 4042


4043
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4044
    """
4045
    DEPRECATED.
Z
zhangjinchao01 已提交
4046 4047 4048 4049 4050 4051 4052 4053
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4054
    return input
Z
zhangjinchao01 已提交
4055 4056 4057


@wrap_name_default("recurrent_group")
4058
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4059
    """
C
caoying03 已提交
4060 4061 4062
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4063 4064
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4086 4087
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4088

R
ranqiu 已提交
4089 4090 4091
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4092 4093 4094 4095
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4096
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4097 4098 4099 4100 4101 4102 4103
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4104
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4105

R
ranqiu 已提交
4106
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4107

R
ranqiu 已提交
4108
    :param reverse: If reverse is set to True, the recurrent unit will process the
4109
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4110
    :type reverse: bool
4111

4112 4113
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4114 4115 4116 4117 4118 4119 4120

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4121
    :type targetInlink: LayerOutput | SubsequenceInput
4122

D
dangqingqing 已提交
4123
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4124 4125 4126 4127
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4128
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4129
        input = [input]
4130
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4131 4132

    def is_in_links(x):
4133
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4134 4135 4136 4137

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4138
        name=name,
4139 4140
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4141 4142
    in_args = []
    for each_input in input:
4143
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4144
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4145
            mem = memory(
4146
                name=None,
Q
qijun 已提交
4147 4148
                size=each_input.input.size,
                boot_layer=each_input.input)
4149
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4150
            in_args.append(mem)
4151 4152
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4153

Z
zhangjinchao01 已提交
4154 4155 4156 4157 4158
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4159 4160 4161 4162 4163 4164
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4165 4166 4167

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4168
    for layer_out in layer_outs:
4169 4170
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4171 4172
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4173 4174 4175 4176 4177
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4178

Z
zhangjinchao01 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4207 4208

    def before_real_step(self):
Q
qijun 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4218 4219 4220
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4221
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4239
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4240
    :type input: LayerOutput
4241
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4242
    :type name: basestring
R
ranqiu 已提交
4243 4244
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4245
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4246
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4247 4248 4249 4250
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4261

4262

R
ranqiu 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
R
ranqiu 已提交
4277
    :type input1: LayerOutput
R
ranqiu 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4314
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4315
    :type name: basestring
R
ranqiu 已提交
4316
    :param input1: The first input layer.
H
Haonan 已提交
4317
    :type input: LayerOutput
R
ranqiu 已提交
4318
    :param input2: The second input layer.
H
Haonan 已提交
4319
    :type input2: LayerOutput
R
ranqiu 已提交
4320 4321
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4322 4323 4324 4325 4326 4327 4328
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4339

Z
zhangjinchao01 已提交
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4356
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4357
    :type name: basestring
R
ranqiu 已提交
4358
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4359
    :type input: LayerOutput
R
ranqiu 已提交
4360
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4361
    :type eos_id: int
R
ranqiu 已提交
4362 4363
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4364
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4365
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4366 4367
    :rtype: LayerOutput
    """
Q
qijun 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4379 4380 4381


@wrap_name_default()
Q
qijun 已提交
4382 4383 4384 4385 4386 4387 4388
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4389
                num_results_per_sample=None):
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4401
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4402 4403 4404 4405
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4406 4407 4408 4409 4410
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4411 4412
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4413 4414
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4415 4416
                               bos_id=0,
                               eos_id=1,
4417
                               beam_size=5)
4418 4419 4420 4421 4422 4423

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4424 4425
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4426
    :type name: basestring
4427
    :param step: A callable function that defines the calculation in a time
4428
                 step, and it is applied to sequences with arbitrary length by
4429 4430 4431 4432 4433
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4434 4435
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4436
                  In beam_search, none of the input's type should be LayerOutput.
4437
    :type input: list
4438 4439 4440
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4441
                   symbol is essential, since it is used to initialize the RNN
4442 4443 4444 4445 4446 4447 4448 4449
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4450 4451
    :param max_length: Max generated sequence length.
    :type max_length: int
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4462 4463
    :return: The generated word index.
    :rtype: LayerOutput
4464 4465
    """

Z
zhangjinchao01 已提交
4466 4467 4468 4469 4470
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4471
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4472 4473 4474 4475 4476 4477
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4478 4479 4480
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4481
        if isinstance(each_input, BaseGeneratedInput):
4482 4483
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4484
            generated_input_index = i
4485

Z
zhangjinchao01 已提交
4486 4487 4488
        else:
            real_input.append(each_input)

4489
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4490 4491 4492 4493 4494 4495 4496 4497

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4498 4499 4500 4501 4502 4503
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4504 4505 4506 4507 4508 4509

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4510
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4511 4512
        return predict

4513 4514
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4515

Q
qijun 已提交
4516

4517 4518
def __cost_input__(input, label, weight=None):
    """
4519
    inputs and parents for cost layers.
4520
    """
C
caoying03 已提交
4521 4522 4523 4524 4525 4526
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4527
    if weight is not None:
4528
        assert weight.size == 1
4529 4530 4531
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4532

Z
zhangjinchao01 已提交
4533 4534

@wrap_name_default()
L
luotao1 已提交
4535
@layer_support()
4536 4537 4538 4539 4540 4541
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4542
    """
4543
    sum of square error cost:
L
Luo Tao 已提交
4544 4545 4546

    ..  math::

4547
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4548

4549
    :param name: The name of this layer. It is optional.
4550
    :type name: basestring
R
ranqiu 已提交
4551
    :param input: The first input layer.
4552
    :type input: LayerOutput
R
ranqiu 已提交
4553
    :param label: The input label.
4554
    :type label: LayerOutput
R
ranqiu 已提交
4555 4556
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4557
    :type weight: LayerOutput
R
ranqiu 已提交
4558
    :param coeff: The weight of the gradient in the back propagation.
4559
                  1.0 is the default value.
4560
    :type coeff: float
R
ranqiu 已提交
4561 4562
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4563
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4564
    :return: LayerOutput object.
4565
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4566
    """
4567 4568
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4569 4570 4571 4572
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4573
        coeff=coeff,
Q
qijun 已提交
4574
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4575
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4576 4577


4578
regression_cost = square_error_cost
L
Luo Tao 已提交
4579 4580


Z
zhangjinchao01 已提交
4581
@wrap_name_default("cost")
4582
@layer_support()
Q
qijun 已提交
4583 4584 4585 4586
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4587
                        evaluator=classification_error_evaluator,
4588 4589
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4590 4591 4592
    """
    classification cost Layer.

4593
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4594
    :type name: basestring
R
ranqiu 已提交
4595
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4596
    :type input: LayerOutput
R
ranqiu 已提交
4597
    :param label: The input label.
Z
zhangjinchao01 已提交
4598
    :type label: LayerOutput
R
ranqiu 已提交
4599 4600
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4601
    :type weight: LayerOutput
R
ranqiu 已提交
4602 4603 4604 4605
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4606
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4607
    :param coeff: The weight of the gradient in the back propagation.
4608
                  1.0 is the default value.
4609
    :type coeff: float
D
dangqingqing 已提交
4610
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4611 4612 4613 4614 4615
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4616 4617 4618

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4619 4620 4621 4622
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4623
        coeff=coeff,
Q
qijun 已提交
4624
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4635
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4636

4637
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4638 4639 4640 4641 4642
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4643
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4644

4645

Q
qijun 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4655 4656
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4657 4658 4659 4660
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4661
    supports GPU mode.
Z
zhangjinchao01 已提交
4662 4663 4664 4665 4666

    The example usage is:

    .. code-block:: python

4667 4668
       op = conv_operator(img=input1,
                          filter=input2,
4669
                          filter_size=3,
Z
zhangjinchao01 已提交
4670 4671 4672
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4673
    :param img: The input image.
4674
    :type img: LayerOutput
R
ranqiu 已提交
4675
    :param filter: The input filter.
4676
    :type filter: LayerOutput
R
ranqiu 已提交
4677
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4678
    :type filter_size: int
R
ranqiu 已提交
4679 4680 4681
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4682
    :type filter_size_y: int
R
ranqiu 已提交
4683
    :param num_filters: The number of the output channels.
4684
    :type num_filters: int
R
ranqiu 已提交
4685 4686 4687
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4688
    :type num_channels: int
R
ranqiu 已提交
4689
    :param stride: The stride on the x axis.
L
luotao02 已提交
4690
    :type stride: int
R
ranqiu 已提交
4691 4692
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4693
    :type stride_y: int
R
ranqiu 已提交
4694
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4695
    :type padding: int
R
ranqiu 已提交
4696 4697
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4708

4709 4710
    if num_channels is None:
        num_channels = img.num_filters
4711 4712

    assert isinstance(filter, LayerOutput)
4713
    assert filter.size is not None
4714

4715 4716 4717
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4729

4730
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4731 4732
    return op

Q
qijun 已提交
4733

4734
@wrap_param_attr_default()
Q
qijun 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4745 4746
                    param_attr=None,
                    trans=False):
4747
    """
R
ranqiu 已提交
4748 4749 4750
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4751 4752 4753 4754 4755

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4756
       proj = conv_projection(input=input1,
4757 4758 4759 4760
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4761
    :param input: The input of this layer.
4762
    :type input: LayerOutput
R
ranqiu 已提交
4763 4764 4765 4766 4767
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4768
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4769 4770 4771
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4772
    :type filter_size_y: int
R
ranqiu 已提交
4773
    :param num_filters: The number of filters.
4774
    :type num_filters: int
R
ranqiu 已提交
4775
    :param num_channels: The number of the input channels.
4776
    :type num_channels: int
R
ranqiu 已提交
4777 4778 4779 4780 4781 4782 4783
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4784
    :type stride_y: int
R
ranqiu 已提交
4785 4786 4787 4788 4789 4790 4791
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4792 4793 4794
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4795 4796
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4797
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4798
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4799
    :type trans: bool
R
ranqiu 已提交
4800 4801
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4830
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4831 4832 4833 4834 4835
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4836 4837 4838
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4851 4852 4853 4854

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4855

D
dangqingqing 已提交
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4866 4867
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4868

R
ranqiu 已提交
4869 4870 4871 4872
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4873

D
dangqingqing 已提交
4874
    For example,
4875

4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4897 4898

    The simply usage is:
D
dangqingqing 已提交
4899 4900 4901 4902 4903 4904 4905 4906

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4907
    :param input: The input of this layer.
D
dangqingqing 已提交
4908
    :type input: LayerOutput
R
ranqiu 已提交
4909
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4910
    :type pad_c: list | None
R
ranqiu 已提交
4911
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4912
    :type pad_h: list | None
R
ranqiu 已提交
4913
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4914
    :type pad_w: list | None
R
ranqiu 已提交
4915 4916
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4917
    :type layer_attr: ExtraLayerAttribute
4918
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4961
@wrap_name_default()
L
luotao1 已提交
4962 4963
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4964
    """
R
ranqiu 已提交
4965
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4966 4967 4968 4969 4970 4971 4972 4973
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4974
    In this formula:
4975 4976 4977 4978
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4979 4980 4981 4982 4983

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4984
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4985

4986
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4987
    :type name: basestring
R
ranqiu 已提交
4988
    :param a: The first input of this layer.
4989
    :type a: LayerOutput
R
ranqiu 已提交
4990
    :param b: The second input of this layer.
4991
    :type b: LayerOutput
R
ranqiu 已提交
4992 4993
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4994
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4995
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4996 4997
    :rtype: LayerOutput
    """
4998 4999
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
5000 5001 5002
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
5003
        inputs=[a.name, b.name],
Q
qijun 已提交
5004
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5005

Q
qijun 已提交
5006 5007
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
5008 5009 5010 5011 5012


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
5013
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
5014
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
5015 5016 5017 5018 5019 5020 5021 5022
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
5023
    """
R
ranqiu 已提交
5024 5025
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
5026 5027

    .. math::
5028
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
5029 5030

    In this formular:
5031 5032
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5033 5034
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5035
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5036 5037 5038 5039 5040

    The simple usage is:

    .. code-block:: python

5041
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5042

5043
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5044
    :type name: basestring
R
ranqiu 已提交
5045
    :param a: The first input of this layer.
5046
    :type a: LayerOutput
R
ranqiu 已提交
5047
    :param b: The second input of this layer.
5048
    :type b: LayerOutput
R
ranqiu 已提交
5049 5050
    :param size: The dimension of this layer.
    :type size: int
5051
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5052
    :type act: BaseActivation
R
ranqiu 已提交
5053 5054
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5055
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5056 5057 5058 5059
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5060
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5061 5062
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5063
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5064
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5065 5066
    :rtype: LayerOutput
    """
5067
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5068 5069 5070 5071 5072 5073
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5074 5075 5076 5077
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5078 5079 5080 5081 5082 5083


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5084
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5085 5086
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5087
                       select=None,
Q
qijun 已提交
5088 5089
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5090 5091 5092
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5093 5094 5095
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5096 5097
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5098
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5099 5100 5101 5102 5103 5104 5105
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5106
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5107

5108
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5109
    :type name: basestring
R
ranqiu 已提交
5110 5111
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5112 5113 5114 5115
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5116
    :type select: LayerOutput
R
ranqiu 已提交
5117 5118
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5119
    :type size: int
5120
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5121
    :type act: BaseActivation
R
ranqiu 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5132
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5133 5134 5135 5136
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5137
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5138 5139
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5140
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5141
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5142 5143 5144 5145
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5146
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5147 5148
        param_attr = [param_attr]
    else:
5149
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5150 5151
            assert len(input) == len(param_attr)
        else:
5152
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5153
                logger.fatal(
W
wangmeng28 已提交
5154 5155 5156 5157 5158
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5159 5160
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5161 5162 5163 5164
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5165
    Layer(
Q
qijun 已提交
5166 5167 5168
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5169 5170 5171
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5172
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5173 5174 5175 5176
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5177 5178 5179 5180 5181 5182 5183
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5184 5185 5186


@wrap_name_default()
L
luotao1 已提交
5187 5188
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5189
    """
R
ranqiu 已提交
5190
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5191 5192 5193 5194 5195 5196 5197 5198
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5199
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5200
    :type input: LayerOutput
5201
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5202
    :type name: basestring
R
ranqiu 已提交
5203 5204 5205
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5206
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5207 5208
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5209
    l = Layer(
Z
zhangjinchao01 已提交
5210 5211 5212
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5213 5214 5215
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5216 5217 5218


@wrap_name_default()
L
luotao1 已提交
5219
@layer_support()
Q
qijun 已提交
5220 5221 5222 5223
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5224
                          layer_attr=None):
Z
zhangjinchao01 已提交
5225
    """
R
ranqiu 已提交
5226
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5237
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5238
    :type input: LayerOutput
5239
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5240
    :type name: basestring
R
ranqiu 已提交
5241 5242 5243 5244 5245 5246 5247
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5248
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5249 5250 5251 5252 5253 5254 5255 5256
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5257 5258 5259
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5260 5261 5262


@wrap_name_default()
L
luotao1 已提交
5263
@layer_support()
Q
qijun 已提交
5264
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5265
    """
5266 5267 5268 5269
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5270 5271 5272

    .. math::

5273
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5274

5275 5276 5277 5278 5279
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5280

5281
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5282 5283

    In this formular:
5284 5285 5286 5287 5288 5289
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5290 5291 5292 5293 5294

    The simple usage is:

    .. code-block:: python

5295
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5296 5297
                                       size=elem_dim)

5298 5299 5300 5301
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5302
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5303
    :type size: int
5304
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5305
    :type name: basestring
R
ranqiu 已提交
5306 5307 5308
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5309
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5310 5311
    :rtype: LayerOutput
    """
5312 5313 5314 5315
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5316
            size = vectors.size / weights.size
5317 5318
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5319 5320
    Layer(
        name=name,
5321
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5322
        size=size,
5323
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5324 5325 5326
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5327

5328

5329
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5330

5331

Z
zhangjinchao01 已提交
5332
@wrap_name_default()
L
luotao1 已提交
5333
@layer_support()
Z
zhangjinchao01 已提交
5334 5335 5336 5337 5338 5339 5340
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5341
                       num_channels=None,
L
luotao1 已提交
5342 5343
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5344 5345
    """
    Expand feature map to minibatch matrix.
5346
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5347
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5348 5349 5350 5351 5352 5353 5354

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5355
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5356
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5357
    The number of time steps is outputH * outputW and the dimension of each
5358
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5359
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5360

5361 5362 5363 5364
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5365
       block_expand = block_expand_layer(input=layer,
5366
                                         num_channels=128,
5367 5368 5369 5370 5371
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5372
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5373
    :type input: LayerOutput
R
ranqiu 已提交
5374 5375 5376 5377
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5390
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5391 5392 5393 5394
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5395
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5396 5397
    :rtype: LayerOutput
    """
5398 5399 5400
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5418 5419


5420 5421
@wrap_name_default()
@layer_support()
5422
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5423
    """
R
ranqiu 已提交
5424 5425 5426 5427
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5428

5429
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5430 5431 5432
    to be devided by groups.

    Reference:
R
ranqiu 已提交
5433
        `Maxout Networks
R
ranqiu 已提交
5434
        <http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf>`_
R
ranqiu 已提交
5435
        `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
R
ranqiu 已提交
5436
        <https://arxiv.org/pdf/1312.6082v4.pdf>`_
5437

C
chengduoZH 已提交
5438

X
xuwei06 已提交
5439
    .. math::
C
chengduoZH 已提交
5440 5441 5442 5443 5444 5445 5446
       out = \max_k (in[n, k, o_c , s])   \\\\
       out_{i * s + j} = \max_k in_{  k * o_{c} * s + i * s + j}  \\\\
       s = \frac{input.size}{ num\_channels}       \\\\
       o_{c} =\frac{num\_channels}{groups}         \\\\
       0 \le i < o_{c}                             \\\\
       0 \le j < s                                 \\\\
       0 \le k < groups                            \\\\
X
xuwei06 已提交
5447

5448 5449 5450 5451 5452 5453 5454 5455
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5456
    :param input: The input of this layer.
5457
    :type input: LayerOutput
R
ranqiu 已提交
5458 5459 5460 5461
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5462 5463
    :param groups: The group number of input layer.
    :type groups: int
5464
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5465 5466 5467
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5478 5479 5480 5481 5482 5483 5484 5485 5486
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5487 5488


Z
zhangjinchao01 已提交
5489
@wrap_name_default()
L
luotao1 已提交
5490
@layer_support()
Q
qijun 已提交
5491 5492 5493 5494 5495
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5496
              layer_attr=None):
Z
zhangjinchao01 已提交
5497 5498
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5499
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5500 5501
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5502
    Reference:
R
ranqiu 已提交
5503
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5504
        with Recurrent Neural Networks
R
ranqiu 已提交
5505
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5506 5507

    Note:
R
ranqiu 已提交
5508 5509 5510 5511 5512
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5513

C
caoying03 已提交
5514
    The example usage is:
Z
zhangjinchao01 已提交
5515 5516 5517 5518 5519 5520 5521 5522

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5523
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5524
    :type input: LayerOutput
R
ranqiu 已提交
5525
    :param label: The input label.
Z
zhangjinchao01 已提交
5526
    :type label: LayerOutput
R
ranqiu 已提交
5527
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5528
    :type size: int
5529
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5530 5531
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5532
    :type norm_by_times: bool
R
ranqiu 已提交
5533 5534 5535
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5536
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5537 5538 5539 5540
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5541 5542 5543 5544 5545
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5546
    Layer(
5547 5548 5549 5550
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5551
        inputs=[input.name, label.name],
Q
qijun 已提交
5552
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5553 5554
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5555

5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5567
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5568
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5569 5570 5571 5572 5573 5574 5575
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5576
    Reference:
R
ranqiu 已提交
5577
        `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
R
ranqiu 已提交
5578
        with Recurrent Neural Networks
R
ranqiu 已提交
5579
        <http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf>`_
5580 5581

    Note:
R
ranqiu 已提交
5582 5583 5584
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5585
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5586
          should be consistent with those used in your labels.
5587
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5588
          'linear' activation is expected to be used instead in the 'input' layer.
5589

C
caoying03 已提交
5590
    The example usage is:
5591 5592 5593 5594 5595 5596 5597 5598 5599

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5600
    :param input: The input of this layer.
5601
    :type input: LayerOutput
R
ranqiu 已提交
5602
    :param label: The input label.
5603
    :type label: LayerOutput
R
ranqiu 已提交
5604
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5605
    :type size: int
5606
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5607 5608
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5609
    :type blank: int
R
ranqiu 已提交
5610
    :param norm_by_times: Whether to do normalization by times. False is the default.
5611
    :type norm_by_times: bool
R
ranqiu 已提交
5612 5613 5614
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5637
@wrap_name_default()
5638
@wrap_param_attr_default()
L
luotao1 已提交
5639
@layer_support()
Q
qijun 已提交
5640 5641 5642 5643 5644 5645
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5646
              coeff=1.0,
L
luotao1 已提交
5647
              layer_attr=None):
Z
zhangjinchao01 已提交
5648 5649 5650 5651
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5652
    The example usage is:
Z
zhangjinchao01 已提交
5653 5654 5655 5656 5657 5658 5659

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5660
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5661
    :type input: LayerOutput
R
ranqiu 已提交
5662
    :param label: The input label.
5663
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5664 5665
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5666 5667
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5668
    :type weight: LayerOutput
R
ranqiu 已提交
5669 5670
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5671
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5672
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5673 5674
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5675
                  1.0 is the default value.
5676
    :type coeff: float
R
ranqiu 已提交
5677 5678 5679
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5680
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5681 5682 5683 5684 5685
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5686 5687 5688 5689 5690 5691
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5692

Q
qijun 已提交
5693
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5694 5695 5696 5697
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5698 5699 5700 5701
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5702
        coeff=coeff,
Q
qijun 已提交
5703
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5704 5705 5706
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5707 5708 5709 5710
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5711

5712

Z
zhangjinchao01 已提交
5713
@wrap_name_default()
5714
@wrap_param_attr_default()
L
luotao1 已提交
5715
@layer_support()
Q
qijun 已提交
5716 5717 5718 5719 5720
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5721
                       layer_attr=None):
Z
zhangjinchao01 已提交
5722 5723 5724
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5725 5726 5727
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5728

C
caoying03 已提交
5729
    The example usage is:
L
Luo Tao 已提交
5730 5731 5732 5733 5734 5735

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5736 5737
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5738
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5739
    :type size: int
R
ranqiu 已提交
5740 5741 5742 5743
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5744
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5745
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5746 5747 5748 5749
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5750
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5751 5752 5753 5754 5755 5756
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5757
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5758 5759 5760 5761
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5762 5763 5764 5765
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5766
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5767 5768 5769
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5770 5771 5772 5773
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5774

Q
qijun 已提交
5775

C
caoying03 已提交
5776 5777 5778 5779 5780
"""
Following are cost Layers.
"""


5781
@wrap_bias_attr_default(has_bias=True)
5782
@wrap_param_attr_default()
5783 5784
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5785 5786
def nce_layer(input,
              label,
C
caoying03 已提交
5787
              num_classes=None,
5788
              param_attr=None,
Q
qijun 已提交
5789 5790 5791 5792 5793 5794
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5795 5796
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5797 5798

    Reference:
R
ranqiu 已提交
5799
        `A fast and simple algorithm for training neural probabilistic language
R
ranqiu 已提交
5800
        models. <https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf>`_
5801 5802 5803 5804 5805

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5806 5807
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5808 5809
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5810
    :param name: The name of this layer. It is optional.
5811
    :type name: basestring
R
ranqiu 已提交
5812
    :param input: The first input of this layer.
R
ranqiu 已提交
5813
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5814
    :param label: The input label.
5815
    :type label: LayerOutput
C
caoying03 已提交
5816
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5817
                   mini-batch. It is optional.
5818
    :type weight: LayerOutput
R
ranqiu 已提交
5819
    :param num_classes: The number of classes.
5820
    :type num_classes: int
5821
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5822
    :type act: BaseActivation
R
ranqiu 已提交
5823 5824
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5825
    :type param_attr: ParameterAttribute
5826 5827
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5828
    :type num_neg_samples: int
C
caoying03 已提交
5829 5830 5831
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5832
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5833 5834 5835
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5836
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5837 5838 5839 5840
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5841
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5842 5843
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5844
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5845
    :return: LayerOutput object.
5846 5847 5848 5849
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5850 5851 5852 5853 5854 5855 5856 5857
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5858
    assert isinstance(input, collections.Sequence)
5859

5860 5861
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5862 5863
    if num_classes is None:
        num_classes = label.size
5864 5865 5866
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5867
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5868

5869 5870
    ipts_for_layer = []
    parents = []
5871
    for each_input, attr in zip(input, param_attr):
5872
        assert isinstance(each_input, LayerOutput)
5873
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5884
    l = Layer(
5885 5886 5887 5888
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5889
        active_type=SigmoidActivation().name,
5890 5891 5892
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5893 5894
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5895 5896 5897 5898
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5899
        activation=SigmoidActivation())
5900 5901


Z
zhangjinchao01 已提交
5902
@wrap_name_default()
L
luotao1 已提交
5903
@layer_support()
Q
qijun 已提交
5904 5905 5906 5907 5908 5909 5910
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5911
    """
R
ranqiu 已提交
5912 5913 5914
    A cost Layer for learning to rank using gradient descent.

    Reference:
R
ranqiu 已提交
5915
        `Learning to Rank using Gradient Descent
R
ranqiu 已提交
5916
        <http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf>`_
Z
zhangjinchao01 已提交
5917 5918 5919

    .. math::

L
luotao02 已提交
5920
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5921

L
luotao02 已提交
5922
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5923

L
luotao02 已提交
5924
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5925 5926 5927 5928 5929 5930 5931 5932

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5933
    The example usage is:
Z
zhangjinchao01 已提交
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5947 5948
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5949
    :type weight: LayerOutput
R
ranqiu 已提交
5950
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5951 5952
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5953
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5954
    :type coeff: float
R
ranqiu 已提交
5955 5956
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5957
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5958
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5971 5972 5973 5974 5975 5976
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5977

X
xuwei06 已提交
5978
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5979

5980

Z
zhangjinchao01 已提交
5981
@wrap_name_default()
L
luotao1 已提交
5982
@layer_support()
Q
qijun 已提交
5983 5984 5985 5986 5987 5988
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5989 5990 5991
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5992
    The example usage is:
Z
zhangjinchao01 已提交
5993 5994 5995 5996 5997 5998 5999 6000

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
6001 6002
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
6003
    :type input: LayerOutput
R
ranqiu 已提交
6004
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
6005 6006
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
6007
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
6008
                     minimum size of the list.
Z
zhangjinchao01 已提交
6009
    :type NDCG_num: int
R
ranqiu 已提交
6010 6011 6012 6013 6014
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
6015
    :type max_sort_size: int
R
ranqiu 已提交
6016
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6017 6018 6019
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6020
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6021
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6022 6023
    :rtype: LayerOutput
    """
6024 6025 6026
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
6027 6028 6029 6030 6031 6032 6033
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6034

Q
qijun 已提交
6035 6036
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6037

6038

Z
zhangjinchao01 已提交
6039
@wrap_name_default()
L
luotao1 已提交
6040
@layer_support()
6041 6042 6043 6044 6045 6046
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6047 6048 6049
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6050 6051
    The example usage is:

Z
zhangjinchao01 已提交
6052 6053
    .. code-block:: python

X
xuwei06 已提交
6054
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6055
                            label=label_layer)
Z
zhangjinchao01 已提交
6056 6057 6058 6059

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6060
    :type input: LayerOutput
R
ranqiu 已提交
6061
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6062 6063
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6064
                  1.0 is the default value.
R
ranqiu 已提交
6065
    :type coeff: float
R
ranqiu 已提交
6066 6067
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6068
    :type weight: LayerOutout
R
ranqiu 已提交
6069 6070
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6071
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6072
    :return: LayerOutput object.
R
ranqiu 已提交
6073
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6074 6075
    """

6076
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6077 6078 6079
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6080
        inputs=ipts,
Q
qijun 已提交
6081 6082
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6083
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6084

6085

Z
zhangjinchao01 已提交
6086
@wrap_name_default()
L
luotao1 已提交
6087
@layer_support()
Q
qijun 已提交
6088 6089 6090 6091
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6092 6093
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6094 6095
    """
    A loss layer for multi class entropy with selfnorm.
6096
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6097

C
caoying03 已提交
6098 6099
    The example usage is:

Z
zhangjinchao01 已提交
6100 6101
    .. code-block:: python

X
xuwei06 已提交
6102
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6103
                                          label=label_layer)
Z
zhangjinchao01 已提交
6104 6105

    :param input: The first input layer.
R
ranqiu 已提交
6106
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6107
    :param label: The input label.
R
ranqiu 已提交
6108
    :type input: LayerOutput
R
ranqiu 已提交
6109
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6110 6111
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6112
                  1.0 is the default value.
R
ranqiu 已提交
6113
    :type coeff: float
Z
zhangjinchao01 已提交
6114
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6115 6116 6117
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6118
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6119
    :return: LayerOutput object.
R
ranqiu 已提交
6120
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6121
    """
Q
qijun 已提交
6122 6123 6124 6125 6126 6127 6128
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6129

Q
qijun 已提交
6130 6131 6132 6133 6134
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6135

6136

X
xuwei06 已提交
6137 6138 6139 6140
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6141
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6142

C
caoying03 已提交
6143 6144
    The example usage is:

X
xuwei06 已提交
6145 6146
    .. code-block:: python

L
Luo Tao 已提交
6147
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6148

R
ranqiu 已提交
6149
    :param input: The input of this layer.
R
ranqiu 已提交
6150
    :type input: LayerOutput
R
ranqiu 已提交
6151
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6152 6153 6154
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6155 6156 6157 6158
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6159
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6160 6161 6162 6163 6164
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6165

Q
qijun 已提交
6166
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6167 6168


Z
zhangjinchao01 已提交
6169
@wrap_name_default()
L
luotao1 已提交
6170
@layer_support()
L
Luo Tao 已提交
6171 6172 6173 6174 6175 6176
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6177
    """
6178 6179 6180
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6181 6182
    is defined as:

R
ranqiu 已提交
6183 6184 6185 6186 6187
    .. math::

       loss = 0.5*(y-f(x))^{2}, | y-f(x) | < \delta

       loss = \delta | y-f(x) | - 0.5 \delta ^2, otherwise
Z
zhangjinchao01 已提交
6188

C
caoying03 已提交
6189 6190
    The example usage is:

Z
zhangjinchao01 已提交
6191 6192
    .. code-block:: python

L
Luo Tao 已提交
6193
       cost = huber_regression_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6194 6195

    :param input: The first input layer.
R
ranqiu 已提交
6196
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6197
    :param label: The input label.
R
ranqiu 已提交
6198
    :type input: LayerOutput
R
ranqiu 已提交
6199
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6200
    :type name: basestring
L
Luo Tao 已提交
6201
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6202 6203
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6204
                  1.0 is the default value.
R
ranqiu 已提交
6205 6206 6207
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6208
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6209
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6210 6211
    :rtype: LayerOutput.
    """
6212
    assert isinstance(input, LayerOutput)
L
Luo Tao 已提交
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6224
@wrap_name_default()
L
luotao1 已提交
6225
@layer_support()
6226 6227 6228 6229 6230
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6231
    """
6232 6233
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
R
ranqiu 已提交
6234
    a true binary class label :math:`y\in \{-1, 1 \}`, the modified Huber
6235 6236 6237
    loss is defined as:

    .. math:
R
ranqiu 已提交
6238 6239 6240 6241

       loss = \max ( 0, 1-yf(x) )^2, yf(x) \geq -1

       loss = -4yf(x), otherwise
Z
zhangjinchao01 已提交
6242

C
caoying03 已提交
6243 6244
    The example usage is:

Z
zhangjinchao01 已提交
6245 6246
    .. code-block:: python

6247
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6248 6249

    :param input: The first input layer.
R
ranqiu 已提交
6250
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6251
    :param label: The input label.
R
ranqiu 已提交
6252
    :type input: LayerOutput
R
ranqiu 已提交
6253
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6254 6255
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6256
                  1.0 is the default value.
R
ranqiu 已提交
6257 6258 6259
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6260
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6261
    :return: LayerOutput object.
R
ranqiu 已提交
6262
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6263
    """
6264 6265 6266
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6267 6268
    Layer(
        name=name,
6269
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6270 6271 6272
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6273 6274
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6275

6276

Z
zhangjinchao01 已提交
6277
@wrap_name_default()
L
luotao1 已提交
6278
@layer_support()
Q
qijun 已提交
6279 6280 6281 6282
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6283
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6284 6285 6286
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6287 6288
    The example usage is:

Z
zhangjinchao01 已提交
6289 6290
    .. code-block:: python

X
xuwei06 已提交
6291
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6292
                                               label=label_layer)
Z
zhangjinchao01 已提交
6293 6294 6295 6296 6297

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6298
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6299 6300
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6301
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6302
    :type coeff: float
R
ranqiu 已提交
6303 6304
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6305
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6306
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6307 6308 6309
    :rtype: LayerOutput
    """

6310 6311
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6312 6313 6314 6315
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6328 6329


C
caoying03 已提交
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


D
dangqingqing 已提交
6352 6353
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6354
def cross_entropy_over_beam(input, name=None):
D
dangqingqing 已提交
6355
    """
C
caoying03 已提交
6356 6357 6358
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
D
dangqingqing 已提交
6359

C
caoying03 已提交
6360 6361 6362 6363 6364
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
D
dangqingqing 已提交
6365

C
caoying03 已提交
6366 6367 6368 6369 6370
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.
D
dangqingqing 已提交
6371

C
caoying03 已提交
6372 6373 6374
    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.
D
dangqingqing 已提交
6375

C
caoying03 已提交
6376 6377 6378 6379
    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.
D
dangqingqing 已提交
6380

C
caoying03 已提交
6381 6382 6383
    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6384
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6385 6386
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.
D
dangqingqing 已提交
6387

D
dangqingqing 已提交
6388

C
caoying03 已提交
6389 6390
    The example usage is:

D
dangqingqing 已提交
6391 6392
    .. code-block:: python

C
caoying03 已提交
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6405
    :param input: Input beams for this layer.
C
caoying03 已提交
6406
    :type input: BeamInput
R
ranqiu 已提交
6407
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6434 6435 6436
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6437 6438
@wrap_name_default()
@layer_support()
6439
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6440 6441
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6442
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6443 6444 6445 6446 6447 6448 6449 6450 6451

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6452
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6453

R
ranqiu 已提交
6454
    Reference:
R
ranqiu 已提交
6455
        `Fast R-CNN
R
ranqiu 已提交
6456
        <https://arxiv.org/pdf/1504.08083v2.pdf>`_
D
dangqingqing 已提交
6457

C
caoying03 已提交
6458 6459
    The example usage is:

D
dangqingqing 已提交
6460 6461
    .. code-block:: python

6462 6463
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6464 6465 6466 6467 6468

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6469
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6470
    :type name: basestring
R
ranqiu 已提交
6471
    :param coeff: The weight of the gradient in the back propagation.
6472
                  1.0 is the default value.
6473
    :type coeff: float
R
ranqiu 已提交
6474 6475
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6488
        coeff=coeff,
D
dangqingqing 已提交
6489 6490 6491
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6492 6493 6494 6495 6496


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6497 6498 6499
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6500
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6501 6502
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6503 6504 6505 6506 6507 6508 6509 6510

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6511 6512
    The example usage is:

W
wwhu 已提交
6513 6514 6515 6516 6517 6518
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6519
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6520
    :type name: basestring
R
ranqiu 已提交
6521 6522
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6546 6547


6548 6549 6550 6551
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6552 6553 6554 6555 6556 6557
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6558
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6559
    :type name: basestring
R
ranqiu 已提交
6560
    :param input: The input of this layer.
R
ranqiu 已提交
6561 6562 6563 6564 6565
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6566 6567 6568 6569 6570 6571 6572
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6573 6574


D
dangqingqing 已提交
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6588
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6589 6590 6591 6592 6593 6594 6595
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6596
    efficient manner to improve unidirectional RNNs.
6597

R
ranqiu 已提交
6598
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6599 6600 6601 6602
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6603

D
dangqingqing 已提交
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6619
    :param input: The input of this layer.
D
dangqingqing 已提交
6620 6621 6622 6623
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6624
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6625
    :type act: BaseActivation
R
ranqiu 已提交
6626 6627
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6628
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6629 6630
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6631
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6647 6648


6649 6650 6651 6652 6653
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6654 6655
                channel_shared=None,
                num_channels=None,
6656 6657 6658
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6659
    The Parametric Relu activation that actives outputs with a learnable weight.
6660 6661

    Reference:
R
ranqiu 已提交
6662
        `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
R
ranqiu 已提交
6663
        ImageNet Classification <http://arxiv.org/pdf/1502.01852v1.pdf>`_
6664 6665 6666 6667 6668

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6669 6670 6671 6672 6673 6674
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6675
    :param name: The name of this layer. It is optional.
6676
    :type name: basestring
R
ranqiu 已提交
6677
    :param input: The input of this layer.
6678
    :type input: LayerOutput
R
ranqiu 已提交
6679
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6680 6681

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6682 6683
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6684 6685

    :type partial_sum: int
6686
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6687

6688 6689
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6690

6691
    :type channel_shared: bool
6692 6693
    :param num_channels: number of input channel.
    :type num_channels: int
6694
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6695 6696 6697
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6698
    :type layer_attr: ExtraLayerAttribute | None
6699 6700 6701 6702
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6703
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6704

6705
    if not param_attr:
X
xzl 已提交
6706
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6707 6708 6709 6710
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6711 6712
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6713 6714 6715 6716
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6717 6718
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6719 6720 6721 6722
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6723 6724 6725

    l = Layer(
        name=name,
C
caoying03 已提交
6726
        type=LayerType.PRELU,
C
caoying03 已提交
6727
        inputs=Input(input.name, **param_attr.attr),
6728 6729 6730 6731 6732 6733
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6734
        num_filters=num_channels,
6735
        size=l.config.size)
6736 6737


6738
@wrap_name_default()
C
caoying03 已提交
6739
@layer_support(ERROR_CLIPPING, DROPOUT)
6740 6741 6742 6743 6744 6745 6746
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6747 6748
                     gate_bias_attr=True,
                     inproj_attr=None,
6749 6750 6751 6752 6753 6754 6755
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6756
    product between :match:`X'` and :math:`\sigma` is finally returned.
6757 6758

    Reference:
R
ranqiu 已提交
6759
        `Language Modeling with Gated Convolutional Networks
R
ranqiu 已提交
6760
        <https://arxiv.org/abs/1612.08083>`_
6761 6762 6763 6764 6765 6766 6767 6768 6769

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6770
    :param input: The input of this layer.
6771
    :type input: LayerOutput
R
ranqiu 已提交
6772
    :param size: The dimension of this layer's output.
6773
    :type size: int
6774 6775
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6776
    :type act: BaseActivation
6777
    :param name: The name of this layer. It is optional.
6778
    :type name: basestring
R
ranqiu 已提交
6779 6780
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6781
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6782 6783 6784
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6785
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6786
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6787
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6788 6789 6790
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6791
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6792 6793 6794
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6795
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6796
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6797
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6798 6799 6800
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6801
    :type layer_attr: ExtraLayerAttribute | None
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6814
        layer_attr=inproj_attr,
6815 6816 6817 6818 6819 6820 6821 6822 6823
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6824
        param_attr=gate_param_attr,
6825 6826 6827 6828 6829
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6830 6831


6832
@layer_support()
6833
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6834 6835
def switch_order_layer(input,
                       name=None,
6836
                       reshape_axis=None,
W
wanghaoshuang 已提交
6837 6838
                       act=None,
                       layer_attr=None):
6839
    """
6840
    This layer switch dimension order of image input.
6841 6842
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6843 6844 6845 6846

    The example usage is:

    .. code-block:: python
6847 6848
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6849
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6850

R
ranqiu 已提交
6851
    :param input: The input of this layer.
6852
    :type input: LayerOutput
6853
    :param name: The name of this layer. It is optional.
6854
    :type name: basestring
R
ranqiu 已提交
6855 6856
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6857 6858 6859
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6860
    assert isinstance(input, LayerOutput)
6861 6862 6863 6864 6865
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6866 6867
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6868
        inputs=input.name,
6869 6870
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6871
        active_type=act.name,
6872 6873 6874
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6875
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6876
        activation=act,
6877 6878
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6879 6880


6881 6882
@wrap_name_default()
@layer_support()
6883
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6884
    """
R
ranqiu 已提交
6885 6886 6887
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6888

6889 6890 6891
    The example usage is:

    .. code-block:: python
W
whs 已提交
6892
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6893

R
ranqiu 已提交
6894 6895
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
W
wanghaoshuang 已提交
6896
                  And the input must be 4-dims and in NCHW order.
R
ranqiu 已提交
6897 6898
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6899
    :type offset: Sequence
R
ranqiu 已提交
6900
    :param axis: The start axis to be cropped. For image input layer:
6901 6902 6903 6904
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6905 6906
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6907
    :type shape: Sequence | None
6908
    :param name: The name of this layer. It is optional.
6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6930 6931


C
caoying03 已提交
6932 6933
@wrap_name_default()
@layer_support()
6934
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6935
    """
6936
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6937
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6938

C
caoying03 已提交
6939 6940 6941
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6942 6943 6944 6945

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6946

R
ranqiu 已提交
6947
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6948

C
caoying03 已提交
6949

R
ranqiu 已提交
6950
    :param input: The input of this layer. It is a nested sequence.
6951
    :type input: LayerOutput
R
ranqiu 已提交
6952
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6953
    :type input: LayerOutput
6954
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6955 6956 6957 6958
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6959

6960 6961 6962 6963 6964 6965 6966
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6967
    l = Layer(
6968 6969
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6970 6971 6972 6973 6974 6975 6976
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6977 6978


G
guosheng 已提交
6979
@wrap_name_default("clip")
6980
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6981 6982 6983 6984 6985
    """
    A layer for clipping the input value by the threshold.

    .. math::

R
ranqiu 已提交
6986
        out[i] = \min (\max (in[i],p_{1} ),p_{2} )
G
guosheng 已提交
6987 6988 6989

    .. code-block:: python

6990
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6991

6992
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6993
    :type name: basestring
R
ranqiu 已提交
6994
    :param input: The input of this layer.
G
guosheng 已提交
6995
    :type input: LayerOutput.
6996
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6997
    :type min: float
6998
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6999
    :type max: float
7000 7001
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
7002 7003 7004 7005 7006
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
7007 7008
        min=min,
        max=max)
G
guosheng 已提交
7009 7010
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
7011 7012


7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7037
    :param name: The name of this layer. It is optional.
7038
    :type name: basestring
R
ranqiu 已提交
7039
    :param input: The input of this layer, which should be a sequence.
7040
    :type input: LayerOutput
R
ranqiu 已提交
7041
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7042
    :type starts: LayerOutput | None
R
ranqiu 已提交
7043
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7044
    :type ends: LayerOutput | None
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7076 7077


7078 7079
@wrap_name_default()
@layer_support()
7080
def kmax_seq_score_layer(input, name=None, beam_size=1):
7081
    """
R
ranqiu 已提交
7082
    This layer accepts one input which is scores over a sequence or a nested
7083 7084 7085 7086
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7087
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7088 7089


7090
    :param name: The name of this layer. It is optional.
7091
    :type name: basestring
R
ranqiu 已提交
7092 7093
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7094
    :type input: LayerOutput
R
ranqiu 已提交
7095 7096
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7097 7098 7099
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7100
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7101
                                            "accepts only one input.")
7102
    assert input.size == 1, (
7103
        "input of kmax_seq_score_layer is a score "
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7114 7115


7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7142
        conv = img_conv3d_layer(input=data, filter_size=1,
7143 7144 7145 7146 7147
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7148
    :param name: The name of this layer. It is optional.
7149
    :type name: basestring
R
ranqiu 已提交
7150
    :param input: The input of this layer.
7151
    :type input: LayerOutput
R
ranqiu 已提交
7152 7153
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7154
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7155 7156
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7157
    :param act: Activation type. ReluActivation is the default activation.
7158
    :type act: BaseActivation
R
ranqiu 已提交
7159
    :param groups: The number of the filter groups.
7160
    :type groups: int
R
ranqiu 已提交
7161 7162
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7163
    :type stride: int | tuple | list
R
ranqiu 已提交
7164 7165
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7166
    :type padding: int | tuple | list
R
ranqiu 已提交
7167 7168 7169
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7170
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7171
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7172 7173
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7174
    :type num_channels: int
R
ranqiu 已提交
7175 7176
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7177
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7178
    :param shared_biases: Whether biases will be shared between filters or not.
7179
    :type shared_biases: bool
R
ranqiu 已提交
7180 7181
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7182
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7183
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7184
    :type trans: bool
R
ranqiu 已提交
7185
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7186 7187 7188
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7189 7190 7191 7192 7193 7194 7195
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7196 7197 7198 7199 7200 7201
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7202

C
chengduoZH 已提交
7203 7204 7205 7206 7207 7208
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7209

C
chengduoZH 已提交
7210 7211 7212 7213 7214 7215
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7262 7263


G
guosheng 已提交
7264 7265 7266 7267 7268
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7269
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7270
    the input matrix. For each element, the layer first re-scales it and then
7271 7272
    adds a bias to it.

X
xuwei06 已提交
7273
    This layer is very like the SlopeInterceptLayer, except the scale and
7274 7275
    bias are trainable.

G
guosheng 已提交
7276 7277 7278 7279 7280 7281 7282 7283
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7284
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7285
    :type name: basestring
R
ranqiu 已提交
7286 7287
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7288 7289
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7290
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7291 7292 7293
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7294
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7305 7306 7307 7308 7309 7310 7311 7312 7313


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7314
    :param input: The input of this layer.
7315 7316 7317
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7318
    :param size: The resized output dimension of this layer.
7319 7320 7321 7322 7323 7324
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
Y
yangyaming 已提交
7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343


@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7344 7345
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7346
    :type offsets: LayerOutput
R
ranqiu 已提交
7347
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7348
    :type sizes: LayerOutput
7349
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7350
    :type act: BaseActivation.
R
ranqiu 已提交
7351 7352 7353
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7379 7380


Y
yangyaming 已提交
7381 7382
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7383
    """
Y
yangyaming 已提交
7384 7385 7386 7387 7388 7389
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7390 7391 7392

    .. code-block:: python

Y
yangyaming 已提交
7393 7394 7395
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7411 7412
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7413 7414 7415 7416 7417 7418 7419
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7420
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7421 7422 7423 7424 7425
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7426
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7427
        parents=[input, indices],
Y
yangyaming 已提交
7428
        num_filters=input.num_filters,
Y
yangyaming 已提交
7429
        size=input.size)
7430 7431


7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7446 7447 7448 7449 7450
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7451 7452
    .. math::
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
7453

7454 7455 7456 7457
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7458 7459

    For details of Factorization Machine, please refer to the paper:
7460
    Factorization machines.
7461

7462
    .. code-block:: python
W
wangmeng28 已提交
7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
        first_order = paddle.layer.fc(input=input,
                                      size=1,
                                      act=paddle.activation.Linear())
        second_order = paddle.layer.factorization_machine(input=input,
                                                          factor_size=10)
        fm = paddle.layer.addto(input=[first_order, second_order],
                                act=paddle.activation.Linear(),
                                bias_attr=False)

    :param input: The input layer. Supported input types: all input data types
                  on CPU, and only dense input types on GPU.
7474 7475
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
W
wangmeng28 已提交
7476
                        the latent vector size.
7477 7478 7479
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
W
wangmeng28 已提交
7480 7481
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)