infer.py 14.7 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import functools
import os
from PIL import Image
import paddle.fluid as fluid
import paddle
import numpy as np
L
lvmengsi 已提交
26
import imageio
L
lvmengsi 已提交
27 28
import glob
from util.config import add_arguments, print_arguments
L
lvmengsi 已提交
29
from data_reader import celeba_reader_creator, reader_creator
L
lvmengsi 已提交
30
from util.utility import check_attribute_conflict, check_gpu, save_batch_image
L
lvmengsi 已提交
31
from util import utility
L
lvmengsi 已提交
32
import copy
L
lvmengsi 已提交
33

L
lvmengsi 已提交
34 35 36 37
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt

L
lvmengsi 已提交
38 39 40
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
L
lvmengsi 已提交
41
add_arg('model_net',         str,   'CGAN',            "The model used")
L
lvmengsi 已提交
42
add_arg('net_G',             str,   "resnet_9block",   "Choose the CycleGAN and Pix2pix generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]")
L
lvmengsi 已提交
43 44 45 46 47 48 49
add_arg('init_model',        str,   None,              "The init model file of directory.")
add_arg('output',            str,   "./infer_result",  "The directory the infer result to be saved to.")
add_arg('input_style',       str,   "A",               "The style of the input, A or B")
add_arg('norm_type',         str,   "batch_norm",      "Which normalization to used")
add_arg('use_gpu',           bool,  True,              "Whether to use GPU to train.")
add_arg('dropout',           bool,  False,             "Whether to use dropout")
add_arg('g_base_dims',       int,   64,                "Base channels in CycleGAN generator")
L
lvmengsi 已提交
50 51 52 53 54 55 56
add_arg('c_dim',             int,   13,                "the size of attrs")
add_arg('use_gru',           bool,  False,             "Whether to use GRU")
add_arg('crop_size',         int,   178,               "crop size")
add_arg('image_size',        int,   128,               "image size")
add_arg('selected_attrs',    str,
    "Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
"the attributes we selected to change")
L
lvmengsi 已提交
57 58
add_arg('n_samples',        int,   16,                "batch size when test")
add_arg('test_list',         str,   "./data/celeba/list_attr_celeba.txt",                "the test list file")
L
lvmengsi 已提交
59
add_arg('dataset_dir',       str,   "./data/celeba/",                "the dataset directory to be infered")
L
lvmengsi 已提交
60 61 62
add_arg('n_layers',          int,   5,                 "default layers in generotor")
add_arg('gru_n_layers',      int,   4,                 "default layers of GRU in generotor")
add_arg('noise_size',        int,   100,               "the noise dimension")
L
lvmengsi 已提交
63 64 65 66
# yapf: enable


def infer(args):
L
lvmengsi 已提交
67
    data_shape = [-1, 3, args.image_size, args.image_size]
L
lvmengsi 已提交
68
    input = fluid.layers.data(name='input', shape=data_shape, dtype='float32')
L
lvmengsi 已提交
69 70 71 72
    label_org_ = fluid.layers.data(
        name='label_org_', shape=[args.c_dim], dtype='float32')
    label_trg_ = fluid.layers.data(
        name='label_trg_', shape=[args.c_dim], dtype='float32')
L
lvmengsi 已提交
73 74
    image_name = fluid.layers.data(
        name='image_name', shape=[args.n_samples], dtype='int32')
L
lvmengsi 已提交
75

L
lvmengsi 已提交
76
    model_name = 'net_G'
L
lvmengsi 已提交
77
    if args.model_net == 'CycleGAN':
L
lvmengsi 已提交
78 79 80 81 82
        py_reader = fluid.io.PyReader(
            feed_list=[input, image_name],
            capacity=4,  ## batch_size * 4
            iterable=True,
            use_double_buffer=True)
L
lvmengsi 已提交
83 84
        from network.CycleGAN_network import CycleGAN_model
        model = CycleGAN_model()
L
lvmengsi 已提交
85
        if args.input_style == "A":
L
lvmengsi 已提交
86
            fake = model.network_G(input, name="GA", cfg=args)
L
lvmengsi 已提交
87
        elif args.input_style == "B":
L
lvmengsi 已提交
88
            fake = model.network_G(input, name="GB", cfg=args)
L
lvmengsi 已提交
89 90
        else:
            raise "Input with style [%s] is not supported." % args.input_style
Z
zhumanyu 已提交
91
    elif args.model_net == 'Pix2pix':
L
lvmengsi 已提交
92 93 94 95 96 97
        py_reader = fluid.io.PyReader(
            feed_list=[input, image_name],
            capacity=4,  ## batch_size * 4
            iterable=True,
            use_double_buffer=True)

Z
zhumanyu 已提交
98 99 100
        from network.Pix2pix_network import Pix2pix_model
        model = Pix2pix_model()
        fake = model.network_G(input, "generator", cfg=args)
Z
zhumanyu 已提交
101
    elif args.model_net == 'StarGAN':
L
lvmengsi 已提交
102 103 104 105 106 107 108

        py_reader = fluid.io.PyReader(
            feed_list=[input, label_org_, label_trg_, image_name],
            capacity=32,
            iterable=True,
            use_double_buffer=True)

Z
zhumanyu 已提交
109 110 111
        from network.StarGAN_network import StarGAN_model
        model = StarGAN_model()
        fake = model.network_G(input, label_trg_, name="g_main", cfg=args)
L
lvmengsi 已提交
112 113
    elif args.model_net == 'STGAN':
        from network.STGAN_network import STGAN_model
L
lvmengsi 已提交
114 115 116 117 118 119 120

        py_reader = fluid.io.PyReader(
            feed_list=[input, label_org_, label_trg_, image_name],
            capacity=32,
            iterable=True,
            use_double_buffer=True)

L
lvmengsi 已提交
121 122
        model = STGAN_model()
        fake, _ = model.network_G(
L
lvmengsi 已提交
123 124 125 126 127 128
            input,
            label_org_,
            label_trg_,
            cfg=args,
            name='generator',
            is_test=True)
L
lvmengsi 已提交
129 130
    elif args.model_net == 'AttGAN':
        from network.AttGAN_network import AttGAN_model
L
lvmengsi 已提交
131 132 133 134 135 136 137

        py_reader = fluid.io.PyReader(
            feed_list=[input, label_org_, label_trg_, image_name],
            capacity=32,
            iterable=True,
            use_double_buffer=True)

L
lvmengsi 已提交
138 139
        model = AttGAN_model()
        fake, _ = model.network_G(
L
lvmengsi 已提交
140 141 142 143 144 145
            input,
            label_org_,
            label_trg_,
            cfg=args,
            name='generator',
            is_test=True)
L
lvmengsi 已提交
146 147 148 149 150 151 152
    elif args.model_net == 'CGAN':
        noise = fluid.layers.data(
            name='noise', shape=[args.noise_size], dtype='float32')
        conditions = fluid.layers.data(
            name='conditions', shape=[1], dtype='float32')

        from network.CGAN_network import CGAN_model
L
lvmengsi 已提交
153
        model = CGAN_model(args.n_samples)
L
lvmengsi 已提交
154 155 156 157 158 159
        fake = model.network_G(noise, conditions, name="G")
    elif args.model_net == 'DCGAN':
        noise = fluid.layers.data(
            name='noise', shape=[args.noise_size], dtype='float32')

        from network.DCGAN_network import DCGAN_model
L
lvmengsi 已提交
160
        model = DCGAN_model(args.n_samples)
L
lvmengsi 已提交
161
        fake = model.network_G(noise, name="G")
L
lvmengsi 已提交
162
    else:
L
lvmengsi 已提交
163 164
        raise NotImplementedError("model_net {} is not support".format(
            args.model_net))
L
lvmengsi 已提交
165

L
lvmengsi 已提交
166 167 168 169 170 171 172
    def _compute_start_end(image_name):
        image_name_start = np.array(image_name)[0].astype('int32')
        image_name_end = image_name_start + args.n_samples - 1
        image_name_save = str(np.array(image_name)[0].astype('int32')) + '.jpg'
        print("read {}.jpg ~ {}.jpg".format(image_name_start, image_name_end))
        return image_name_save

L
lvmengsi 已提交
173 174 175 176 177 178 179 180 181
    # prepare environment
    place = fluid.CPUPlace()
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    for var in fluid.default_main_program().global_block().all_parameters():
        print(var.name)
    print(args.init_model + '/' + model_name)
L
lvmengsi 已提交
182
    fluid.io.load_persistables(exe, os.path.join(args.init_model, model_name))
L
lvmengsi 已提交
183 184 185 186
    print('load params done')
    if not os.path.exists(args.output):
        os.makedirs(args.output)

L
lvmengsi 已提交
187 188
    attr_names = args.selected_attrs.split(',')

L
lvmengsi 已提交
189 190 191 192
    if args.model_net == 'AttGAN' or args.model_net == 'STGAN':
        test_reader = celeba_reader_creator(
            image_dir=args.dataset_dir,
            list_filename=args.test_list,
L
lvmengsi 已提交
193 194 195
            args=args,
            mode="VAL")
        reader_test = test_reader.make_reader(return_name=True)
L
lvmengsi 已提交
196 197 198 199 200 201 202 203
        py_reader.decorate_batch_generator(
            reader_test,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        for data in py_reader():
            real_img, label_org, label_trg, image_name = data[0]['input'], data[
                0]['label_org_'], data[0]['label_trg_'], data[0]['image_name']
            image_name_save = _compute_start_end(image_name)
            real_img_temp = save_batch_image(np.array(real_img))
L
lvmengsi 已提交
204 205
            images = [real_img_temp]
            for i in range(args.c_dim):
L
lvmengsi 已提交
206 207
                label_trg_tmp = copy.deepcopy(np.array(label_trg))
                for j in range(len(label_trg_tmp)):
L
lvmengsi 已提交
208
                    label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
L
lvmengsi 已提交
209 210
                    label_trg_tmp = check_attribute_conflict(
                        label_trg_tmp, attr_names[i], attr_names)
L
lvmengsi 已提交
211 212 213
                label_org_tmp = list(
                    map(lambda x: ((x * 2) - 1) * 0.5, np.array(label_org)))
                label_trg_tmp = list(
L
lvmengsi 已提交
214
                    map(lambda x: ((x * 2) - 1) * 0.5, label_trg_tmp))
L
lvmengsi 已提交
215
                if args.model_net == 'AttGAN':
L
lvmengsi 已提交
216 217 218 219 220 221
                    for k in range(len(label_trg_tmp)):
                        label_trg_tmp[k][i] = label_trg_tmp[k][i] * 2.0
                tensor_label_org_ = fluid.LoDTensor()
                tensor_label_trg_ = fluid.LoDTensor()
                tensor_label_org_.set(label_org_tmp, place)
                tensor_label_trg_.set(label_trg_tmp, place)
L
lvmengsi 已提交
222
                out = exe.run(feed={
L
lvmengsi 已提交
223
                    "input": real_img,
L
lvmengsi 已提交
224 225 226
                    "label_org_": tensor_label_org_,
                    "label_trg_": tensor_label_trg_
                },
L
lvmengsi 已提交
227
                              fetch_list=[fake.name])
L
lvmengsi 已提交
228
                fake_temp = save_batch_image(out[0])
L
lvmengsi 已提交
229 230
                images.append(fake_temp)
            images_concat = np.concatenate(images, 1)
L
lvmengsi 已提交
231
            if len(np.array(label_org)) > 1:
L
lvmengsi 已提交
232
                images_concat = np.concatenate(images_concat, 1)
L
lvmengsi 已提交
233 234 235
            imageio.imwrite(
                os.path.join(args.output, "fake_img_" + image_name_save), (
                    (images_concat + 1) * 127.5).astype(np.uint8))
Z
zhumanyu 已提交
236 237 238 239
    elif args.model_net == 'StarGAN':
        test_reader = celeba_reader_creator(
            image_dir=args.dataset_dir,
            list_filename=args.test_list,
L
lvmengsi 已提交
240 241 242
            args=args,
            mode="VAL")
        reader_test = test_reader.make_reader(return_name=True)
L
lvmengsi 已提交
243 244 245 246 247 248 249 250
        py_reader.decorate_batch_generator(
            reader_test,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        for data in py_reader():
            real_img, label_org, label_trg, image_name = data[0]['input'], data[
                0]['label_org_'], data[0]['label_trg_'], data[0]['image_name']
            image_name_save = _compute_start_end(image_name)
            real_img_temp = save_batch_image(np.array(real_img))
Z
zhumanyu 已提交
251
            images = [real_img_temp]
L
lvmengsi 已提交
252
            for i in range(args.c_dim):
L
lvmengsi 已提交
253 254
                label_trg_tmp = copy.deepcopy(np.array(label_org))
                for j in range(len(np.array(label_org))):
L
lvmengsi 已提交
255
                    label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
L
lvmengsi 已提交
256
                    label_trg_tmp = check_attribute_conflict(
L
lvmengsi 已提交
257
                        label_trg_tmp, attr_names[i], attr_names)
L
lvmengsi 已提交
258 259
                tensor_label_trg_ = fluid.LoDTensor()
                tensor_label_trg_.set(label_trg_tmp, place)
Z
zhumanyu 已提交
260
                out = exe.run(
L
lvmengsi 已提交
261 262
                    feed={"input": real_img,
                          "label_trg_": tensor_label_trg_},
L
lvmengsi 已提交
263
                    fetch_list=[fake.name])
L
lvmengsi 已提交
264
                fake_temp = save_batch_image(out[0])
Z
zhumanyu 已提交
265 266
                images.append(fake_temp)
            images_concat = np.concatenate(images, 1)
L
lvmengsi 已提交
267
            if len(np.array(label_org)) > 1:
L
lvmengsi 已提交
268
                images_concat = np.concatenate(images_concat, 1)
L
lvmengsi 已提交
269 270 271
            imageio.imwrite(
                os.path.join(args.output, "fake_img_" + image_name_save), (
                    (images_concat + 1) * 127.5).astype(np.uint8))
L
lvmengsi 已提交
272

L
lvmengsi 已提交
273
    elif args.model_net == 'Pix2pix' or args.model_net == 'CycleGAN':
L
lvmengsi 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        test_reader = reader_creator(
            image_dir=args.dataset_dir,
            list_filename=args.test_list,
            shuffle=False,
            batch_size=args.n_samples,
            mode="VAL")
        reader_test = test_reader.make_reader(args, return_name=True)
        py_reader.decorate_batch_generator(
            reader_test,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        id2name = test_reader.id2name
        for data in py_reader():
            real_img, image_name = data[0]['input'], data[0]['image_name']
            image_name = id2name[np.array(image_name).astype('int32')[0]]
            print("read: ", image_name)
            fake_temp = exe.run(fetch_list=[fake.name],
                                feed={"input": real_img})
L
lvmengsi 已提交
291
            fake_temp = np.squeeze(fake_temp[0]).transpose([1, 2, 0])
L
lvmengsi 已提交
292
            input_temp = np.squeeze(np.array(real_img)[0]).transpose([1, 2, 0])
L
lvmengsi 已提交
293

L
lvmengsi 已提交
294 295 296
            imageio.imwrite(
                os.path.join(args.output, "fake_" + image_name), (
                    (fake_temp + 1) * 127.5).astype(np.uint8))
L
lvmengsi 已提交
297 298 299 300

    elif args.model_net == 'CGAN':
        noise_data = np.random.uniform(
            low=-1.0, high=1.0,
L
lvmengsi 已提交
301
            size=[args.n_samples, args.noise_size]).astype('float32')
L
lvmengsi 已提交
302
        label = np.random.randint(
L
lvmengsi 已提交
303
            0, 9, size=[args.n_samples, 1]).astype('float32')
L
lvmengsi 已提交
304 305 306 307 308 309 310 311
        noise_tensor = fluid.LoDTensor()
        conditions_tensor = fluid.LoDTensor()
        noise_tensor.set(noise_data, place)
        conditions_tensor.set(label, place)
        fake_temp = exe.run(
            fetch_list=[fake.name],
            feed={"noise": noise_tensor,
                  "conditions": conditions_tensor})[0]
L
lvmengsi 已提交
312
        fake_image = np.reshape(fake_temp, (args.n_samples, -1))
L
lvmengsi 已提交
313 314

        fig = utility.plot(fake_image)
L
lvmengsi 已提交
315 316
        plt.savefig(
            os.path.join(args.output, 'fake_cgan.png'), bbox_inches='tight')
L
lvmengsi 已提交
317 318 319 320 321
        plt.close(fig)

    elif args.model_net == 'DCGAN':
        noise_data = np.random.uniform(
            low=-1.0, high=1.0,
L
lvmengsi 已提交
322
            size=[args.n_samples, args.noise_size]).astype('float32')
L
lvmengsi 已提交
323 324 325 326
        noise_tensor = fluid.LoDTensor()
        noise_tensor.set(noise_data, place)
        fake_temp = exe.run(fetch_list=[fake.name],
                            feed={"noise": noise_tensor})[0]
L
lvmengsi 已提交
327
        fake_image = np.reshape(fake_temp, (args.n_samples, -1))
L
lvmengsi 已提交
328 329

        fig = utility.plot(fake_image)
L
lvmengsi 已提交
330
        plt.savefig(
L
lvmengsi 已提交
331
            os.path.join(args.output, 'fake_dcgan.png'), bbox_inches='tight')
L
lvmengsi 已提交
332
        plt.close(fig)
L
lvmengsi 已提交
333 334 335
    else:
        raise NotImplementedError("model_net {} is not support".format(
            args.model_net))
L
lvmengsi 已提交
336 337 338 339 340


if __name__ == "__main__":
    args = parser.parse_args()
    print_arguments(args)
L
lvmengsi 已提交
341
    check_gpu(args.use_gpu)
L
lvmengsi 已提交
342
    infer(args)