Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
8a0431bb
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8a0431bb
编写于
6月 14, 2019
作者:
L
lvmengsi
提交者:
GitHub
6月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix_cycle_pix (#2403)
* fix bug in cycle and pix
上级
3c303e97
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
105 addition
and
64 deletion
+105
-64
PaddleCV/gan/infer.py
PaddleCV/gan/infer.py
+4
-4
PaddleCV/gan/scripts/infer_cyclegan.sh
PaddleCV/gan/scripts/infer_cyclegan.sh
+1
-1
PaddleCV/gan/scripts/make_pair_data.py
PaddleCV/gan/scripts/make_pair_data.py
+15
-4
PaddleCV/gan/trainer/CycleGAN.py
PaddleCV/gan/trainer/CycleGAN.py
+51
-33
PaddleCV/gan/trainer/Pix2pix.py
PaddleCV/gan/trainer/Pix2pix.py
+34
-22
未找到文件。
PaddleCV/gan/infer.py
浏览文件 @
8a0431bb
...
...
@@ -49,12 +49,12 @@ def infer(args):
input
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
data_shape
,
dtype
=
'float32'
)
model_name
=
'net_G'
if
args
.
model_net
==
'cyclegan'
:
from
network.CycleGAN_network
import
network_G
,
network_D
from
network.CycleGAN_network
import
CycleGAN_model
model
=
CycleGAN_model
()
if
args
.
input_style
==
"A"
:
fake
=
network_G
(
input
,
name
=
"GA"
,
cfg
=
args
)
fake
=
model
.
network_G
(
input
,
name
=
"GA"
,
cfg
=
args
)
elif
args
.
input_style
==
"B"
:
fake
=
network_G
(
input
,
name
=
"GB"
,
cfg
=
args
)
fake
=
model
.
network_G
(
input
,
name
=
"GB"
,
cfg
=
args
)
else
:
raise
"Input with style [%s] is not supported."
%
args
.
input_style
elif
args
.
model_net
==
'Pix2pix'
:
...
...
PaddleCV/gan/scripts/infer_cyclegan.sh
浏览文件 @
8a0431bb
python infer.py
--init_model
output/checkpoints/199/
--input
"data/cityscapes/testA/*"
--input_style
A
--model_net
cyclegan
--net_G
resnet_6block
--g_bash
_dims
32
python infer.py
--init_model
output/checkpoints/199/
--input
data/cityscapes/testA/
*
--input_style
A
--model_net
cyclegan
--net_G
resnet_6block
--g_base
_dims
32
PaddleCV/gan/scripts/make_pair_data.py
浏览文件 @
8a0431bb
import
os
import
argparse
parser
=
argparse
.
ArgumentParser
(
description
=
'the direction of data list'
)
parser
.
add_argument
(
'--direction'
,
type
=
str
,
default
=
'A2B'
,
help
=
'the direction of data list'
)
def
make_pair_data
(
fileA
,
file
):
def
make_pair_data
(
fileA
,
file
,
d
):
f
=
open
(
fileA
,
'r'
)
lines
=
f
.
readlines
()
w
=
open
(
file
,
'w'
)
...
...
@@ -10,16 +15,22 @@ def make_pair_data(fileA, file):
print
(
fileA
)
fileB
=
fileA
.
replace
(
"A"
,
"B"
)
print
(
fileB
)
l
=
fileA
+
'
\t
'
+
fileB
+
'
\n
'
if
d
==
'A2B'
:
l
=
fileA
+
'
\t
'
+
fileB
+
'
\n
'
elif
d
==
'B2A'
:
l
=
fileB
+
'
\t
'
+
fileA
+
'
\n
'
else
:
raise
NotImplementedError
(
"the direction: [%s] is not support"
%
d
)
w
.
write
(
l
)
w
.
close
()
if
__name__
==
"__main__"
:
args
=
parser
.
parse_args
()
trainA_file
=
"./data/cityscapes/trainA.txt"
train_file
=
"./data/cityscapes/pix2pix_train_list"
make_pair_data
(
trainA_file
,
train_file
)
make_pair_data
(
trainA_file
,
train_file
,
args
.
direction
)
testA_file
=
"./data/cityscapes/testA.txt"
test_file
=
"./data/cityscapes/pix2pix_test_list"
make_pair_data
(
testA_file
,
test_file
)
make_pair_data
(
testA_file
,
test_file
,
args
.
direction
)
PaddleCV/gan/trainer/CycleGAN.py
浏览文件 @
8a0431bb
...
...
@@ -88,17 +88,23 @@ class GTrainer():
vars
.
append
(
var
.
name
)
self
.
param
=
vars
lr
=
cfg
.
learning_rate
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
if
cfg
.
epoch
<=
100
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr
,
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
else
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
xrange
(
100
,
cfg
.
epoch
-
1
)
],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
xrange
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
optimizer
.
minimize
(
self
.
g_loss
,
parameter_list
=
vars
)
...
...
@@ -122,17 +128,23 @@ class DATrainer():
self
.
param
=
vars
lr
=
cfg
.
learning_rate
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_DA"
)
if
cfg
.
epoch
<=
100
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr
,
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_DA"
)
else
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
xrange
(
100
,
cfg
.
epoch
-
1
)
],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
xrange
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_DA"
)
optimizer
.
minimize
(
self
.
d_loss_A
,
parameter_list
=
vars
)
...
...
@@ -155,17 +167,23 @@ class DBTrainer():
vars
.
append
(
var
.
name
)
self
.
param
=
vars
lr
=
0.0002
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_DB"
)
if
cfg
.
epoch
<=
100
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr
,
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_DA"
)
else
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
xrange
(
100
,
cfg
.
epoch
-
1
)
],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
xrange
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_DB"
)
optimizer
.
minimize
(
self
.
d_loss_B
,
parameter_list
=
vars
)
...
...
PaddleCV/gan/trainer/Pix2pix.py
浏览文件 @
8a0431bb
...
...
@@ -70,17 +70,23 @@ class GTrainer():
"generator"
):
vars
.
append
(
var
.
name
)
self
.
param
=
vars
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
if
cfg
.
epoch
<=
100
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr
,
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
else
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)
],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
optimizer
.
minimize
(
self
.
g_loss
,
parameter_list
=
vars
)
...
...
@@ -142,17 +148,23 @@ class DTrainer():
vars
.
append
(
var
.
name
)
self
.
param
=
vars
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_D"
)
if
cfg
.
epoch
<=
100
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr
,
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_D"
)
else
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)
],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_D"
)
optimizer
.
minimize
(
self
.
d_loss
,
parameter_list
=
vars
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录