Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
d63b2bd3
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d63b2bd3
编写于
6月 25, 2019
作者:
L
lvmengsi
提交者:
GitHub
6月 25, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix infer and readme (#2518)
* fix infer and readme
上级
58ef369c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
99 addition
and
34 deletion
+99
-34
PaddleCV/gan/README.md
PaddleCV/gan/README.md
+74
-13
PaddleCV/gan/infer.py
PaddleCV/gan/infer.py
+23
-19
PaddleCV/gan/scripts/infer_cyclegan.sh
PaddleCV/gan/scripts/infer_cyclegan.sh
+1
-1
PaddleCV/gan/scripts/infer_pix2pix.sh
PaddleCV/gan/scripts/infer_pix2pix.sh
+1
-1
未找到文件。
PaddleCV/gan/README.md
浏览文件 @
d63b2bd3
...
...
@@ -7,7 +7,9 @@
## 内容
-
[
简介
](
#简介
)
-
[
快速开始
](
#快速开始
)
-
[
参考文献
](
#参考文献
)
## 简介
...
...
@@ -73,26 +75,85 @@ StarGAN, AttGAN和STGAN所需要的[Celeba](http://mmlab.ie.cuhk.edu.hk/projects
注意: pix2pix模型数据集准备中的list文件需要通过scripts文件夹里的make_pair_data.py来生成,可以使用以下命令来生成:
python scripts/make_pair_data.py
\
--direction=A2B
用户可以通过
指定direction
参数生成list文件,从而确保图像风格转变的方向。
用户可以通过
设置
`--direction`
参数生成list文件,从而确保图像风格转变的方向。
### 模型训练
**下载预训练模型:**
本示例提供以下预训练模型:
| Model| Pretrained model |
|:--- |:---|
| Pix2Pix |
[
Pix2Pix的预训练模型
](
)
|
| CycleGAN |
[
CycleGAN的预训练模型
](
)
|
| StarGAN |
[
StarGAN的预训练模型
](
)
|
| AttGAN |
[
AttGAN的预训练模型
](
)
|
| STGAN |
[
STGAN的预训练模型
](
)
|
下载完预训练模型之后,通过设置infer.py中
`--init_model`
加载预训练模型,测试所需要的图片。
执行以下命令得到CyleGAN的预测结果:
python infer.py \
--model_net=CycleGAN \
--init_model=$(path_to_init_model) \
--image_size=256 \
--dataset_dir=$(path_to_data) \
--input_style=$(A_or_B) \
--net_G=$(generator_network) \
--g_base_dims=$(base_dim_of_generator)
效果如图所示:
执行以下命令得到Pix2Pix的预测结果:
python infer.py \
--model_net=Pix2pix \
--init_model=$(path_to_init_model) \
--image_size=256 \
--dataset_dir=$(path_to_data) \
--net_G=$(generator_network)
效果如图所示:
执行以下命令得到StarGAN,AttGAN和STGAN的预测结果:
python infer.py \
--model_net=$(StarGAN_or_AttGAN_or_STGAN) \
--init_model=$(path_to_init_model)\
--dataset_dir=$(path_to_data)
效果如图所示:
**开始训练:**
数据准备完毕后,可以通过一下方式启动训练:
python train.py
\
--model_net=$(name_of_model)
\
--dataset=$(name_of_dataset)
\
--data_dir=$(path_to_data)
\
--train_list=$(path_to_train_data_list)
\
--test_list=$(path_to_test_data_list)
\
--batch_size=$(batch_size)
用户可以通过设置model_net参数来选择想要训练的模型,通过设置dataset参数来选择训练所需要的数据集。
python train.py \
--model_net=$(name_of_model) \
--dataset=$(name_of_dataset) \
--data_dir=$(path_to_data) \
--train_list=$(path_to_train_data_list) \
--test_list=$(path_to_test_data_list) \
--batch_size=$(batch_size)
-
可选参数见:
python train.py --help
-
每个GAN都给出了一份运行示例,放在scripts文件夹内,用户可以直接运行训练脚本快速开始训练。
-
用户可以通过设置model_net参数来选择想要训练的模型,通过设置dataset参数来选择训练所需要的数据集。
### 模型测试
模型测试是利用训练完成的生成模型进行图像生成。infer.py是主要的执行程序,调用示例如下:
python infer.py
\
--model_net=$(name_of_model)
\
--init_model=$(path_to_model)
\
--dataset_dir=$(path_to_data)
python infer.py \
--model_net=$(name_of_model) \
--init_model=$(path_to_model) \
--dataset_dir=$(path_to_data)
-
每个GAN都给出了一份测试示例,放在scripts文件夹内,用户可以直接运行测试脚本得到测试结果。
## 参考文献
...
...
PaddleCV/gan/infer.py
浏览文件 @
d63b2bd3
...
...
@@ -26,6 +26,7 @@ import numpy as np
import
imageio
import
glob
from
util.config
import
add_arguments
,
print_arguments
from
data_reader
import
celeba_reader_creator
import
copy
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
...
...
@@ -33,14 +34,12 @@ add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg
(
'model_net'
,
str
,
'cgan'
,
"The model used"
)
add_arg
(
'net_G'
,
str
,
"resnet_9block"
,
"Choose the CycleGAN and Pix2pix generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]"
)
add_arg
(
'input'
,
str
,
None
,
"The images to be infered."
)
add_arg
(
'init_model'
,
str
,
None
,
"The init model file of directory."
)
add_arg
(
'output'
,
str
,
"./infer_result"
,
"The directory the infer result to be saved to."
)
add_arg
(
'input_style'
,
str
,
"A"
,
"The style of the input, A or B"
)
add_arg
(
'norm_type'
,
str
,
"batch_norm"
,
"Which normalization to used"
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU to train."
)
add_arg
(
'dropout'
,
bool
,
False
,
"Whether to use dropout"
)
add_arg
(
'data_shape'
,
int
,
256
,
"The shape of load image"
)
add_arg
(
'g_base_dims'
,
int
,
64
,
"Base channels in CycleGAN generator"
)
add_arg
(
'c_dim'
,
int
,
13
,
"the size of attrs"
)
add_arg
(
'use_gru'
,
bool
,
False
,
"Whether to use GRU"
)
...
...
@@ -51,14 +50,14 @@ add_arg('selected_attrs', str,
"the attributes we selected to change"
)
add_arg
(
'batch_size'
,
int
,
16
,
"batch size when test"
)
add_arg
(
'test_list'
,
str
,
"./data/celeba/test_list_attr_celeba.txt"
,
"the test list file"
)
add_arg
(
'dataset_dir'
,
str
,
"./data/celeba/"
,
"the dataset directory"
)
add_arg
(
'dataset_dir'
,
str
,
"./data/celeba/"
,
"the dataset directory
to be infered
"
)
add_arg
(
'n_layers'
,
int
,
5
,
"default layers in generotor"
)
add_arg
(
'gru_n_layers'
,
int
,
4
,
"default layers of GRU in generotor"
)
# yapf: enable
def
infer
(
args
):
data_shape
=
[
-
1
,
3
,
args
.
data_shape
,
args
.
data_shap
e
]
data_shape
=
[
-
1
,
3
,
args
.
image_size
,
args
.
image_siz
e
]
input
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label_org_
=
fluid
.
layers
.
data
(
name
=
'label_org_'
,
shape
=
[
args
.
c_dim
],
dtype
=
'float32'
)
...
...
@@ -66,7 +65,7 @@ def infer(args):
name
=
'label_trg_'
,
shape
=
[
args
.
c_dim
],
dtype
=
'float32'
)
model_name
=
'net_G'
if
args
.
model_net
==
'
cyclegan
'
:
if
args
.
model_net
==
'
CycleGAN
'
:
from
network.CycleGAN_network
import
CycleGAN_model
model
=
CycleGAN_model
()
if
args
.
input_style
==
"A"
:
...
...
@@ -136,10 +135,11 @@ def infer(args):
images
=
[
real_img_temp
]
for
i
in
range
(
args
.
c_dim
):
label_trg_tmp
=
copy
.
deepcopy
(
label_trg
)
for
j
in
range
(
args
.
batch_size
):
for
j
in
range
(
len
(
label_org
)
):
label_trg_tmp
[
j
][
i
]
=
1.0
-
label_trg_tmp
[
j
][
i
]
label_trg_
=
map
(
lambda
x
:
((
x
*
2
)
-
1
)
*
0.5
,
label_trg_tmp
)
for
j
in
range
(
args
.
batch_size
):
label_trg_
=
list
(
map
(
lambda
x
:
((
x
*
2
)
-
1
)
*
0.5
,
label_trg_tmp
))
for
j
in
range
(
len
(
label_org
)):
label_trg_
[
j
][
i
]
=
label_trg_
[
j
][
i
]
*
2.0
tensor_label_org_
.
set
(
label_org
,
place
)
tensor_label_trg
.
set
(
label_trg
,
place
)
...
...
@@ -149,7 +149,7 @@ def infer(args):
"label_org_"
:
tensor_label_org_
,
"label_trg_"
:
tensor_label_trg_
},
fetch_list
=
fake
.
name
)
fetch_list
=
[
fake
.
name
]
)
fake_temp
=
np
.
squeeze
(
out
[
0
]).
transpose
([
0
,
2
,
3
,
1
])
images
.
append
(
fake_temp
)
images_concat
=
np
.
concatenate
(
images
,
1
)
...
...
@@ -167,29 +167,33 @@ def infer(args):
args
,
shuffle
=
False
,
return_name
=
True
)
for
data
in
zip
(
reader_test
()):
real_img
,
label_org
,
name
=
data
[
0
]
print
(
"read {}"
.
format
(
name
))
tensor_img
=
fluid
.
LoDTensor
()
tensor_label_org
=
fluid
.
LoDTensor
()
tensor_img
.
set
(
real_img
,
place
)
tensor_label_org
.
set
(
label_org
,
place
)
real_img_temp
=
np
.
squeeze
(
real_img
).
transpose
([
1
,
2
,
0
])
real_img_temp
=
np
.
squeeze
(
real_img
).
transpose
([
0
,
2
,
3
,
1
])
images
=
[
real_img_temp
]
for
i
in
range
(
cfg
.
c_dim
):
label_trg
=
np
.
zeros
([
1
,
cfg
.
c_dim
]).
astype
(
"float32"
)
label_trg
[
0
][
i
]
=
1
for
i
in
range
(
args
.
c_dim
):
label_trg
=
np
.
zeros
(
[
len
(
label_org
),
args
.
c_dim
]).
astype
(
"float32"
)
for
j
in
range
(
len
(
label_org
)):
label_trg
[
j
][
i
]
=
1
tensor_label_trg
=
fluid
.
LoDTensor
()
tensor_label_trg
.
set
(
label_trg
,
place
)
out
=
exe
.
run
(
feed
=
{
"input"
:
tensor_img
,
"label_trg_"
:
tensor_label_trg
},
fetch_list
=
fake
.
name
)
fake_temp
=
np
.
squeeze
(
out
[
0
]).
transpose
([
1
,
2
,
0
])
fetch_list
=
[
fake
.
name
]
)
fake_temp
=
np
.
squeeze
(
out
[
0
]).
transpose
([
0
,
2
,
3
,
1
])
images
.
append
(
fake_temp
)
images_concat
=
np
.
concatenate
(
images
,
1
)
imageio
.
imwrite
(
out_path
+
"/fake_img"
+
str
(
epoch
)
+
"_"
+
name
[
0
],
((
images_concat
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
images_concat
=
np
.
concatenate
(
images_concat
,
1
)
imageio
.
imwrite
(
args
.
output
+
"/fake_img_"
+
name
[
0
],
(
(
images_concat
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
elif
args
.
model_net
==
'Pix2pix'
or
args
.
model_net
==
'
cyclegan
'
:
for
file
in
glob
.
glob
(
args
.
input
):
elif
args
.
model_net
==
'Pix2pix'
or
args
.
model_net
==
'
CycleGAN
'
:
for
file
in
glob
.
glob
(
args
.
dataset_dir
):
print
(
"read {}"
.
format
(
file
))
image_name
=
os
.
path
.
basename
(
file
)
image
=
Image
.
open
(
file
).
convert
(
'RGB'
)
...
...
PaddleCV/gan/scripts/infer_cyclegan.sh
浏览文件 @
d63b2bd3
python infer.py
--init_model
output/checkpoints/199/
--
input
data/cityscapes/testA/
*
--input_style
A
--model_net
cyclegan
--net_G
resnet_6block
--g_base_dims
32
python infer.py
--init_model
output/checkpoints/199/
--
dataset_dir
"data/cityscapes/testA/*"
--image_size
256
--input_style
A
--model_net
CycleGAN
--net_G
resnet_6block
--g_base_dims
32
PaddleCV/gan/scripts/infer_pix2pix.sh
浏览文件 @
d63b2bd3
python infer.py
--init_model
output/checkpoints/199/
--i
nput
"data/cityscapes/testB/*"
--model_net
Pix2pix
--net_G
unet_256
python infer.py
--init_model
output/checkpoints/199/
--i
mage_size
256
--dataset_dir
"data/cityscapes/testB/*"
--model_net
Pix2pix
--net_G
unet_256
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录