Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
9486fc66
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9486fc66
编写于
5月 29, 2019
作者:
L
lvmengsi
提交者:
GitHub
5月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug for gan (#2329)
上级
b9845895
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
58 addition
and
39 deletion
+58
-39
PaddleCV/gan/data_reader.py
PaddleCV/gan/data_reader.py
+2
-21
PaddleCV/gan/download.py
PaddleCV/gan/download.py
+1
-0
PaddleCV/gan/infer.py
PaddleCV/gan/infer.py
+1
-1
PaddleCV/gan/scripts/infer_cyclegan.sh
PaddleCV/gan/scripts/infer_cyclegan.sh
+1
-0
PaddleCV/gan/scripts/infer_pix2pix.sh
PaddleCV/gan/scripts/infer_pix2pix.sh
+1
-1
PaddleCV/gan/scripts/make_pair_data.py
PaddleCV/gan/scripts/make_pair_data.py
+25
-0
PaddleCV/gan/scripts/run_cyclegan.sh
PaddleCV/gan/scripts/run_cyclegan.sh
+1
-0
PaddleCV/gan/scripts/run_pix2pix.sh
PaddleCV/gan/scripts/run_pix2pix.sh
+1
-1
PaddleCV/gan/trainer/CGAN.py
PaddleCV/gan/trainer/CGAN.py
+4
-2
PaddleCV/gan/trainer/CycleGAN.py
PaddleCV/gan/trainer/CycleGAN.py
+10
-4
PaddleCV/gan/trainer/DCGAN.py
PaddleCV/gan/trainer/DCGAN.py
+5
-2
PaddleCV/gan/util/config.py
PaddleCV/gan/util/config.py
+6
-7
未找到文件。
PaddleCV/gan/data_reader.py
浏览文件 @
9486fc66
...
@@ -26,7 +26,7 @@ import random
...
@@ -26,7 +26,7 @@ import random
def
RandomCrop
(
img
,
crop_w
,
crop_h
):
def
RandomCrop
(
img
,
crop_w
,
crop_h
):
w
,
h
=
img
.
s
hape
[
0
],
img
.
shap
e
[
1
]
w
,
h
=
img
.
s
ize
[
0
],
img
.
siz
e
[
1
]
i
=
np
.
random
.
randint
(
0
,
w
-
crop_w
)
i
=
np
.
random
.
randint
(
0
,
w
-
crop_w
)
j
=
np
.
random
.
randint
(
0
,
h
-
crop_h
)
j
=
np
.
random
.
randint
(
0
,
h
-
crop_h
)
return
img
.
crop
((
i
,
j
,
i
+
crop_w
,
j
+
crop_h
))
return
img
.
crop
((
i
,
j
,
i
+
crop_w
,
j
+
crop_h
))
...
@@ -346,7 +346,7 @@ class data_reader(object):
...
@@ -346,7 +346,7 @@ class data_reader(object):
return
a_reader
,
b_reader
,
a_reader_test
,
b_reader_test
,
batch_num
return
a_reader
,
b_reader
,
a_reader_test
,
b_reader_test
,
batch_num
el
if
self
.
cfg
.
model_net
==
'Pix2pix'
:
el
se
:
dataset_dir
=
os
.
path
.
join
(
self
.
cfg
.
data_dir
,
self
.
cfg
.
dataset
)
dataset_dir
=
os
.
path
.
join
(
self
.
cfg
.
data_dir
,
self
.
cfg
.
dataset
)
train_list
=
os
.
path
.
join
(
dataset_dir
,
'train.txt'
)
train_list
=
os
.
path
.
join
(
dataset_dir
,
'train.txt'
)
if
self
.
cfg
.
train_list
is
not
None
:
if
self
.
cfg
.
train_list
is
not
None
:
...
@@ -372,22 +372,3 @@ class data_reader(object):
...
@@ -372,22 +372,3 @@ class data_reader(object):
reader
=
train_reader
.
get_train_reader
(
reader
=
train_reader
.
get_train_reader
(
self
.
cfg
,
shuffle
=
self
.
shuffle
)
self
.
cfg
,
shuffle
=
self
.
shuffle
)
return
reader
,
reader_test
,
batch_num
return
reader
,
reader_test
,
batch_num
else
:
dataset_dir
=
os
.
path
.
join
(
self
.
cfg
.
data_dir
,
self
.
cfg
.
dataset
)
train_list
=
os
.
path
.
join
(
dataset_dir
,
'train.txt'
)
if
self
.
cfg
.
data_list
is
not
None
:
train_list
=
self
.
cfg
.
data_list
train_reader
=
reader_creator
(
image_dir
=
dataset_dir
,
list_filename
=
train_list
)
reader_test
=
None
if
self
.
cfg
.
run_test
:
test_list
=
os
.
path
.
join
(
dataset_dir
,
"test.txt"
)
test_reader
=
reader_creator
(
image_dir
=
dataset_dir
,
list_filename
=
test_list
,
batch_size
=
1
,
drop_last
=
self
.
cfg
.
drop_last
)
reader_test
=
test_reader
.
get_test_reader
(
self
.
cfg
,
shuffle
=
False
,
return_name
=
True
)
batch_num
=
train_reader
.
len
()
return
train_reader
,
reader_test
,
batch_num
PaddleCV/gan/download.py
浏览文件 @
9486fc66
...
@@ -23,6 +23,7 @@ import argparse
...
@@ -23,6 +23,7 @@ import argparse
import
requests
import
requests
import
six
import
six
import
hashlib
import
hashlib
import
zipfile
parser
=
argparse
.
ArgumentParser
(
description
=
'Download dataset.'
)
parser
=
argparse
.
ArgumentParser
(
description
=
'Download dataset.'
)
#TODO add celeA dataset
#TODO add celeA dataset
...
...
PaddleCV/gan/infer.py
浏览文件 @
9486fc66
...
@@ -31,7 +31,7 @@ parser = argparse.ArgumentParser(description=__doc__)
...
@@ -31,7 +31,7 @@ parser = argparse.ArgumentParser(description=__doc__)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
# yapf: disable
add_arg
(
'model_net'
,
str
,
'cgan'
,
"The model used"
)
add_arg
(
'model_net'
,
str
,
'cgan'
,
"The model used"
)
add_arg
(
'net_G'
,
str
,
"resnet_9block"
,
"Choose the CycleGAN generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]"
)
add_arg
(
'net_G'
,
str
,
"resnet_9block"
,
"Choose the CycleGAN
and Pix2pix
generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]"
)
add_arg
(
'input'
,
str
,
None
,
"The images to be infered."
)
add_arg
(
'input'
,
str
,
None
,
"The images to be infered."
)
add_arg
(
'init_model'
,
str
,
None
,
"The init model file of directory."
)
add_arg
(
'init_model'
,
str
,
None
,
"The init model file of directory."
)
add_arg
(
'output'
,
str
,
"./infer_result"
,
"The directory the infer result to be saved to."
)
add_arg
(
'output'
,
str
,
"./infer_result"
,
"The directory the infer result to be saved to."
)
...
...
PaddleCV/gan/scripts/infer_cyclegan.sh
0 → 100644
浏览文件 @
9486fc66
python infer.py
--init_model
output/checkpoints/199/
--input
data/cityscapes/testA/
*
--input_style
A
--model_net
cyclegan
--net_G
resnet_6block
--g_bash_dims
32
PaddleCV/gan/scripts/infer_pix2pix.sh
浏览文件 @
9486fc66
python infer.py
--init_model
output/chechpoints/1
5/
--input
data/cityscapes/test/B/100.jpg
--model_net
Pix2pix
--net_G
unet_256
python infer.py
--init_model
output/chechpoints/1
99/
--input
data/cityscapes/testB/
*
--model_net
Pix2pix
--net_G
unet_256
PaddleCV/gan/scripts/make_pair_data.py
0 → 100644
浏览文件 @
9486fc66
import
os
def
make_pair_data
(
fileA
,
file
):
f
=
open
(
fileA
,
'r'
)
lines
=
f
.
readlines
()
w
=
open
(
file
,
'w'
)
for
line
in
lines
:
fileA
=
line
[:
-
1
]
print
(
fileA
)
fileB
=
fileA
.
replace
(
"A"
,
"B"
)
print
(
fileB
)
l
=
fileA
+
'
\t
'
+
fileB
+
'
\n
'
w
.
write
(
l
)
w
.
close
()
if
__name__
==
"__main__"
:
trainA_file
=
"./data/cityscapes/trainA.txt"
train_file
=
"./data/cityscapes/pix2pix_train_list"
make_pair_data
(
trainA_file
,
train_file
)
testA_file
=
"./data/cityscapes/testA.txt"
test_file
=
"./data/cityscapes/pix2pix_test_list"
make_pair_data
(
testA_file
,
test_file
)
PaddleCV/gan/scripts/run_cyclegan.sh
0 → 100644
浏览文件 @
9486fc66
python train.py
--model_net
CycleGAN
--dataset
cityscapes
--batch_size
1
--net_G
resnet_9block
--g_base_dim
32
--net_D
basic
--norm_type
batch_norm
--epoch
200
--load_size
286
--crop_size
256
--crop_type
Random
>
log_out 2>log_err
PaddleCV/gan/scripts/run_pix2pix.sh
浏览文件 @
9486fc66
python train.py
--model_net
Pix2pix
--dataset
cityscapes
--train_list
data/cityscapes/pix2pix_train_list
--test_list
data/cityscapes/pix2pix_test_list
10
--crop_type
Random
--dropout
True
--gan_mode
vanilla
--batch_size
1
>
log_out 2>log_err
python train.py
--model_net
Pix2pix
--dataset
cityscapes
--train_list
data/cityscapes/pix2pix_train_list
--test_list
data/cityscapes/pix2pix_test_list
--crop_type
Random
--dropout
True
--gan_mode
vanilla
--batch_size
1
>
log_out 2>log_err
PaddleCV/gan/trainer/CGAN.py
浏览文件 @
9486fc66
...
@@ -35,6 +35,7 @@ class GTrainer():
...
@@ -35,6 +35,7 @@ class GTrainer():
with
fluid
.
program_guard
(
self
.
program
):
with
fluid
.
program_guard
(
self
.
program
):
model
=
CGAN_model
()
model
=
CGAN_model
()
self
.
fake
=
model
.
network_G
(
input
,
conditions
,
name
=
"G"
)
self
.
fake
=
model
.
network_G
(
input
,
conditions
,
name
=
"G"
)
self
.
fake
.
persistable
=
True
self
.
infer_program
=
self
.
program
.
clone
()
self
.
infer_program
=
self
.
program
.
clone
()
d_fake
=
model
.
network_D
(
self
.
fake
,
conditions
,
name
=
"D"
)
d_fake
=
model
.
network_D
(
self
.
fake
,
conditions
,
name
=
"D"
)
fake_labels
=
fluid
.
layers
.
fill_constant_batch_size_like
(
fake_labels
=
fluid
.
layers
.
fill_constant_batch_size_like
(
...
@@ -42,6 +43,7 @@ class GTrainer():
...
@@ -42,6 +43,7 @@ class GTrainer():
self
.
g_loss
=
fluid
.
layers
.
reduce_mean
(
self
.
g_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
fake_labels
))
x
=
d_fake
,
label
=
fake_labels
))
self
.
g_loss
.
persistable
=
True
vars
=
[]
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
for
var
in
self
.
program
.
list_vars
():
...
@@ -62,7 +64,7 @@ class DTrainer():
...
@@ -62,7 +64,7 @@ class DTrainer():
self
.
d_loss
=
fluid
.
layers
.
reduce_mean
(
self
.
d_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_logit
,
label
=
labels
))
x
=
d_logit
,
label
=
labels
))
self
.
d_loss
.
persistable
=
True
vars
=
[]
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
for
var
in
self
.
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
(
var
.
name
.
startswith
(
"D"
)):
if
fluid
.
io
.
is_parameter
(
var
)
and
(
var
.
name
.
startswith
(
"D"
)):
...
@@ -112,7 +114,7 @@ class CGAN(object):
...
@@ -112,7 +114,7 @@ class CGAN(object):
### memory optim
### memory optim
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
enable_inplace
=
True
build_strategy
.
enable_inplace
=
True
build_strategy
.
memory_optimize
=
Fals
e
build_strategy
.
memory_optimize
=
Tru
e
g_trainer_program
=
fluid
.
CompiledProgram
(
g_trainer_program
=
fluid
.
CompiledProgram
(
g_trainer
.
program
).
with_data_parallel
(
g_trainer
.
program
).
with_data_parallel
(
...
...
PaddleCV/gan/trainer/CycleGAN.py
浏览文件 @
9486fc66
...
@@ -47,16 +47,20 @@ class GTrainer():
...
@@ -47,16 +47,20 @@ class GTrainer():
fluid
.
layers
.
elementwise_sub
(
fluid
.
layers
.
elementwise_sub
(
x
=
input_B
,
y
=
self
.
cyc_B
))
x
=
input_B
,
y
=
self
.
cyc_B
))
self
.
cyc_A_loss
=
fluid
.
layers
.
reduce_mean
(
diff_A
)
*
lambda_A
self
.
cyc_A_loss
=
fluid
.
layers
.
reduce_mean
(
diff_A
)
*
lambda_A
self
.
cyc_A_loss
.
persistable
=
True
self
.
cyc_B_loss
=
fluid
.
layers
.
reduce_mean
(
diff_B
)
*
lambda_B
self
.
cyc_B_loss
=
fluid
.
layers
.
reduce_mean
(
diff_B
)
*
lambda_B
self
.
cyc_B_loss
.
persistable
=
True
self
.
cyc_loss
=
self
.
cyc_A_loss
+
self
.
cyc_B_loss
self
.
cyc_loss
=
self
.
cyc_A_loss
+
self
.
cyc_B_loss
# GAN Loss D_A(G_A(A))
# GAN Loss D_A(G_A(A))
self
.
fake_rec_A
=
model
.
network_D
(
self
.
fake_B
,
name
=
"DA"
,
cfg
=
cfg
)
self
.
fake_rec_A
=
model
.
network_D
(
self
.
fake_B
,
name
=
"DA"
,
cfg
=
cfg
)
self
.
G_A
=
fluid
.
layers
.
reduce_mean
(
self
.
G_A
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
self
.
fake_rec_A
-
1
))
fluid
.
layers
.
square
(
self
.
fake_rec_A
-
1
))
self
.
G_A
.
persistable
=
True
# GAN Loss D_B(G_B(B))
# GAN Loss D_B(G_B(B))
self
.
fake_rec_B
=
model
.
network_D
(
self
.
fake_A
,
name
=
"DB"
,
cfg
=
cfg
)
self
.
fake_rec_B
=
model
.
network_D
(
self
.
fake_A
,
name
=
"DB"
,
cfg
=
cfg
)
self
.
G_B
=
fluid
.
layers
.
reduce_mean
(
self
.
G_B
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
self
.
fake_rec_B
-
1
))
fluid
.
layers
.
square
(
self
.
fake_rec_B
-
1
))
self
.
G_B
.
persistable
=
True
self
.
G
=
self
.
G_A
+
self
.
G_B
self
.
G
=
self
.
G_A
+
self
.
G_B
# Identity Loss G_A
# Identity Loss G_A
self
.
idt_A
=
model
.
network_G
(
input_B
,
name
=
"GA"
,
cfg
=
cfg
)
self
.
idt_A
=
model
.
network_G
(
input_B
,
name
=
"GA"
,
cfg
=
cfg
)
...
@@ -64,12 +68,14 @@ class GTrainer():
...
@@ -64,12 +68,14 @@ class GTrainer():
fluid
.
layers
.
abs
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
fluid
.
layers
.
elementwise_sub
(
x
=
input_B
,
y
=
self
.
idt_A
)))
*
lambda_B
*
lambda_identity
x
=
input_B
,
y
=
self
.
idt_A
)))
*
lambda_B
*
lambda_identity
self
.
idt_loss_A
.
persistable
=
True
# Identity Loss G_B
# Identity Loss G_B
self
.
idt_B
=
model
.
network_G
(
input_A
,
name
=
"GB"
,
cfg
=
cfg
)
self
.
idt_B
=
model
.
network_G
(
input_A
,
name
=
"GB"
,
cfg
=
cfg
)
self
.
idt_loss_B
=
fluid
.
layers
.
reduce_mean
(
self
.
idt_loss_B
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
fluid
.
layers
.
elementwise_sub
(
x
=
input_A
,
y
=
self
.
idt_B
)))
*
lambda_A
*
lambda_identity
x
=
input_A
,
y
=
self
.
idt_B
)))
*
lambda_A
*
lambda_identity
self
.
idt_loss_B
.
persistable
=
True
self
.
idt_loss
=
fluid
.
layers
.
elementwise_add
(
self
.
idt_loss_A
,
self
.
idt_loss
=
fluid
.
layers
.
elementwise_add
(
self
.
idt_loss_A
,
self
.
idt_loss_B
)
self
.
idt_loss_B
)
...
@@ -107,8 +113,8 @@ class DATrainer():
...
@@ -107,8 +113,8 @@ class DATrainer():
self
.
d_loss_A
=
(
fluid
.
layers
.
square
(
self
.
fake_pool_rec_B
)
+
self
.
d_loss_A
=
(
fluid
.
layers
.
square
(
self
.
fake_pool_rec_B
)
+
fluid
.
layers
.
square
(
self
.
rec_B
-
1
))
/
2.0
fluid
.
layers
.
square
(
self
.
rec_B
-
1
))
/
2.0
self
.
d_loss_A
=
fluid
.
layers
.
reduce_mean
(
self
.
d_loss_A
)
self
.
d_loss_A
=
fluid
.
layers
.
reduce_mean
(
self
.
d_loss_A
)
self
.
d_loss_A
.
persistable
=
True
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.0002
,
beta1
=
0.5
)
vars
=
[]
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
for
var
in
self
.
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"DA"
):
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"DA"
):
...
@@ -142,7 +148,7 @@ class DBTrainer():
...
@@ -142,7 +148,7 @@ class DBTrainer():
self
.
d_loss_B
=
(
fluid
.
layers
.
square
(
self
.
fake_pool_rec_A
)
+
self
.
d_loss_B
=
(
fluid
.
layers
.
square
(
self
.
fake_pool_rec_A
)
+
fluid
.
layers
.
square
(
self
.
rec_A
-
1
))
/
2.0
fluid
.
layers
.
square
(
self
.
rec_A
-
1
))
/
2.0
self
.
d_loss_B
=
fluid
.
layers
.
reduce_mean
(
self
.
d_loss_B
)
self
.
d_loss_B
=
fluid
.
layers
.
reduce_mean
(
self
.
d_loss_B
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.0002
,
beta1
=
0.5
)
self
.
d_loss_B
.
persistable
=
True
vars
=
[]
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
for
var
in
self
.
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"DB"
):
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"DB"
):
...
@@ -230,8 +236,8 @@ class CycleGAN(object):
...
@@ -230,8 +236,8 @@ class CycleGAN(object):
### memory optim
### memory optim
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
enable_inplace
=
Fals
e
build_strategy
.
enable_inplace
=
Tru
e
build_strategy
.
memory_optimize
=
Fals
e
build_strategy
.
memory_optimize
=
Tru
e
gen_trainer_program
=
fluid
.
CompiledProgram
(
gen_trainer_program
=
fluid
.
CompiledProgram
(
gen_trainer
.
program
).
with_data_parallel
(
gen_trainer
.
program
).
with_data_parallel
(
...
...
PaddleCV/gan/trainer/DCGAN.py
浏览文件 @
9486fc66
...
@@ -35,6 +35,7 @@ class GTrainer():
...
@@ -35,6 +35,7 @@ class GTrainer():
with
fluid
.
program_guard
(
self
.
program
):
with
fluid
.
program_guard
(
self
.
program
):
model
=
DCGAN_model
()
model
=
DCGAN_model
()
self
.
fake
=
model
.
network_G
(
input
,
name
=
'G'
)
self
.
fake
=
model
.
network_G
(
input
,
name
=
'G'
)
self
.
fake
.
persistable
=
True
self
.
infer_program
=
self
.
program
.
clone
()
self
.
infer_program
=
self
.
program
.
clone
()
d_fake
=
model
.
network_D
(
self
.
fake
,
name
=
"D"
)
d_fake
=
model
.
network_D
(
self
.
fake
,
name
=
"D"
)
fake_labels
=
fluid
.
layers
.
fill_constant_batch_size_like
(
fake_labels
=
fluid
.
layers
.
fill_constant_batch_size_like
(
...
@@ -42,6 +43,7 @@ class GTrainer():
...
@@ -42,6 +43,7 @@ class GTrainer():
self
.
g_loss
=
fluid
.
layers
.
reduce_mean
(
self
.
g_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_fake
,
label
=
fake_labels
))
x
=
d_fake
,
label
=
fake_labels
))
self
.
g_loss
.
persistable
=
True
vars
=
[]
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
for
var
in
self
.
program
.
list_vars
():
...
@@ -61,6 +63,7 @@ class DTrainer():
...
@@ -61,6 +63,7 @@ class DTrainer():
self
.
d_loss
=
fluid
.
layers
.
reduce_mean
(
self
.
d_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
d_logit
,
label
=
labels
))
x
=
d_logit
,
label
=
labels
))
self
.
d_loss
.
persistable
=
True
vars
=
[]
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
for
var
in
self
.
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
(
var
.
name
.
startswith
(
"D"
)):
if
fluid
.
io
.
is_parameter
(
var
)
and
(
var
.
name
.
startswith
(
"D"
)):
...
@@ -78,7 +81,7 @@ class DCGAN(object):
...
@@ -78,7 +81,7 @@ class DCGAN(object):
return
parser
return
parser
def
__init__
(
self
,
cfg
,
train_reader
):
def
__init__
(
self
,
cfg
=
None
,
train_reader
=
None
):
self
.
cfg
=
cfg
self
.
cfg
=
cfg
self
.
train_reader
=
train_reader
self
.
train_reader
=
train_reader
...
@@ -107,7 +110,7 @@ class DCGAN(object):
...
@@ -107,7 +110,7 @@ class DCGAN(object):
### memory optim
### memory optim
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
enable_inplace
=
True
build_strategy
.
enable_inplace
=
True
build_strategy
.
memory_optimize
=
Fals
e
build_strategy
.
memory_optimize
=
Tru
e
g_trainer_program
=
fluid
.
CompiledProgram
(
g_trainer_program
=
fluid
.
CompiledProgram
(
g_trainer
.
program
).
with_data_parallel
(
g_trainer
.
program
).
with_data_parallel
(
...
...
PaddleCV/gan/util/config.py
浏览文件 @
9486fc66
...
@@ -68,16 +68,15 @@ def add_arguments(argname, type, default, help, argparser, **kwargs):
...
@@ -68,16 +68,15 @@ def add_arguments(argname, type, default, help, argparser, **kwargs):
def
base_parse_args
(
parser
):
def
base_parse_args
(
parser
):
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
# yapf: disable
add_arg
(
'model_net'
,
str
,
"
cgan
"
,
"The model used."
)
add_arg
(
'model_net'
,
str
,
"
CGAN
"
,
"The model used."
)
add_arg
(
'dataset'
,
str
,
"mnist"
,
"The dataset used."
)
add_arg
(
'dataset'
,
str
,
"mnist"
,
"The dataset used."
)
add_arg
(
'data_dir'
,
str
,
"./data"
,
"The dataset root directory"
)
add_arg
(
'data_dir'
,
str
,
"./data"
,
"The dataset root directory"
)
add_arg
(
'data_list'
,
str
,
"data/cityscapes/pix2pix_train_list"
,
"The data list file name"
)
add_arg
(
'train_list'
,
str
,
None
,
"The train list file name"
)
add_arg
(
'train_list'
,
str
,
"data/cityscapes/pix2pix_train_list"
,
"The train list file name"
)
add_arg
(
'test_list'
,
str
,
None
,
"The test list file name"
)
add_arg
(
'test_list'
,
str
,
"data/cityscapes/pix2pix_test_list10"
,
"The test list file name"
)
add_arg
(
'batch_size'
,
int
,
1
,
"Minibatch size."
)
add_arg
(
'batch_size'
,
int
,
1
,
"Minibatch size."
)
add_arg
(
'epoch'
,
int
,
200
,
"The number of epoch to be trained."
)
add_arg
(
'epoch'
,
int
,
200
,
"The number of epoch to be trained."
)
add_arg
(
'g_base_dims'
,
int
,
64
,
"Base channels in
CycleGAN
generator"
)
add_arg
(
'g_base_dims'
,
int
,
64
,
"Base channels in generator"
)
add_arg
(
'd_base_dims'
,
int
,
64
,
"Base channels in
CycleGAN
discriminator"
)
add_arg
(
'd_base_dims'
,
int
,
64
,
"Base channels in discriminator"
)
add_arg
(
'load_size'
,
int
,
286
,
"the image size when load the image"
)
add_arg
(
'load_size'
,
int
,
286
,
"the image size when load the image"
)
add_arg
(
'crop_type'
,
str
,
'Centor'
,
add_arg
(
'crop_type'
,
str
,
'Centor'
,
"the crop type, choose = ['Centor', 'Random']"
)
"the crop type, choose = ['Centor', 'Random']"
)
...
@@ -96,7 +95,7 @@ def base_parse_args(parser):
...
@@ -96,7 +95,7 @@ def base_parse_args(parser):
add_arg
(
'gan_mode'
,
str
,
"vanilla"
,
"The init model file of directory."
)
add_arg
(
'gan_mode'
,
str
,
"vanilla"
,
"The init model file of directory."
)
add_arg
(
'norm_type'
,
str
,
"batch_norm"
,
"Which normalization to used"
)
add_arg
(
'norm_type'
,
str
,
"batch_norm"
,
"Which normalization to used"
)
add_arg
(
'learning_rate'
,
float
,
0.0002
,
"the initialize learning rate"
)
add_arg
(
'learning_rate'
,
float
,
0.0002
,
"the initialize learning rate"
)
add_arg
(
'lambda_L1'
,
float
,
100.0
,
"the initialize l
earning rate
"
)
add_arg
(
'lambda_L1'
,
float
,
100.0
,
"the initialize l
ambda parameter for L1 loss
"
)
add_arg
(
'num_generator_time'
,
int
,
1
,
add_arg
(
'num_generator_time'
,
int
,
1
,
"the generator run times in training each epoch"
)
"the generator run times in training each epoch"
)
add_arg
(
'print_freq'
,
int
,
10
,
"the frequency of print loss"
)
add_arg
(
'print_freq'
,
int
,
10
,
"the frequency of print loss"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录