Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c271c571
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c271c571
编写于
6月 22, 2019
作者:
Z
zhumanyu
提交者:
lvmengsi
6月 22, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add stargan (#2489)
上级
d812ee8c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
737 addition
and
94 deletion
+737
-94
PaddleCV/gan/data_reader.py
PaddleCV/gan/data_reader.py
+30
-15
PaddleCV/gan/infer.py
PaddleCV/gan/infer.py
+35
-1
PaddleCV/gan/network/StarGAN_network.py
PaddleCV/gan/network/StarGAN_network.py
+158
-0
PaddleCV/gan/scripts/run_stargan.sh
PaddleCV/gan/scripts/run_stargan.sh
+2
-0
PaddleCV/gan/train.py
PaddleCV/gan/train.py
+5
-0
PaddleCV/gan/trainer/StarGAN.py
PaddleCV/gan/trainer/StarGAN.py
+402
-0
PaddleCV/gan/util/utility.py
PaddleCV/gan/util/utility.py
+105
-78
未找到文件。
PaddleCV/gan/data_reader.py
浏览文件 @
c271c571
...
@@ -42,7 +42,7 @@ def CentorCrop(img, crop_w, crop_h):
...
@@ -42,7 +42,7 @@ def CentorCrop(img, crop_w, crop_h):
def
RandomHorizonFlip
(
img
):
def
RandomHorizonFlip
(
img
):
i
=
np
.
random
.
rand
()
i
=
np
.
random
.
rand
()
if
i
>
0.5
:
if
i
>
0.5
:
img
=
ImageOps
.
mirror
(
im
age
)
img
=
ImageOps
.
mirror
(
im
g
)
return
img
return
img
...
@@ -283,13 +283,21 @@ class celeba_reader_creator(reader_creator):
...
@@ -283,13 +283,21 @@ class celeba_reader_creator(reader_creator):
if
shuffle
:
if
shuffle
:
np
.
random
.
shuffle
(
self
.
images
)
np
.
random
.
shuffle
(
self
.
images
)
for
file
,
label
in
self
.
images
:
for
file
,
label
in
self
.
images
:
img
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
if
args
.
model_net
==
"StarGAN"
:
file
)).
convert
(
'RGB'
)
img
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
file
))
label
=
np
.
array
(
label
).
astype
(
"float32"
)
label
=
np
.
array
(
label
).
astype
(
"float32"
)
label
=
(
label
+
1
)
//
2
img
=
RandomHorizonFlip
(
img
)
img
=
CentorCrop
(
img
,
args
.
crop_size
,
args
.
crop_size
)
img
=
CentorCrop
(
img
,
args
.
crop_size
,
args
.
crop_size
)
img
=
img
.
resize
((
args
.
load_size
,
args
.
load_size
),
img
=
img
.
resize
((
args
.
image_size
,
args
.
image_size
),
Image
.
BILINEAR
)
Image
.
BILINEAR
)
else
:
img
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
file
)).
convert
(
'RGB'
)
label
=
np
.
array
(
label
).
astype
(
"float32"
)
label
=
(
label
+
1
)
//
2
img
=
CentorCrop
(
img
,
args
.
crop_size
,
args
.
crop_size
)
img
=
img
.
resize
((
args
.
load_size
,
args
.
load_size
),
Image
.
BILINEAR
)
img
=
(
np
.
array
(
img
).
astype
(
'float32'
)
/
255.0
-
0.5
)
/
0.5
img
=
(
np
.
array
(
img
).
astype
(
'float32'
)
/
255.0
-
0.5
)
/
0.5
img
=
img
.
transpose
([
2
,
0
,
1
])
img
=
img
.
transpose
([
2
,
0
,
1
])
...
@@ -310,12 +318,19 @@ class celeba_reader_creator(reader_creator):
...
@@ -310,12 +318,19 @@ class celeba_reader_creator(reader_creator):
batch_out_2
=
[]
batch_out_2
=
[]
batch_out_3
=
[]
batch_out_3
=
[]
for
file
,
label
in
self
.
images
:
for
file
,
label
in
self
.
images
:
img
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
file
)).
convert
(
if
args
.
model_net
==
'StarGAN'
:
'RGB'
)
img
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
file
))
label
=
np
.
array
(
label
).
astype
(
"float32"
)
label
=
np
.
array
(
label
).
astype
(
"float32"
)
img
=
CentorCrop
(
img
,
170
,
170
)
img
=
CentorCrop
(
img
,
args
.
crop_size
,
args
.
crop_size
)
img
=
img
.
resize
((
args
.
image_size
,
args
.
image_size
),
img
=
img
.
resize
((
args
.
image_size
,
args
.
image_size
),
Image
.
BILINEAR
)
Image
.
BILINEAR
)
else
:
img
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
file
)).
convert
(
'RGB'
)
label
=
np
.
array
(
label
).
astype
(
"float32"
)
img
=
CentorCrop
(
img
,
170
,
170
)
img
=
img
.
resize
((
args
.
image_size
,
args
.
image_size
),
Image
.
BILINEAR
)
img
=
(
np
.
array
(
img
).
astype
(
'float32'
)
/
255.0
-
0.5
)
/
0.5
img
=
(
np
.
array
(
img
).
astype
(
'float32'
)
/
255.0
-
0.5
)
/
0.5
img
=
img
.
transpose
([
2
,
0
,
1
])
img
=
img
.
transpose
([
2
,
0
,
1
])
if
return_name
:
if
return_name
:
...
@@ -482,7 +497,7 @@ class data_reader(object):
...
@@ -482,7 +497,7 @@ class data_reader(object):
self
.
cfg
,
shuffle
=
self
.
shuffle
)
self
.
cfg
,
shuffle
=
self
.
shuffle
)
return
reader
,
reader_test
,
batch_num
return
reader
,
reader_test
,
batch_num
el
se
:
el
if
self
.
cfg
.
model_net
==
'Pix2pix'
:
dataset_dir
=
os
.
path
.
join
(
self
.
cfg
.
data_dir
,
self
.
cfg
.
dataset
)
dataset_dir
=
os
.
path
.
join
(
self
.
cfg
.
data_dir
,
self
.
cfg
.
dataset
)
train_list
=
os
.
path
.
join
(
dataset_dir
,
'train.txt'
)
train_list
=
os
.
path
.
join
(
dataset_dir
,
'train.txt'
)
if
self
.
cfg
.
train_list
is
not
None
:
if
self
.
cfg
.
train_list
is
not
None
:
...
...
PaddleCV/gan/infer.py
浏览文件 @
c271c571
...
@@ -78,7 +78,10 @@ def infer(args):
...
@@ -78,7 +78,10 @@ def infer(args):
from
network.Pix2pix_network
import
Pix2pix_model
from
network.Pix2pix_network
import
Pix2pix_model
model
=
Pix2pix_model
()
model
=
Pix2pix_model
()
fake
=
model
.
network_G
(
input
,
"generator"
,
cfg
=
args
)
fake
=
model
.
network_G
(
input
,
"generator"
,
cfg
=
args
)
elif
args
.
model_net
==
'StarGAN'
:
from
network.StarGAN_network
import
StarGAN_model
model
=
StarGAN_model
()
fake
=
model
.
network_G
(
input
,
label_trg_
,
name
=
"g_main"
,
cfg
=
args
)
elif
args
.
model_net
==
'STGAN'
:
elif
args
.
model_net
==
'STGAN'
:
from
network.STGAN_network
import
STGAN_model
from
network.STGAN_network
import
STGAN_model
model
=
STGAN_model
()
model
=
STGAN_model
()
...
@@ -152,6 +155,37 @@ def infer(args):
...
@@ -152,6 +155,37 @@ def infer(args):
images_concat
=
np
.
concatenate
(
images_concat
,
1
)
images_concat
=
np
.
concatenate
(
images_concat
,
1
)
imsave
(
args
.
output
+
"/fake_img_"
+
name
[
0
],
(
imsave
(
args
.
output
+
"/fake_img_"
+
name
[
0
],
(
(
images_concat
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
(
images_concat
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
elif
args
.
model_net
==
'StarGAN'
:
test_reader
=
celeba_reader_creator
(
image_dir
=
args
.
dataset_dir
,
list_filename
=
args
.
test_list
,
batch_size
=
args
.
batch_size
,
drop_last
=
False
,
args
=
args
)
reader_test
=
test_reader
.
get_test_reader
(
args
,
shuffle
=
False
,
return_name
=
True
)
for
data
in
zip
(
reader_test
()):
real_img
,
label_org
,
name
=
data
[
0
]
tensor_img
=
fluid
.
LoDTensor
()
tensor_label_org
=
fluid
.
LoDTensor
()
tensor_img
.
set
(
real_img
,
place
)
tensor_label_org
.
set
(
label_org
,
place
)
real_img_temp
=
np
.
squeeze
(
real_img
).
transpose
([
1
,
2
,
0
])
images
=
[
real_img_temp
]
for
i
in
range
(
cfg
.
c_dim
):
label_trg
=
np
.
zeros
([
1
,
cfg
.
c_dim
]).
astype
(
"float32"
)
label_trg
[
0
][
i
]
=
1
tensor_label_trg
=
fluid
.
LoDTensor
()
tensor_label_trg
.
set
(
label_trg
,
place
)
out
=
exe
.
run
(
feed
=
{
"input"
:
tensor_img
,
"label_trg_"
:
tensor_label_trg
},
fetch_list
=
fake
.
name
)
fake_temp
=
np
.
squeeze
(
out
[
0
]).
transpose
([
1
,
2
,
0
])
images
.
append
(
fake_temp
)
images_concat
=
np
.
concatenate
(
images
,
1
)
imsave
(
out_path
+
"/fake_img"
+
str
(
epoch
)
+
"_"
+
name
[
0
],
(
(
images_concat
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
elif
args
.
model_net
==
'Pix2pix'
or
args
.
model_net
==
'cyclegan'
:
elif
args
.
model_net
==
'Pix2pix'
or
args
.
model_net
==
'cyclegan'
:
for
file
in
glob
.
glob
(
args
.
input
):
for
file
in
glob
.
glob
(
args
.
input
):
...
...
PaddleCV/gan/network/StarGAN_network.py
0 → 100644
浏览文件 @
c271c571
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
.base_network
import
conv2d
,
deconv2d
,
norm_layer
import
paddle.fluid
as
fluid
import
numpy
as
np
class
StarGAN_model
(
object
):
def
__init__
(
self
):
pass
def
ResidualBlock
(
self
,
input
,
dim
,
name
):
conv0
=
conv2d
(
input
,
dim
,
3
,
1
,
padding
=
1
,
use_bias
=
False
,
norm
=
"instance_norm"
,
activation_fn
=
'relu'
,
name
=
name
+
".main0"
,
initial
=
'kaiming'
)
conv1
=
conv2d
(
conv0
,
dim
,
3
,
1
,
padding
=
1
,
use_bias
=
False
,
norm
=
"instance_norm"
,
activation_fn
=
None
,
name
=
name
+
".main3"
,
initial
=
'kaiming'
)
return
input
+
conv1
def
network_G
(
self
,
input
,
label_trg
,
cfg
,
name
=
"generator"
):
repeat_num
=
6
shape
=
input
.
shape
label_trg_e
=
fluid
.
layers
.
reshape
(
label_trg
,
[
-
1
,
label_trg
.
shape
[
1
],
1
,
1
])
label_trg_e
=
fluid
.
layers
.
expand
(
x
=
label_trg_e
,
expand_times
=
[
1
,
1
,
shape
[
2
],
shape
[
3
]])
input1
=
fluid
.
layers
.
concat
([
input
,
label_trg_e
],
1
)
conv0
=
conv2d
(
input1
,
cfg
.
g_conv_dim
,
7
,
1
,
padding
=
3
,
use_bias
=
False
,
norm
=
"instance_norm"
,
activation_fn
=
'relu'
,
name
=
name
+
'0'
,
initial
=
'kaiming'
)
conv_down
=
conv0
for
i
in
range
(
2
):
rate
=
2
**
(
i
+
1
)
conv_down
=
conv2d
(
conv_down
,
cfg
.
g_conv_dim
*
rate
,
4
,
2
,
padding
=
1
,
use_bias
=
False
,
norm
=
"instance_norm"
,
activation_fn
=
'relu'
,
name
=
name
+
str
(
i
*
3
+
3
),
initial
=
'kaiming'
)
res_block
=
conv_down
for
i
in
range
(
repeat_num
):
res_block
=
self
.
ResidualBlock
(
res_block
,
cfg
.
g_conv_dim
*
(
2
**
2
),
name
=
name
+
'.%d'
%
(
i
+
9
))
deconv
=
res_block
for
i
in
range
(
2
):
rate
=
2
**
(
1
-
i
)
deconv
=
deconv2d
(
deconv
,
cfg
.
g_conv_dim
*
rate
,
4
,
2
,
padding
=
1
,
use_bias
=
False
,
norm
=
"instance_norm"
,
activation_fn
=
'relu'
,
name
=
name
+
str
(
15
+
i
*
3
),
initial
=
'kaiming'
)
out
=
conv2d
(
deconv
,
3
,
7
,
1
,
padding
=
3
,
use_bias
=
False
,
norm
=
None
,
activation_fn
=
'tanh'
,
name
=
name
+
'21'
,
initial
=
'kaiming'
)
return
out
def
network_D
(
self
,
input
,
cfg
,
name
=
"discriminator"
):
conv0
=
conv2d
(
input
,
cfg
.
d_conv_dim
,
4
,
2
,
padding
=
1
,
activation_fn
=
'leaky_relu'
,
name
=
name
+
'0'
,
initial
=
'kaiming'
)
repeat_num
=
6
curr_dim
=
cfg
.
d_conv_dim
conv
=
conv0
for
i
in
range
(
1
,
repeat_num
):
curr_dim
*=
2
conv
=
conv2d
(
conv
,
curr_dim
,
4
,
2
,
padding
=
1
,
activation_fn
=
'leaky_relu'
,
name
=
name
+
str
(
i
*
2
),
initial
=
'kaiming'
)
kernel_size
=
int
(
cfg
.
image_size
/
np
.
power
(
2
,
repeat_num
))
out1
=
conv2d
(
conv
,
1
,
3
,
1
,
padding
=
1
,
use_bias
=
False
,
name
=
"d_conv1"
,
initial
=
'kaiming'
)
out2
=
conv2d
(
conv
,
cfg
.
c_dim
,
kernel_size
,
use_bias
=
False
,
name
=
"d_conv2"
,
initial
=
'kaiming'
)
return
out1
,
out2
PaddleCV/gan/scripts/run_stargan.sh
0 → 100644
浏览文件 @
c271c571
CUDA_VISIBLE_DEVICES
=
2 python train.py
--model_net
StarGAN
--dataset
celeba
--crop_size
178
--image_size
128
--train_list
./data/celeba/list_attr_celeba.txt
--test_list
./data/celeba/test_list_attr_celeba.txt
--gan_mode
wgan
--batch_size
16
--epoch
200
>
log_out 2>log_err
#CUDA_VISIBLE_DEVICES=0 python train.py --model_net StarGAN --dataset celeba --crop_size 178 --image_size 128 --train_list ./test_list --test_list ./data/celeba/test_list_attr_celeba.txt --gan_mode wgan --batch_size 2 --epoch 200 > log_out 2>log_err
PaddleCV/gan/train.py
浏览文件 @
c271c571
...
@@ -33,6 +33,8 @@ def train(cfg):
...
@@ -33,6 +33,8 @@ def train(cfg):
)
)
elif
cfg
.
model_net
==
'Pix2pix'
:
elif
cfg
.
model_net
==
'Pix2pix'
:
train_reader
,
test_reader
,
batch_num
=
reader
.
make_data
()
train_reader
,
test_reader
,
batch_num
=
reader
.
make_data
()
elif
cfg
.
model_net
==
'StarGAN'
:
train_reader
,
test_reader
,
batch_num
=
reader
.
make_data
()
else
:
else
:
if
cfg
.
dataset
==
'mnist'
:
if
cfg
.
dataset
==
'mnist'
:
train_reader
=
reader
.
make_data
()
train_reader
=
reader
.
make_data
()
...
@@ -56,6 +58,9 @@ def train(cfg):
...
@@ -56,6 +58,9 @@ def train(cfg):
elif
cfg
.
model_net
==
'Pix2pix'
:
elif
cfg
.
model_net
==
'Pix2pix'
:
from
trainer.Pix2pix
import
Pix2pix
from
trainer.Pix2pix
import
Pix2pix
model
=
Pix2pix
(
cfg
,
train_reader
,
test_reader
,
batch_num
)
model
=
Pix2pix
(
cfg
,
train_reader
,
test_reader
,
batch_num
)
elif
cfg
.
model_net
==
'StarGAN'
:
from
trainer.StarGAN
import
StarGAN
model
=
StarGAN
(
cfg
,
train_reader
,
test_reader
,
batch_num
)
elif
cfg
.
model_net
==
'AttGAN'
:
elif
cfg
.
model_net
==
'AttGAN'
:
from
trainer.AttGAN
import
AttGAN
from
trainer.AttGAN
import
AttGAN
model
=
AttGAN
(
cfg
,
train_reader
,
test_reader
,
batch_num
)
model
=
AttGAN
(
cfg
,
train_reader
,
test_reader
,
batch_num
)
...
...
PaddleCV/gan/trainer/StarGAN.py
0 → 100644
浏览文件 @
c271c571
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
network.StarGAN_network
import
StarGAN_model
from
util
import
utility
import
paddle.fluid
as
fluid
import
sys
import
time
import
copy
import
numpy
as
np
import
pickle
as
pkl
class
GTrainer
():
def
__init__
(
self
,
image_real
,
label_org
,
label_trg
,
cfg
,
step_per_epoch
):
self
.
program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
self
.
program
):
model
=
StarGAN_model
()
self
.
fake_img
=
model
.
network_G
(
image_real
,
label_trg
,
cfg
,
name
=
"g_main"
)
self
.
fake_img
.
persistable
=
True
self
.
rec_img
=
model
.
network_G
(
self
.
fake_img
,
label_org
,
cfg
,
name
=
"g_main"
)
self
.
rec_img
.
persistable
=
True
self
.
infer_program
=
self
.
program
.
clone
(
for_test
=
False
)
self
.
g_loss_rec
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
x
=
image_real
,
y
=
self
.
rec_img
)))
self
.
pred_fake
,
self
.
cls_fake
=
model
.
network_D
(
self
.
fake_img
,
cfg
,
name
=
"d_main"
)
#wgan
if
cfg
.
gan_mode
==
"wgan"
:
self
.
g_loss_fake
=
-
1
*
fluid
.
layers
.
mean
(
self
.
pred_fake
)
#lsgan
elif
cfg
.
gan_mode
==
"lsgan"
:
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_fake
,
shape
=
self
.
pred_fake
.
shape
,
value
=
1
,
dtype
=
'float32'
)
self
.
g_loss_fake
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
square
(
fluid
.
layers
.
elementwise_sub
(
x
=
self
.
pred_fake
,
y
=
ones
)))
cls_shape
=
self
.
cls_fake
.
shape
self
.
cls_fake
=
fluid
.
layers
.
reshape
(
self
.
cls_fake
,
[
-
1
,
cls_shape
[
1
]
*
cls_shape
[
2
]
*
cls_shape
[
3
]])
self
.
g_loss_cls
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
self
.
cls_fake
,
label_trg
))
/
cfg
.
batch_size
self
.
g_loss
=
self
.
g_loss_fake
+
cfg
.
lambda_rec
*
self
.
g_loss_rec
+
self
.
g_loss_cls
self
.
g_loss_fake
.
persistable
=
True
self
.
g_loss_rec
.
persistable
=
True
self
.
g_loss_cls
.
persistable
=
True
lr
=
cfg
.
g_lr
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"g_"
):
vars
.
append
(
var
.
name
)
self
.
param
=
vars
total_iters
=
step_per_epoch
*
cfg
.
epoch
boundaries
=
[
cfg
.
num_iters
-
cfg
.
num_iters_decay
]
values
=
[
lr
]
for
x
in
range
(
cfg
.
num_iters
-
cfg
.
num_iters_decay
+
1
,
total_iters
):
if
x
%
cfg
.
lr_update_step
==
0
:
boundaries
.
append
(
x
)
lr
-=
(
lr
/
float
(
cfg
.
num_iters_decay
))
values
.
append
(
lr
)
lr
=
values
[
-
1
]
lr
-=
(
lr
/
float
(
cfg
.
num_iters_decay
))
values
.
append
(
lr
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
boundaries
,
values
=
values
),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
optimizer
.
minimize
(
self
.
g_loss
,
parameter_list
=
vars
)
with
open
(
'program_gen.txt'
,
'w'
)
as
f
:
print
(
self
.
program
,
file
=
f
)
class
DTrainer
():
def
__init__
(
self
,
image_real
,
label_org
,
label_trg
,
cfg
,
step_per_epoch
):
self
.
program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
self
.
program
):
model
=
StarGAN_model
()
clone_image_real
=
[]
for
b
in
self
.
program
.
blocks
:
if
b
.
has_var
(
'image_real'
):
clone_image_real
=
b
.
var
(
'image_real'
)
break
self
.
fake_img
=
model
.
network_G
(
image_real
,
label_trg
,
cfg
,
name
=
"g_main"
)
self
.
pred_real
,
self
.
cls_real
=
model
.
network_D
(
image_real
,
cfg
,
name
=
"d_main"
)
self
.
pred_fake
,
_
=
model
.
network_D
(
self
.
fake_img
,
cfg
,
name
=
"d_main"
)
cls_shape
=
self
.
cls_real
.
shape
self
.
cls_real
=
fluid
.
layers
.
reshape
(
self
.
cls_real
,
[
-
1
,
cls_shape
[
1
]
*
cls_shape
[
2
]
*
cls_shape
[
3
]])
self
.
d_loss_cls
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
self
.
cls_real
,
label_org
))
/
cfg
.
batch_size
#wgan
if
cfg
.
gan_mode
==
"wgan"
:
self
.
d_loss_fake
=
fluid
.
layers
.
mean
(
self
.
pred_fake
)
self
.
d_loss_real
=
-
1
*
fluid
.
layers
.
mean
(
self
.
pred_real
)
self
.
d_loss_gp
=
self
.
gradient_penalty
(
getattr
(
model
,
"network_D"
),
clone_image_real
,
self
.
fake_img
,
cfg
=
cfg
,
name
=
"d_main"
)
self
.
d_loss
=
self
.
d_loss_real
+
self
.
d_loss_fake
+
self
.
d_loss_cls
+
cfg
.
lambda_gp
*
self
.
d_loss_gp
#lsgan
elif
cfg
.
gan_mode
==
"lsgan"
:
ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
self
.
pred_real
,
shape
=
self
.
pred_real
.
shape
,
value
=
1
,
dtype
=
'float32'
)
self
.
d_loss_real
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
square
(
fluid
.
layers
.
elementwise_sub
(
x
=
self
.
pred_real
,
y
=
ones
)))
self
.
d_loss_fake
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
square
(
x
=
self
.
pred_fake
))
self
.
d_loss
=
self
.
d_loss_real
+
self
.
d_loss_fake
+
cfg
.
lambda_cls
*
self
.
d_loss_cls
self
.
d_loss_real
.
persistable
=
True
self
.
d_loss_fake
.
persistable
=
True
self
.
d_loss_gp
.
persistable
=
True
self
.
d_loss_cls
.
persistable
=
True
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"d_"
):
vars
.
append
(
var
.
name
)
self
.
param
=
vars
total_iters
=
step_per_epoch
*
cfg
.
epoch
boundaries
=
[
cfg
.
num_iters
-
cfg
.
num_iters_decay
]
values
=
[
cfg
.
d_lr
]
lr
=
cfg
.
d_lr
for
x
in
range
(
cfg
.
num_iters
-
cfg
.
num_iters_decay
+
1
,
total_iters
):
if
x
%
cfg
.
lr_update_step
==
0
:
boundaries
.
append
(
x
)
lr
-=
(
lr
/
float
(
cfg
.
num_iters_decay
))
values
.
append
(
lr
)
lr
=
values
[
-
1
]
lr
-=
(
lr
/
float
(
cfg
.
num_iters_decay
))
values
.
append
(
lr
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
boundaries
,
values
=
values
),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_D"
)
optimizer
.
minimize
(
self
.
d_loss
,
parameter_list
=
vars
)
with
open
(
'program_dis.txt'
,
'w'
)
as
f
:
print
(
self
.
program
,
file
=
f
)
def
gradient_penalty
(
self
,
f
,
real
,
fake
,
cfg
=
None
,
name
=
None
):
def
_interpolate
(
a
,
b
):
shape
=
[
a
.
shape
[
0
]]
alpha
=
fluid
.
layers
.
uniform_random_batch_size_like
(
input
=
a
,
shape
=
shape
,
min
=
0.0
,
max
=
1.0
)
a
.
stop_gradient
=
True
b
.
stop_gradient
=
True
inner1
=
fluid
.
layers
.
elementwise_mul
(
a
,
alpha
,
axis
=
0
)
inner2
=
fluid
.
layers
.
elementwise_mul
(
b
,
(
1.0
-
alpha
),
axis
=
0
)
inner1
.
stop_gradient
=
True
inner2
.
stop_gradient
=
True
inner
=
inner1
+
inner2
return
inner
x
=
_interpolate
(
real
,
fake
)
pred
,
_
=
f
(
x
,
cfg
,
name
=
name
)
if
isinstance
(
pred
,
tuple
):
pred
=
pred
[
0
]
vars
=
[]
for
var
in
fluid
.
default_main_program
().
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
'd_'
):
vars
.
append
(
var
.
name
)
grad
=
fluid
.
gradients
(
pred
,
x
,
no_grad_set
=
vars
)
grad_shape
=
grad
.
shape
grad
=
fluid
.
layers
.
reshape
(
grad
,
[
-
1
,
grad_shape
[
1
]
*
grad_shape
[
2
]
*
grad_shape
[
3
]])
norm
=
fluid
.
layers
.
sqrt
(
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
square
(
grad
),
dim
=
1
))
gp
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
norm
-
1.0
))
return
gp
class
StarGAN
(
object
):
def
add_special_args
(
self
,
parser
):
parser
.
add_argument
(
'--image_size'
,
type
=
int
,
default
=
256
,
help
=
"image size"
)
parser
.
add_argument
(
'--g_lr'
,
type
=
float
,
default
=
0.0001
,
help
=
"learning rate of g"
)
parser
.
add_argument
(
'--d_lr'
,
type
=
float
,
default
=
0.0001
,
help
=
"learning rate of d"
)
parser
.
add_argument
(
'--c_dim'
,
type
=
int
,
default
=
5
,
help
=
"the number of attributes we selected"
)
parser
.
add_argument
(
'--g_conv_dim'
,
type
=
int
,
default
=
64
,
help
=
"base conv dims in generator"
)
parser
.
add_argument
(
'--d_conv_dim'
,
type
=
int
,
default
=
64
,
help
=
"base conv dims in discriminator"
)
parser
.
add_argument
(
'--g_repeat_num'
,
type
=
int
,
default
=
6
,
help
=
"number of layers in generator"
)
parser
.
add_argument
(
'--d_repeat_num'
,
type
=
int
,
default
=
6
,
help
=
"number of layers in discriminator"
)
parser
.
add_argument
(
'--num_iters'
,
type
=
int
,
default
=
200000
,
help
=
"num iters"
)
parser
.
add_argument
(
'--num_iters_decay'
,
type
=
int
,
default
=
100000
,
help
=
"num iters decay"
)
parser
.
add_argument
(
'--lr_update_step'
,
type
=
int
,
default
=
1000
,
help
=
"iters when lr update "
)
parser
.
add_argument
(
'--lambda_cls'
,
type
=
float
,
default
=
1.0
,
help
=
"the coefficient of classification"
)
parser
.
add_argument
(
'--lambda_rec'
,
type
=
float
,
default
=
10.0
,
help
=
"the coefficient of refactor"
)
parser
.
add_argument
(
'--lambda_gp'
,
type
=
float
,
default
=
10.0
,
help
=
"the coefficient of gradient penalty"
)
parser
.
add_argument
(
'--n_critic'
,
type
=
int
,
default
=
5
,
help
=
"discriminator training steps when generator update"
)
parser
.
add_argument
(
'--selected_attrs'
,
type
=
str
,
default
=
"Black_Hair,Blond_Hair,Brown_Hair,Male,Young"
,
help
=
"the attributes we selected to change"
)
parser
.
add_argument
(
'--n_samples'
,
type
=
int
,
default
=
1
,
help
=
"batch size when testing"
)
return
parser
def
__init__
(
self
,
cfg
=
None
,
train_reader
=
None
,
test_reader
=
None
,
batch_num
=
1
):
self
.
cfg
=
cfg
self
.
train_reader
=
train_reader
self
.
test_reader
=
test_reader
self
.
batch_num
=
batch_num
def
build_model
(
self
):
data_shape
=
[
-
1
,
3
,
self
.
cfg
.
image_size
,
self
.
cfg
.
image_size
]
image_real
=
fluid
.
layers
.
data
(
name
=
'image_real'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label_org
=
fluid
.
layers
.
data
(
name
=
'label_org'
,
shape
=
[
self
.
cfg
.
c_dim
],
dtype
=
'float32'
)
label_trg
=
fluid
.
layers
.
data
(
name
=
'label_trg'
,
shape
=
[
self
.
cfg
.
c_dim
],
dtype
=
'float32'
)
gen_trainer
=
GTrainer
(
image_real
,
label_org
,
label_trg
,
self
.
cfg
,
self
.
batch_num
)
dis_trainer
=
DTrainer
(
image_real
,
label_org
,
label_trg
,
self
.
cfg
,
self
.
batch_num
)
# prepare environment
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
with
open
(
'program.txt'
,
"w"
)
as
f
:
print
(
gen_trainer
.
program
,
file
=
f
)
if
self
.
cfg
.
init_model
:
utility
.
init_checkpoints
(
self
.
cfg
,
exe
,
gen_trainer
,
"net_G"
)
utility
.
init_checkpoints
(
self
.
cfg
,
exe
,
dis_trainer
,
"net_D"
)
### memory optim
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
enable_inplace
=
False
build_strategy
.
memory_optimize
=
False
gen_trainer_program
=
fluid
.
CompiledProgram
(
gen_trainer
.
program
).
with_data_parallel
(
loss_name
=
gen_trainer
.
g_loss
.
name
,
build_strategy
=
build_strategy
)
dis_trainer_program
=
fluid
.
CompiledProgram
(
dis_trainer
.
program
).
with_data_parallel
(
loss_name
=
dis_trainer
.
d_loss
.
name
,
build_strategy
=
build_strategy
)
#losses = [[], []]
t_time
=
0
test_program
=
gen_trainer
.
infer_program
utility
.
save_test_image
(
0
,
self
.
cfg
,
exe
,
place
,
test_program
,
gen_trainer
,
self
.
test_reader
)
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
for
i
in
range
(
self
.
batch_num
):
image
,
label_org
=
next
(
self
.
train_reader
())
label_trg
=
copy
.
deepcopy
(
label_org
)
np
.
random
.
shuffle
(
label_trg
)
tensor_img
=
fluid
.
LoDTensor
()
tensor_label_org
=
fluid
.
LoDTensor
()
tensor_label_trg
=
fluid
.
LoDTensor
()
tensor_img
.
set
(
image
,
place
)
tensor_label_org
.
set
(
label_org
,
place
)
tensor_label_trg
.
set
(
label_trg
,
place
)
s_time
=
time
.
time
()
# optimize the discriminator network
d_loss_real
,
d_loss_fake
,
d_loss
,
d_loss_cls
,
d_loss_gp
=
exe
.
run
(
dis_trainer_program
,
fetch_list
=
[
dis_trainer
.
d_loss_real
,
dis_trainer
.
d_loss_fake
,
dis_trainer
.
d_loss
,
dis_trainer
.
d_loss_cls
,
dis_trainer
.
d_loss_gp
],
feed
=
{
"image_real"
:
tensor_img
,
"label_org"
:
tensor_label_org
,
"label_trg"
:
tensor_label_trg
})
# optimize the generator network
if
(
batch_id
+
1
)
%
self
.
cfg
.
n_critic
==
0
:
g_loss_fake
,
g_loss_rec
,
g_loss_cls
,
fake_img
,
rec_img
=
exe
.
run
(
gen_trainer_program
,
fetch_list
=
[
gen_trainer
.
g_loss_fake
,
gen_trainer
.
g_loss_rec
,
gen_trainer
.
g_loss_cls
,
gen_trainer
.
fake_img
,
gen_trainer
.
rec_img
],
feed
=
{
"image_real"
:
tensor_img
,
"label_org"
:
tensor_label_org
,
"label_trg"
:
tensor_label_trg
})
print
(
"epoch{}: batch{}:
\n\
g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
.
format
(
epoch_id
,
batch_id
,
g_loss_fake
[
0
],
g_loss_rec
[
0
],
g_loss_cls
[
0
]))
batch_time
=
time
.
time
()
-
s_time
t_time
+=
batch_time
if
batch_id
%
self
.
cfg
.
print_freq
==
0
:
print
(
"epoch{}: batch{}:
\n\
d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {}
\n\
Batch_time_cost: {:.2f}"
.
format
(
epoch_id
,
batch_id
,
d_loss_real
[
0
],
d_loss_fake
[
0
],
d_loss_cls
[
0
],
d_loss_gp
[
0
],
batch_time
))
sys
.
stdout
.
flush
()
batch_id
+=
1
if
self
.
cfg
.
run_test
:
test_program
=
gen_trainer
.
infer_program
utility
.
save_test_image
(
epoch_id
,
self
.
cfg
,
exe
,
place
,
test_program
,
gen_trainer
,
self
.
test_reader
)
if
self
.
cfg
.
save_checkpoints
:
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
exe
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
exe
,
dis_trainer
,
"net_D"
)
PaddleCV/gan/util/utility.py
浏览文件 @
c271c571
...
@@ -77,7 +77,7 @@ def save_test_image(epoch,
...
@@ -77,7 +77,7 @@ def save_test_image(epoch,
out_path
=
cfg
.
output
+
'/test'
out_path
=
cfg
.
output
+
'/test'
if
not
os
.
path
.
exists
(
out_path
):
if
not
os
.
path
.
exists
(
out_path
):
os
.
makedirs
(
out_path
)
os
.
makedirs
(
out_path
)
if
B_test_reader
is
None
:
if
cfg
.
model_net
==
"Pix2pix"
:
for
data
in
zip
(
A_test_reader
()):
for
data
in
zip
(
A_test_reader
()):
data_A
,
data_B
,
name
=
data
[
0
]
data_A
,
data_B
,
name
=
data
[
0
]
name
=
name
[
0
]
name
=
name
[
0
]
...
@@ -100,85 +100,112 @@ def save_test_image(epoch,
...
@@ -100,85 +100,112 @@ def save_test_image(epoch,
(
input_A_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
(
input_A_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
imsave
(
out_path
+
"/inputB_"
+
str
(
epoch
)
+
"_"
+
name
,
(
imsave
(
out_path
+
"/inputB_"
+
str
(
epoch
)
+
"_"
+
name
,
(
(
input_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
(
input_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
else
:
elif
cfg
.
model_net
==
"StarGAN"
:
if
cfg
.
model_net
==
'AttGAN'
or
cfg
.
model_net
==
'STGAN'
:
for
data
in
zip
(
A_test_reader
()):
for
data
in
zip
(
A_test_reader
()):
real_img
,
label_org
,
name
=
data
[
0
]
real_img
,
label_org
,
name
=
data
[
0
]
tensor_img
=
fluid
.
LoDTensor
()
label_trg
=
copy
.
deepcopy
(
label_org
)
tensor_label_org
=
fluid
.
LoDTensor
()
tensor_img
=
fluid
.
LoDTensor
()
tensor_img
.
set
(
real_img
,
place
)
tensor_label_org
=
fluid
.
LoDTensor
()
tensor_label_org
.
set
(
label_org
,
place
)
real_img_temp
=
np
.
squeeze
(
real_img
).
transpose
([
1
,
2
,
0
])
images
=
[
real_img_temp
]
for
i
in
range
(
cfg
.
c_dim
):
label_trg
=
np
.
zeros
([
1
,
cfg
.
c_dim
]).
astype
(
"float32"
)
label_trg
[
0
][
i
]
=
1
tensor_label_trg
=
fluid
.
LoDTensor
()
tensor_label_trg
=
fluid
.
LoDTensor
()
tensor_label_org_
=
fluid
.
LoDTensor
()
tensor_label_trg
.
set
(
label_trg
,
place
)
tensor_label_trg_
=
fluid
.
LoDTensor
()
fake_temp
,
rec_temp
=
exe
.
run
(
tensor_img
.
set
(
real_img
,
place
)
tensor_label_org
.
set
(
label_org
,
place
)
real_img_temp
=
np
.
squeeze
(
real_img
).
transpose
([
0
,
2
,
3
,
1
])
images
=
[
real_img_temp
]
for
i
in
range
(
cfg
.
c_dim
):
label_trg_tmp
=
copy
.
deepcopy
(
label_trg
)
for
j
in
range
(
len
(
label_org
)):
label_trg_tmp
[
j
][
i
]
=
1.0
-
label_trg_tmp
[
j
][
i
]
label_trg_
=
map
(
lambda
x
:
((
x
*
2
)
-
1
)
*
0.5
,
label_trg_tmp
)
for
j
in
range
(
len
(
label_org
)):
label_trg_
[
j
][
i
]
=
label_trg_
[
j
][
i
]
*
2.0
tensor_label_org_
.
set
(
label_org
,
place
)
tensor_label_trg
.
set
(
label_trg
,
place
)
tensor_label_trg_
.
set
(
label_trg_
,
place
)
out
=
exe
.
run
(
test_program
,
feed
=
{
"image_real"
:
tensor_img
,
"label_org"
:
tensor_label_org
,
"label_org_"
:
tensor_label_org_
,
"label_trg"
:
tensor_label_trg
,
"label_trg_"
:
tensor_label_trg_
},
fetch_list
=
[
g_trainer
.
fake_img
])
fake_temp
=
np
.
squeeze
(
out
[
0
]).
transpose
([
0
,
2
,
3
,
1
])
images
.
append
(
fake_temp
)
images_concat
=
np
.
concatenate
(
images
,
1
)
images_concat
=
np
.
concatenate
(
images_concat
,
1
)
imsave
(
out_path
+
"/fake_img"
+
str
(
epoch
)
+
'_'
+
name
[
0
],
(
(
images_concat
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
else
:
for
data_A
,
data_B
in
zip
(
A_test_reader
(),
B_test_reader
()):
A_name
=
data_A
[
0
][
1
]
B_name
=
data_B
[
0
][
1
]
tensor_A
=
fluid
.
LoDTensor
()
tensor_B
=
fluid
.
LoDTensor
()
tensor_A
.
set
(
data_A
[
0
][
0
],
place
)
tensor_B
.
set
(
data_B
[
0
][
0
],
place
)
fake_A_temp
,
fake_B_temp
,
cyc_A_temp
,
cyc_B_temp
=
exe
.
run
(
test_program
,
test_program
,
fetch_list
=
[
feed
=
{
g_trainer
.
fake_A
,
g_trainer
.
fake_B
,
g_trainer
.
cyc_A
,
"image_real"
:
tensor_img
,
g_trainer
.
cyc_B
"label_org"
:
tensor_label_org
,
],
"label_trg"
:
tensor_label_trg
feed
=
{
"input_A"
:
tensor_A
,
},
"input_B"
:
tensor_B
})
fetch_list
=
[
g_trainer
.
fake_img
,
g_trainer
.
rec_img
])
fake_A_temp
=
np
.
squeeze
(
fake_A_temp
[
0
]).
transpose
([
1
,
2
,
0
])
fake_temp
=
np
.
squeeze
(
fake_temp
[
0
]).
transpose
([
1
,
2
,
0
])
fake_B_temp
=
np
.
squeeze
(
fake_B_temp
[
0
]).
transpose
([
1
,
2
,
0
])
rec_temp
=
np
.
squeeze
(
rec_temp
[
0
]).
transpose
([
1
,
2
,
0
])
cyc_A_temp
=
np
.
squeeze
(
cyc_A_temp
[
0
]).
transpose
([
1
,
2
,
0
])
images
.
append
(
fake_temp
)
cyc_B_temp
=
np
.
squeeze
(
cyc_B_temp
[
0
]).
transpose
([
1
,
2
,
0
])
images
.
append
(
rec_temp
)
input_A_temp
=
np
.
squeeze
(
data_A
[
0
][
0
]).
transpose
([
1
,
2
,
0
])
images_concat
=
np
.
concatenate
(
images
,
1
)
input_B_temp
=
np
.
squeeze
(
data_B
[
0
][
0
]).
transpose
([
1
,
2
,
0
])
imsave
(
out_path
+
"/fake_img"
+
str
(
epoch
)
+
"_"
+
name
[
0
],
(
(
images_concat
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
imsave
(
out_path
+
"/fakeB_"
+
str
(
epoch
)
+
"_"
+
A_name
,
(
elif
cfg
.
model_net
==
'AttGAN'
or
cfg
.
model_net
==
'STGAN'
:
(
fake_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
for
data
in
zip
(
A_test_reader
()):
imsave
(
out_path
+
"/fakeA_"
+
str
(
epoch
)
+
"_"
+
B_name
,
(
real_img
,
label_org
,
name
=
data
[
0
]
(
fake_A_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
label_trg
=
copy
.
deepcopy
(
label_org
)
imsave
(
out_path
+
"/cycA_"
+
str
(
epoch
)
+
"_"
+
A_name
,
(
tensor_img
=
fluid
.
LoDTensor
()
(
cyc_A_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
tensor_label_org
=
fluid
.
LoDTensor
()
imsave
(
out_path
+
"/cycB_"
+
str
(
epoch
)
+
"_"
+
B_name
,
(
tensor_label_trg
=
fluid
.
LoDTensor
()
(
cyc_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
tensor_label_org_
=
fluid
.
LoDTensor
()
imsave
(
out_path
+
"/inputA_"
+
str
(
epoch
)
+
"_"
+
A_name
,
(
tensor_label_trg_
=
fluid
.
LoDTensor
()
(
input_A_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
tensor_img
.
set
(
real_img
,
place
)
imsave
(
out_path
+
"/inputB_"
+
str
(
epoch
)
+
"_"
+
B_name
,
(
tensor_label_org
.
set
(
label_org
,
place
)
(
input_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
real_img_temp
=
np
.
squeeze
(
real_img
).
transpose
([
0
,
2
,
3
,
1
])
images
=
[
real_img_temp
]
for
i
in
range
(
cfg
.
c_dim
):
label_trg_tmp
=
copy
.
deepcopy
(
label_trg
)
for
j
in
range
(
len
(
label_org
)):
label_trg_tmp
[
j
][
i
]
=
1.0
-
label_trg_tmp
[
j
][
i
]
label_trg_
=
map
(
lambda
x
:
((
x
*
2
)
-
1
)
*
0.5
,
label_trg_tmp
)
for
j
in
range
(
len
(
label_org
)):
label_trg_
[
j
][
i
]
=
label_trg_
[
j
][
i
]
*
2.0
tensor_label_org_
.
set
(
label_org
,
place
)
tensor_label_trg
.
set
(
label_trg
,
place
)
tensor_label_trg_
.
set
(
label_trg_
,
place
)
out
=
exe
.
run
(
test_program
,
feed
=
{
"image_real"
:
tensor_img
,
"label_org"
:
tensor_label_org
,
"label_org_"
:
tensor_label_org_
,
"label_trg"
:
tensor_label_trg
,
"label_trg_"
:
tensor_label_trg_
},
fetch_list
=
[
g_trainer
.
fake_img
])
fake_temp
=
np
.
squeeze
(
out
[
0
]).
transpose
([
0
,
2
,
3
,
1
])
images
.
append
(
fake_temp
)
images_concat
=
np
.
concatenate
(
images
,
1
)
images_concat
=
np
.
concatenate
(
images_concat
,
1
)
imsave
(
out_path
+
"/fake_img"
+
str
(
epoch
)
+
'_'
+
name
[
0
],
(
(
images_concat
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
else
:
for
data_A
,
data_B
in
zip
(
A_test_reader
(),
B_test_reader
()):
A_name
=
data_A
[
0
][
1
]
B_name
=
data_B
[
0
][
1
]
tensor_A
=
fluid
.
LoDTensor
()
tensor_B
=
fluid
.
LoDTensor
()
tensor_A
.
set
(
data_A
[
0
][
0
],
place
)
tensor_B
.
set
(
data_B
[
0
][
0
],
place
)
fake_A_temp
,
fake_B_temp
,
cyc_A_temp
,
cyc_B_temp
=
exe
.
run
(
test_program
,
fetch_list
=
[
g_trainer
.
fake_A
,
g_trainer
.
fake_B
,
g_trainer
.
cyc_A
,
g_trainer
.
cyc_B
],
feed
=
{
"input_A"
:
tensor_A
,
"input_B"
:
tensor_B
})
fake_A_temp
=
np
.
squeeze
(
fake_A_temp
[
0
]).
transpose
([
1
,
2
,
0
])
fake_B_temp
=
np
.
squeeze
(
fake_B_temp
[
0
]).
transpose
([
1
,
2
,
0
])
cyc_A_temp
=
np
.
squeeze
(
cyc_A_temp
[
0
]).
transpose
([
1
,
2
,
0
])
cyc_B_temp
=
np
.
squeeze
(
cyc_B_temp
[
0
]).
transpose
([
1
,
2
,
0
])
input_A_temp
=
np
.
squeeze
(
data_A
[
0
][
0
]).
transpose
([
1
,
2
,
0
])
input_B_temp
=
np
.
squeeze
(
data_B
[
0
][
0
]).
transpose
([
1
,
2
,
0
])
imsave
(
out_path
+
"/fakeB_"
+
str
(
epoch
)
+
"_"
+
A_name
,
(
(
fake_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
imsave
(
out_path
+
"/fakeA_"
+
str
(
epoch
)
+
"_"
+
B_name
,
(
(
fake_A_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
imsave
(
out_path
+
"/cycA_"
+
str
(
epoch
)
+
"_"
+
A_name
,
(
(
cyc_A_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
imsave
(
out_path
+
"/cycB_"
+
str
(
epoch
)
+
"_"
+
B_name
,
(
(
cyc_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
imsave
(
out_path
+
"/inputA_"
+
str
(
epoch
)
+
"_"
+
A_name
,
(
(
input_A_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
imsave
(
out_path
+
"/inputB_"
+
str
(
epoch
)
+
"_"
+
B_name
,
(
(
input_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
class
ImagePool
(
object
):
class
ImagePool
(
object
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录