infer.py 12.9 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import functools
import os
from PIL import Image
import paddle.fluid as fluid
import paddle
import numpy as np
L
lvmengsi 已提交
26
import imageio
L
lvmengsi 已提交
27 28
import glob
from util.config import add_arguments, print_arguments
L
lvmengsi 已提交
29
from data_reader import celeba_reader_creator
L
lvmengsi 已提交
30
from util.utility import check_attribute_conflict, check_gpu, save_batch_image
L
lvmengsi 已提交
31
from util import utility
L
lvmengsi 已提交
32
import copy
L
lvmengsi 已提交
33

L
lvmengsi 已提交
34 35 36 37
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt

L
lvmengsi 已提交
38 39 40
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
L
lvmengsi 已提交
41
add_arg('model_net',         str,   'CGAN',            "The model used")
L
lvmengsi 已提交
42
add_arg('net_G',             str,   "resnet_9block",   "Choose the CycleGAN and Pix2pix generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]")
L
lvmengsi 已提交
43 44 45 46 47 48 49
add_arg('init_model',        str,   None,              "The init model file of directory.")
add_arg('output',            str,   "./infer_result",  "The directory the infer result to be saved to.")
add_arg('input_style',       str,   "A",               "The style of the input, A or B")
add_arg('norm_type',         str,   "batch_norm",      "Which normalization to used")
add_arg('use_gpu',           bool,  True,              "Whether to use GPU to train.")
add_arg('dropout',           bool,  False,             "Whether to use dropout")
add_arg('g_base_dims',       int,   64,                "Base channels in CycleGAN generator")
L
lvmengsi 已提交
50 51 52 53 54 55 56 57
add_arg('c_dim',             int,   13,                "the size of attrs")
add_arg('use_gru',           bool,  False,             "Whether to use GRU")
add_arg('crop_size',         int,   178,               "crop size")
add_arg('image_size',        int,   128,               "image size")
add_arg('selected_attrs',    str,
    "Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
"the attributes we selected to change")
add_arg('batch_size',        int,   16,                "batch size when test")
L
lvmengsi 已提交
58
add_arg('test_list',         str,   "./data/celeba/test_list_attr_celeba.txt",                "the test list file")
L
lvmengsi 已提交
59
add_arg('dataset_dir',       str,   "./data/celeba/",                "the dataset directory to be infered")
L
lvmengsi 已提交
60 61 62
add_arg('n_layers',          int,   5,                 "default layers in generotor")
add_arg('gru_n_layers',      int,   4,                 "default layers of GRU in generotor")
add_arg('noise_size',        int,   100,               "the noise dimension")
L
lvmengsi 已提交
63 64 65 66
# yapf: enable


def infer(args):
L
lvmengsi 已提交
67
    data_shape = [-1, 3, args.image_size, args.image_size]
L
lvmengsi 已提交
68
    input = fluid.layers.data(name='input', shape=data_shape, dtype='float32')
L
lvmengsi 已提交
69 70 71 72 73
    label_org_ = fluid.layers.data(
        name='label_org_', shape=[args.c_dim], dtype='float32')
    label_trg_ = fluid.layers.data(
        name='label_trg_', shape=[args.c_dim], dtype='float32')

L
lvmengsi 已提交
74
    model_name = 'net_G'
L
lvmengsi 已提交
75
    if args.model_net == 'CycleGAN':
L
lvmengsi 已提交
76 77
        from network.CycleGAN_network import CycleGAN_model
        model = CycleGAN_model()
L
lvmengsi 已提交
78
        if args.input_style == "A":
L
lvmengsi 已提交
79
            fake = model.network_G(input, name="GA", cfg=args)
L
lvmengsi 已提交
80
        elif args.input_style == "B":
L
lvmengsi 已提交
81
            fake = model.network_G(input, name="GB", cfg=args)
L
lvmengsi 已提交
82 83
        else:
            raise "Input with style [%s] is not supported." % args.input_style
Z
zhumanyu 已提交
84 85 86 87
    elif args.model_net == 'Pix2pix':
        from network.Pix2pix_network import Pix2pix_model
        model = Pix2pix_model()
        fake = model.network_G(input, "generator", cfg=args)
Z
zhumanyu 已提交
88 89 90 91
    elif args.model_net == 'StarGAN':
        from network.StarGAN_network import StarGAN_model
        model = StarGAN_model()
        fake = model.network_G(input, label_trg_, name="g_main", cfg=args)
L
lvmengsi 已提交
92 93 94 95
    elif args.model_net == 'STGAN':
        from network.STGAN_network import STGAN_model
        model = STGAN_model()
        fake, _ = model.network_G(
L
lvmengsi 已提交
96 97 98 99 100 101
            input,
            label_org_,
            label_trg_,
            cfg=args,
            name='generator',
            is_test=True)
L
lvmengsi 已提交
102 103 104 105
    elif args.model_net == 'AttGAN':
        from network.AttGAN_network import AttGAN_model
        model = AttGAN_model()
        fake, _ = model.network_G(
L
lvmengsi 已提交
106 107 108 109 110 111
            input,
            label_org_,
            label_trg_,
            cfg=args,
            name='generator',
            is_test=True)
L
lvmengsi 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    elif args.model_net == 'CGAN':
        noise = fluid.layers.data(
            name='noise', shape=[args.noise_size], dtype='float32')
        conditions = fluid.layers.data(
            name='conditions', shape=[1], dtype='float32')

        from network.CGAN_network import CGAN_model
        model = CGAN_model()
        fake = model.network_G(noise, conditions, name="G")
    elif args.model_net == 'DCGAN':
        noise = fluid.layers.data(
            name='noise', shape=[args.noise_size], dtype='float32')

        from network.DCGAN_network import DCGAN_model
        model = DCGAN_model()
        fake = model.network_G(noise, name="G")
L
lvmengsi 已提交
128
    else:
L
lvmengsi 已提交
129 130
        raise NotImplementedError("model_net {} is not support".format(
            args.model_net))
L
lvmengsi 已提交
131 132 133 134 135 136 137 138 139 140

    # prepare environment
    place = fluid.CPUPlace()
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    for var in fluid.default_main_program().global_block().all_parameters():
        print(var.name)
    print(args.init_model + '/' + model_name)
L
lvmengsi 已提交
141
    fluid.io.load_persistables(exe, os.path.join(args.init_model, model_name))
L
lvmengsi 已提交
142 143 144 145
    print('load params done')
    if not os.path.exists(args.output):
        os.makedirs(args.output)

L
lvmengsi 已提交
146 147
    attr_names = args.selected_attrs.split(',')

L
lvmengsi 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    if args.model_net == 'AttGAN' or args.model_net == 'STGAN':
        test_reader = celeba_reader_creator(
            image_dir=args.dataset_dir,
            list_filename=args.test_list,
            batch_size=args.batch_size,
            drop_last=False,
            args=args)
        reader_test = test_reader.get_test_reader(
            args, shuffle=False, return_name=True)
        for data in zip(reader_test()):
            real_img, label_org, name = data[0]
            print("read {}".format(name))
            label_trg = copy.deepcopy(label_org)
            tensor_img = fluid.LoDTensor()
            tensor_label_org = fluid.LoDTensor()
            tensor_label_trg = fluid.LoDTensor()
            tensor_label_org_ = fluid.LoDTensor()
            tensor_label_trg_ = fluid.LoDTensor()
            tensor_img.set(real_img, place)
            tensor_label_org.set(label_org, place)
L
lvmengsi 已提交
168
            real_img_temp = save_batch_image(real_img)
L
lvmengsi 已提交
169 170 171
            images = [real_img_temp]
            for i in range(args.c_dim):
                label_trg_tmp = copy.deepcopy(label_trg)
L
lvmengsi 已提交
172
                for j in range(len(label_org)):
L
lvmengsi 已提交
173
                    label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
L
lvmengsi 已提交
174 175
                    label_trg_tmp = check_attribute_conflict(
                        label_trg_tmp, attr_names[i], attr_names)
L
lvmengsi 已提交
176
                label_org_ = list(map(lambda x: ((x * 2) - 1) * 0.5, label_org))
L
lvmengsi 已提交
177 178
                label_trg_ = list(
                    map(lambda x: ((x * 2) - 1) * 0.5, label_trg_tmp))
L
lvmengsi 已提交
179
                if args.model_net == 'AttGAN':
L
lvmengsi 已提交
180 181
                    for k in range(len(label_org)):
                        label_trg_[k][i] = label_trg_[k][i] * 2.0
L
lvmengsi 已提交
182
                tensor_label_org_.set(label_org_, place)
L
lvmengsi 已提交
183 184 185 186 187 188 189
                tensor_label_trg.set(label_trg, place)
                tensor_label_trg_.set(label_trg_, place)
                out = exe.run(feed={
                    "input": tensor_img,
                    "label_org_": tensor_label_org_,
                    "label_trg_": tensor_label_trg_
                },
L
lvmengsi 已提交
190
                              fetch_list=[fake.name])
L
lvmengsi 已提交
191
                fake_temp = save_batch_image(out[0])
L
lvmengsi 已提交
192 193
                images.append(fake_temp)
            images_concat = np.concatenate(images, 1)
L
lvmengsi 已提交
194 195
            if len(label_org) > 1:
                images_concat = np.concatenate(images_concat, 1)
L
lvmengsi 已提交
196
            imageio.imwrite(args.output + "/fake_img_" + name[0], (
L
lvmengsi 已提交
197
                (images_concat + 1) * 127.5).astype(np.uint8))
Z
zhumanyu 已提交
198 199 200 201 202 203 204 205 206 207 208
    elif args.model_net == 'StarGAN':
        test_reader = celeba_reader_creator(
            image_dir=args.dataset_dir,
            list_filename=args.test_list,
            batch_size=args.batch_size,
            drop_last=False,
            args=args)
        reader_test = test_reader.get_test_reader(
            args, shuffle=False, return_name=True)
        for data in zip(reader_test()):
            real_img, label_org, name = data[0]
L
lvmengsi 已提交
209
            print("read {}".format(name))
Z
zhumanyu 已提交
210 211 212 213
            tensor_img = fluid.LoDTensor()
            tensor_label_org = fluid.LoDTensor()
            tensor_img.set(real_img, place)
            tensor_label_org.set(label_org, place)
L
lvmengsi 已提交
214
            real_img_temp = save_batch_image(real_img)
Z
zhumanyu 已提交
215
            images = [real_img_temp]
L
lvmengsi 已提交
216
            for i in range(args.c_dim):
L
lvmengsi 已提交
217
                label_trg_tmp = copy.deepcopy(label_org)
L
lvmengsi 已提交
218
                for j in range(len(label_org)):
L
lvmengsi 已提交
219 220 221
                    label_trg_tmp[j][i] = 1.0 - label_trg_tmp[j][i]
                    label_trg = check_attribute_conflict(
                        label_trg_tmp, attr_names[i], attr_names)
Z
zhumanyu 已提交
222 223 224 225 226
                tensor_label_trg = fluid.LoDTensor()
                tensor_label_trg.set(label_trg, place)
                out = exe.run(
                    feed={"input": tensor_img,
                          "label_trg_": tensor_label_trg},
L
lvmengsi 已提交
227
                    fetch_list=[fake.name])
L
lvmengsi 已提交
228
                fake_temp = save_batch_image(out[0])
Z
zhumanyu 已提交
229 230
                images.append(fake_temp)
            images_concat = np.concatenate(images, 1)
L
lvmengsi 已提交
231 232
            if len(label_org) > 1:
                images_concat = np.concatenate(images_concat, 1)
L
lvmengsi 已提交
233 234
            imageio.imwrite(args.output + "/fake_img_" + name[0], (
                (images_concat + 1) * 127.5).astype(np.uint8))
L
lvmengsi 已提交
235

L
lvmengsi 已提交
236 237
    elif args.model_net == 'Pix2pix' or args.model_net == 'CycleGAN':
        for file in glob.glob(args.dataset_dir):
L
lvmengsi 已提交
238 239 240 241 242 243 244 245 246 247
            print("read {}".format(file))
            image_name = os.path.basename(file)
            image = Image.open(file).convert('RGB')
            image = image.resize((256, 256), Image.BICUBIC)
            image = np.array(image).transpose([2, 0, 1]).astype('float32')
            image = image / 255.0
            image = (image - 0.5) / 0.5
            data = image[np.newaxis, :]
            tensor = fluid.LoDTensor()
            tensor.set(data, place)
L
lvmengsi 已提交
248

L
lvmengsi 已提交
249 250 251
            fake_temp = exe.run(fetch_list=[fake.name], feed={"input": tensor})
            fake_temp = np.squeeze(fake_temp[0]).transpose([1, 2, 0])
            input_temp = np.squeeze(data).transpose([1, 2, 0])
L
lvmengsi 已提交
252

L
lvmengsi 已提交
253
            imageio.imwrite(args.output + "/fake_" + image_name, (
L
lvmengsi 已提交
254
                (fake_temp + 1) * 127.5).astype(np.uint8))
L
lvmengsi 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

    elif args.model_net == 'CGAN':
        noise_data = np.random.uniform(
            low=-1.0, high=1.0,
            size=[args.batch_size, args.noise_size]).astype('float32')
        label = np.random.randint(
            0, 9, size=[args.batch_size, 1]).astype('float32')
        noise_tensor = fluid.LoDTensor()
        conditions_tensor = fluid.LoDTensor()
        noise_tensor.set(noise_data, place)
        conditions_tensor.set(label, place)
        fake_temp = exe.run(
            fetch_list=[fake.name],
            feed={"noise": noise_tensor,
                  "conditions": conditions_tensor})[0]
        fake_image = np.reshape(fake_temp, (args.batch_size, -1))

        fig = utility.plot(fake_image)
L
lvmengsi 已提交
273 274
        plt.savefig(
            os.path.join(args.output, 'fake_cgan.png'), bbox_inches='tight')
L
lvmengsi 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
        plt.close(fig)

    elif args.model_net == 'DCGAN':
        noise_data = np.random.uniform(
            low=-1.0, high=1.0,
            size=[args.batch_size, args.noise_size]).astype('float32')
        noise_tensor = fluid.LoDTensor()
        noise_tensor.set(noise_data, place)
        fake_temp = exe.run(fetch_list=[fake.name],
                            feed={"noise": noise_tensor})[0]
        fake_image = np.reshape(fake_temp, (args.batch_size, -1))

        fig = utility.plot(fake_image)
L
lvmengsi 已提交
288 289
        plt.savefig(
            os.path.join(args.output, '/fake_dcgan.png'), bbox_inches='tight')
L
lvmengsi 已提交
290
        plt.close(fig)
L
lvmengsi 已提交
291 292 293
    else:
        raise NotImplementedError("model_net {} is not support".format(
            args.model_net))
L
lvmengsi 已提交
294 295 296 297 298


if __name__ == "__main__":
    args = parser.parse_args()
    print_arguments(args)
L
lvmengsi 已提交
299
    check_gpu(args.use_gpu)
L
lvmengsi 已提交
300
    infer(args)