infer.py 24.5 KB
Newer Older
1
import argparse
2
import ast
3 4
import numpy as np

5
import paddle
6 7 8 9 10
import paddle.fluid as fluid

import model
from model import wrap_encoder as encoder
from model import wrap_decoder as decoder
11
from model import fast_decode as fast_decoder
12
from config import *
13
from train import pad_batch_data
14
import reader
15
import util
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--test_file_pattern",
        type=str,
        required=True,
        help="The pattern to match test data files.")
    parser.add_argument(
        "--batch_size",
        type=int,
        default=50,
        help="The number of examples in one run for sequence generation.")
    parser.add_argument(
        "--pool_size",
        type=int,
        default=10000,
        help="The buffer size to pool data.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
51 52 53 54
    parser.add_argument(
        "--use_wordpiece",
        type=ast.literal_eval,
        default=False,
55 56
        help="The flag indicating if the data is wordpiece data. The EN-FR data "
        "we provided is wordpiece data. For wordpiece data, converting ids to "
57 58
        "original words is a little different and some special codes are "
        "provided in util.py to do this.")
59 60 61 62 63 64 65
    parser.add_argument(
        "--token_delimiter",
        type=str,
        default=" ",
        help="The delimiter used to split tokens in source or target sentences. "
        "For EN-DE BPE data we provided, use spaces as token delimiter.; "
        "For EN-FR wordpiece data we provided, use '\x01' as token delimiter.")
66 67 68 69 70 71
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    args = parser.parse_args()
72 73 74 75 76 77 78 79 80 81 82
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
        "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [InferTaskConfig, ModelHyperParams])
83
    return args
84 85


86 87 88 89 90 91 92 93 94 95 96 97 98
def translate_batch(exe,
                    src_words,
                    encoder,
                    enc_in_names,
                    enc_out_names,
                    decoder,
                    dec_in_names,
                    dec_out_names,
                    beam_size,
                    max_length,
                    n_best,
                    batch_size,
                    n_head,
99
                    d_model,
100 101 102 103 104 105
                    src_pad_idx,
                    trg_pad_idx,
                    bos_idx,
                    eos_idx,
                    unk_idx,
                    output_unk=True):
106 107
    """
    Run the encoder program once and run the decoder program multiple times to
108 109
    implement beam search externally. This is deprecated since a faster beam
    search decoder based solely on Fluid operators has been added.
110 111 112 113 114 115 116
    """
    # Prepare data for encoder and run the encoder.
    enc_in_data = pad_batch_data(
        src_words,
        src_pad_idx,
        n_head,
        is_target=False,
117
        is_label=False,
118
        return_attn_bias=True,
G
guosheng 已提交
119
        return_max_len=False)
120 121
    # Append the data shape input to reshape the output of embedding layer.
    enc_in_data = enc_in_data + [
122
        np.array(
123 124
            [-1, enc_in_data[2].shape[-1], d_model], dtype="int32")
    ]
G
guosheng 已提交
125 126 127 128 129 130 131
    # Append the shape inputs to reshape before and after softmax in encoder
    # self attention.
    enc_in_data = enc_in_data + [
        np.array(
            [-1, enc_in_data[2].shape[-1]], dtype="int32"), np.array(
                enc_in_data[2].shape, dtype="int32")
    ]
132 133 134 135 136 137 138
    enc_output = exe.run(encoder,
                         feed=dict(zip(enc_in_names, enc_in_data)),
                         fetch_list=enc_out_names)[0]

    # Beam Search.
    # To store the beam info.
    scores = np.zeros((batch_size, beam_size), dtype="float32")
139 140 141
    prev_branchs = [[] for i in range(batch_size)]
    next_ids = [[] for i in range(batch_size)]
    # Use beam_inst_map to map beam idx to the instance idx in batch, since the
142
    # size of feeded batch is changing.
143 144 145 146 147 148
    beam_inst_map = {
        beam_idx: inst_idx
        for inst_idx, beam_idx in enumerate(range(batch_size))
    }
    # Use active_beams to recode the alive.
    active_beams = range(batch_size)
149

150
    def beam_backtrace(prev_branchs, next_ids, n_best=beam_size):
151 152 153 154 155 156 157 158 159 160 161
        """
        Decode and select n_best sequences for one instance by backtrace.
        """
        seqs = []
        for i in range(n_best):
            k = i
            seq = []
            for j in range(len(prev_branchs) - 1, -1, -1):
                seq.append(next_ids[j][k])
                k = prev_branchs[j][k]
            seq = seq[::-1]
162 163
            # Add the <bos>, since next_ids don't include the <bos>.
            seq = [bos_idx] + seq
164 165 166 167 168 169 170 171 172 173
            seqs.append(seq)
        return seqs

    def init_dec_in_data(batch_size, beam_size, enc_in_data, enc_output):
        """
        Initialize the input data for decoder.
        """
        trg_words = np.array(
            [[bos_idx]] * batch_size * beam_size, dtype="int64")
        trg_pos = np.array([[1]] * batch_size * beam_size, dtype="int64")
G
guosheng 已提交
174 175
        src_max_length, src_slf_attn_bias, trg_max_len = enc_in_data[2].shape[
            -1], enc_in_data[2], 1
176 177 178 179 180 181 182 183
        # This is used to remove attention on subsequent words.
        trg_slf_attn_bias = np.ones((batch_size * beam_size, trg_max_len,
                                     trg_max_len))
        trg_slf_attn_bias = np.triu(trg_slf_attn_bias, 1).reshape(
            [-1, 1, trg_max_len, trg_max_len])
        trg_slf_attn_bias = (np.tile(trg_slf_attn_bias, [1, n_head, 1, 1]) *
                             [-1e9]).astype("float32")
        # This is used to remove attention on the paddings of source sequences.
184
        trg_src_attn_bias = np.tile(
185 186 187 188 189
            src_slf_attn_bias[:, :, ::src_max_length, :][:, np.newaxis],
            [1, beam_size, 1, trg_max_len, 1]).reshape([
                -1, src_slf_attn_bias.shape[1], trg_max_len,
                src_slf_attn_bias.shape[-1]
            ])
190
        # Append the shape input to reshape the output of embedding layer.
191 192
        trg_data_shape = np.array(
            [batch_size * beam_size, trg_max_len, d_model], dtype="int32")
G
guosheng 已提交
193 194 195 196 197 198 199 200 201 202 203 204
        # Append the shape inputs to reshape before and after softmax in
        # decoder self attention.
        trg_slf_attn_pre_softmax_shape = np.array(
            [-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
        trg_slf_attn_post_softmax_shape = np.array(
            trg_slf_attn_bias.shape, dtype="int32")
        # Append the shape inputs to reshape before and after softmax in
        # encoder-decoder attention.
        trg_src_attn_pre_softmax_shape = np.array(
            [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
        trg_src_attn_post_softmax_shape = np.array(
            trg_src_attn_bias.shape, dtype="int32")
205 206 207
        enc_output = np.tile(
            enc_output[:, np.newaxis], [1, beam_size, 1, 1]).reshape(
                [-1, enc_output.shape[-2], enc_output.shape[-1]])
G
guosheng 已提交
208
        return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
209 210 211
            trg_data_shape, trg_slf_attn_pre_softmax_shape, \
            trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
            trg_src_attn_post_softmax_shape, enc_output
212

213
    def update_dec_in_data(dec_in_data, next_ids, active_beams, beam_inst_map):
214 215 216 217
        """
        Update the input data of decoder mainly by slicing from the previous
        input data and dropping the finished instance beams.
        """
G
guosheng 已提交
218
        trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
219 220 221
            trg_data_shape, trg_slf_attn_pre_softmax_shape, \
            trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
            trg_src_attn_post_softmax_shape, enc_output = dec_in_data
222
        trg_cur_len = trg_slf_attn_bias.shape[-1] + 1
223 224
        trg_words = np.array(
            [
225
                beam_backtrace(prev_branchs[beam_idx], next_ids[beam_idx])
226 227 228 229 230
                for beam_idx in active_beams
            ],
            dtype="int64")
        trg_words = trg_words.reshape([-1, 1])
        trg_pos = np.array(
231
            [range(1, trg_cur_len + 1)] * len(active_beams) * beam_size,
232
            dtype="int64").reshape([-1, 1])
233
        active_beams = [beam_inst_map[beam_idx] for beam_idx in active_beams]
234 235 236
        active_beams_indice = (
            (np.array(active_beams) * beam_size)[:, np.newaxis] +
            np.array(range(beam_size))[np.newaxis, :]).flatten()
237 238 239 240 241 242 243 244
        # This is used to remove attention on subsequent words.
        trg_slf_attn_bias = np.ones((len(active_beams) * beam_size, trg_cur_len,
                                     trg_cur_len))
        trg_slf_attn_bias = np.triu(trg_slf_attn_bias, 1).reshape(
            [-1, 1, trg_cur_len, trg_cur_len])
        trg_slf_attn_bias = (np.tile(trg_slf_attn_bias, [1, n_head, 1, 1]) *
                             [-1e9]).astype("float32")
        # This is used to remove attention on the paddings of source sequences.
245 246
        trg_src_attn_bias = np.tile(trg_src_attn_bias[
            active_beams_indice, :, ::trg_src_attn_bias.shape[2], :],
247
                                    [1, 1, trg_cur_len, 1])
248
        # Append the shape input to reshape the output of embedding layer.
249 250 251
        trg_data_shape = np.array(
            [len(active_beams) * beam_size, trg_cur_len, d_model],
            dtype="int32")
G
guosheng 已提交
252 253 254 255 256 257 258 259 260 261 262 263
        # Append the shape inputs to reshape before and after softmax in
        # decoder self attention.
        trg_slf_attn_pre_softmax_shape = np.array(
            [-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
        trg_slf_attn_post_softmax_shape = np.array(
            trg_slf_attn_bias.shape, dtype="int32")
        # Append the shape inputs to reshape before and after softmax in
        # encoder-decoder attention.
        trg_src_attn_pre_softmax_shape = np.array(
            [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
        trg_src_attn_post_softmax_shape = np.array(
            trg_src_attn_bias.shape, dtype="int32")
264
        enc_output = enc_output[active_beams_indice, :, :]
G
guosheng 已提交
265
        return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
266 267 268
            trg_data_shape, trg_slf_attn_pre_softmax_shape, \
            trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
            trg_src_attn_post_softmax_shape, enc_output
269 270 271 272 273

    dec_in_data = init_dec_in_data(batch_size, beam_size, enc_in_data,
                                   enc_output)
    for i in range(max_length):
        predict_all = exe.run(decoder,
274
                              feed=dict(zip(dec_in_names, dec_in_data)),
275
                              fetch_list=dec_out_names)[0]
276
        predict_all = np.log(
277 278
            predict_all.reshape([len(beam_inst_map) * beam_size, i + 1, -1])
            [:, -1, :])
279
        predict_all = (predict_all + scores[active_beams].reshape(
280 281
            [len(beam_inst_map) * beam_size, -1])).reshape(
                [len(beam_inst_map), beam_size, -1])
282 283
        if not output_unk:  # To exclude the <unk> token.
            predict_all[:, :, unk_idx] = -1e9
284
        active_beams = []
285 286 287 288
        for beam_idx in range(batch_size):
            if not beam_inst_map.has_key(beam_idx):
                continue
            inst_idx = beam_inst_map[beam_idx]
289 290 291 292 293 294 295 296 297 298 299 300
            predict = (predict_all[inst_idx, :, :]
                       if i != 0 else predict_all[inst_idx, 0, :]).flatten()
            top_k_indice = np.argpartition(predict, -beam_size)[-beam_size:]
            top_scores_ids = top_k_indice[np.argsort(predict[top_k_indice])[::
                                                                            -1]]
            top_scores = predict[top_scores_ids]
            scores[beam_idx] = top_scores
            prev_branchs[beam_idx].append(top_scores_ids /
                                          predict_all.shape[-1])
            next_ids[beam_idx].append(top_scores_ids % predict_all.shape[-1])
            if next_ids[beam_idx][-1][0] != eos_idx:
                active_beams.append(beam_idx)
301
        if len(active_beams) == 0:
302
            break
303 304 305 306 307 308
        dec_in_data = update_dec_in_data(dec_in_data, next_ids, active_beams,
                                         beam_inst_map)
        beam_inst_map = {
            beam_idx: inst_idx
            for inst_idx, beam_idx in enumerate(active_beams)
        }
309 310

    # Decode beams and select n_best sequences for each instance by backtrace.
311 312 313 314
    seqs = [
        beam_backtrace(prev_branchs[beam_idx], next_ids[beam_idx], n_best)
        for beam_idx in range(batch_size)
    ]
315 316 317 318

    return seqs, scores[:, :n_best].tolist()


319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
def post_process_seq(seq,
                     bos_idx=ModelHyperParams.bos_idx,
                     eos_idx=ModelHyperParams.eos_idx,
                     output_bos=InferTaskConfig.output_bos,
                     output_eos=InferTaskConfig.output_eos):
    """
    Post-process the beam-search decoded sequence. Truncate from the first
    <eos> and remove the <bos> and <eos> tokens currently.
    """
    eos_pos = len(seq) - 1
    for i, idx in enumerate(seq):
        if idx == eos_idx:
            eos_pos = i
            break
    seq = seq[:eos_pos + 1]
    return filter(
        lambda idx: (output_bos or idx != bos_idx) and \
            (output_eos or idx != eos_idx),
        seq)


340
def py_infer(test_data, trg_idx2word, use_wordpiece):
341 342 343 344
    """
    Inference by beam search implented by python, while the calculations from
    symbols to probilities execute by Fluid operators.
    """
345 346
    place = fluid.CUDAPlace(0) if InferTaskConfig.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
347

348 349 350
    encoder_program = fluid.Program()
    with fluid.program_guard(main_program=encoder_program):
        enc_output = encoder(
G
guosheng 已提交
351
            ModelHyperParams.src_vocab_size, ModelHyperParams.max_length + 1,
G
guosheng 已提交
352 353 354
            ModelHyperParams.n_layer, ModelHyperParams.n_head,
            ModelHyperParams.d_key, ModelHyperParams.d_value,
            ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
355
            ModelHyperParams.dropout, ModelHyperParams.weight_sharing)
356 357 358

    decoder_program = fluid.Program()
    with fluid.program_guard(main_program=decoder_program):
G
guosheng 已提交
359 360 361 362 363
        predict = decoder(
            ModelHyperParams.trg_vocab_size, ModelHyperParams.max_length + 1,
            ModelHyperParams.n_layer, ModelHyperParams.n_head,
            ModelHyperParams.d_key, ModelHyperParams.d_value,
            ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
364
            ModelHyperParams.dropout, ModelHyperParams.weight_sharing)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

    # Load model parameters of encoder and decoder separately from the saved
    # transformer model.
    encoder_var_names = []
    for op in encoder_program.block(0).ops:
        encoder_var_names += op.input_arg_names
    encoder_param_names = filter(
        lambda var_name: isinstance(encoder_program.block(0).var(var_name),
            fluid.framework.Parameter),
        encoder_var_names)
    encoder_params = map(encoder_program.block(0).var, encoder_param_names)
    decoder_var_names = []
    for op in decoder_program.block(0).ops:
        decoder_var_names += op.input_arg_names
    decoder_param_names = filter(
        lambda var_name: isinstance(decoder_program.block(0).var(var_name),
            fluid.framework.Parameter),
        decoder_var_names)
    decoder_params = map(decoder_program.block(0).var, decoder_param_names)
    fluid.io.load_vars(exe, InferTaskConfig.model_path, vars=encoder_params)
    fluid.io.load_vars(exe, InferTaskConfig.model_path, vars=decoder_params)

    # This is used here to set dropout to the test mode.
388 389
    encoder_program = encoder_program.inference_optimize()
    decoder_program = decoder_program.inference_optimize()
390

391
    for batch_id, data in enumerate(test_data.batch_generator()):
392
        batch_seqs, batch_scores = translate_batch(
G
guosheng 已提交
393 394
            exe,
            [item[0] for item in data],
395
            encoder_program,
396
            encoder_data_input_fields + encoder_util_input_fields,
G
guosheng 已提交
397
            [enc_output.name],
398
            decoder_program,
399 400
            decoder_data_input_fields[:-1] + decoder_util_input_fields +
            (decoder_data_input_fields[-1], ),
G
guosheng 已提交
401
            [predict.name],
402
            InferTaskConfig.beam_size,
403
            InferTaskConfig.max_out_len,
404 405 406
            InferTaskConfig.n_best,
            len(data),
            ModelHyperParams.n_head,
407
            ModelHyperParams.d_model,
G
guosheng 已提交
408 409
            ModelHyperParams.eos_idx,  # Use eos_idx to pad.
            ModelHyperParams.eos_idx,  # Use eos_idx to pad.
410 411 412 413
            ModelHyperParams.bos_idx,
            ModelHyperParams.eos_idx,
            ModelHyperParams.unk_idx,
            output_unk=InferTaskConfig.output_unk)
414
        for i in range(len(batch_seqs)):
415 416
            # Post-process the beam-search decoded sequences.
            seqs = map(post_process_seq, batch_seqs[i])
417 418
            scores = batch_scores[i]
            for seq in seqs:
419 420 421 422
                if use_wordpiece:
                    print(util.subword_ids_to_str(seq, trg_idx2word))
                else:
                    print(" ".join([trg_idx2word[idx] for idx in seq]))
423 424


425 426 427
def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
                        bos_idx, n_head, d_model, place):
    """
428
    Put all padded data needed by beam search decoder into a dict.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    # start tokens
    trg_word = np.asarray([[bos_idx]] * len(insts), dtype="int64")
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, 1, 1]).astype("float32")

    # These shape tensors are used in reshape_op.
    src_data_shape = np.array([-1, src_max_len, d_model], dtype="int32")
    trg_data_shape = np.array([-1, 1, d_model], dtype="int32")
    src_slf_attn_pre_softmax_shape = np.array(
        [-1, src_slf_attn_bias.shape[-1]], dtype="int32")
    src_slf_attn_post_softmax_shape = np.array(
        [-1] + list(src_slf_attn_bias.shape[1:]), dtype="int32")
    trg_slf_attn_pre_softmax_shape = np.array(
        [-1, 1], dtype="int32")  # only the first time step
    trg_slf_attn_post_softmax_shape = np.array(
        [-1, n_head, 1, 1], dtype="int32")  # only the first time step
    trg_src_attn_pre_softmax_shape = np.array(
        [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
    trg_src_attn_post_softmax_shape = np.array(
        [-1] + list(trg_src_attn_bias.shape[1:]), dtype="int32")
    # These inputs are used to change the shapes in the loop of while op.
    attn_pre_softmax_shape_delta = np.array([0, 1], dtype="int32")
    attn_post_softmax_shape_delta = np.array([0, 0, 0, 1], dtype="int32")

    def to_lodtensor(data, place, lod=None):
        data_tensor = fluid.LoDTensor()
        data_tensor.set(data, place)
        if lod is not None:
            data_tensor.set_lod(lod)
        return data_tensor

    # beamsearch_op must use tensors with lod
    init_score = to_lodtensor(
        np.zeros_like(
            trg_word, dtype="float32"),
        place, [range(trg_word.shape[0] + 1)] * 2)
    trg_word = to_lodtensor(trg_word, place, [range(trg_word.shape[0] + 1)] * 2)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, init_score,
            trg_src_attn_bias
        ]))
    util_input_dict = dict(
        zip(util_input_names, [
            src_data_shape, src_slf_attn_pre_softmax_shape,
            src_slf_attn_post_softmax_shape, trg_data_shape,
            trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape,
            trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape,
            attn_pre_softmax_shape_delta, attn_post_softmax_shape_delta
        ]))

    input_dict = dict(data_input_dict.items() + util_input_dict.items())
    return input_dict


488
def fast_infer(test_data, trg_idx2word, use_wordpiece):
489 490 491
    """
    Inference by beam search decoder based solely on Fluid operators.
    """
492 493 494
    place = fluid.CUDAPlace(0) if InferTaskConfig.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

495
    out_ids, out_scores = fast_decoder(
496 497 498 499 500
        ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size,
        ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
        ModelHyperParams.n_head, ModelHyperParams.d_key,
        ModelHyperParams.d_value, ModelHyperParams.d_model,
        ModelHyperParams.d_inner_hid, ModelHyperParams.dropout,
501 502
        ModelHyperParams.weight_sharing, InferTaskConfig.beam_size,
        InferTaskConfig.max_out_len, ModelHyperParams.eos_idx)
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

    fluid.io.load_vars(
        exe,
        InferTaskConfig.model_path,
        vars=filter(lambda var: isinstance(var, fluid.framework.Parameter),
                    fluid.default_main_program().list_vars()))

    # This is used here to set dropout to the test mode.
    infer_program = fluid.default_main_program().inference_optimize()

    for batch_id, data in enumerate(test_data.batch_generator()):
        data_input = prepare_batch_input(
            data, encoder_data_input_fields + fast_decoder_data_input_fields,
            encoder_util_input_fields + fast_decoder_util_input_fields,
            ModelHyperParams.eos_idx, ModelHyperParams.bos_idx,
            ModelHyperParams.n_head, ModelHyperParams.d_model, place)
        seq_ids, seq_scores = exe.run(infer_program,
                                      feed=data_input,
521
                                      fetch_list=[out_ids, out_scores],
522
                                      return_numpy=False)
523 524 525 526 527 528 529 530
        # How to parse the results:
        #   Suppose the lod of seq_ids is:
        #     [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
        #   then from lod[0]:
        #     there are 2 source sentences, beam width is 3.
        #   from lod[1]:
        #     the first source sentence has 3 hyps; the lengths are 12, 12, 16
        #     the second source sentence has 3 hyps; the lengths are 14, 13, 15
531
        hyps = [[] for i in range(len(data))]
532
        scores = [[] for i in range(len(data))]
533 534 535 536 537 538 539 540
        for i in range(len(seq_ids.lod()[0]) - 1):  # for each source sentence
            start = seq_ids.lod()[0][i]
            end = seq_ids.lod()[0][i + 1]
            for j in range(end - start):  # for each candidate
                sub_start = seq_ids.lod()[1][start + j]
                sub_end = seq_ids.lod()[1][start + j + 1]
                hyps[i].append(" ".join([
                    trg_idx2word[idx]
541 542
                    for idx in post_process_seq(
                        np.array(seq_ids)[sub_start:sub_end])
543 544 545
                ]) if not use_wordpiece else util.subword_ids_to_str(
                    post_process_seq(np.array(seq_ids)[sub_start:sub_end]),
                    trg_idx2word))
546
                scores[i].append(np.array(seq_scores)[sub_end - 1])
547 548 549 550 551 552 553 554 555 556 557 558
                print hyps[i][-1]
                if len(hyps[i]) >= InferTaskConfig.n_best:
                    break


def infer(args, inferencer=fast_infer):
    place = fluid.CUDAPlace(0) if InferTaskConfig.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    test_data = reader.DataReader(
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
        fpattern=args.test_file_pattern,
559
        token_delimiter=args.token_delimiter,
560
        use_token_batch=False,
561
        batch_size=args.batch_size,
562 563 564 565 566 567 568
        pool_size=args.pool_size,
        sort_type=reader.SortType.NONE,
        shuffle=False,
        shuffle_batch=False,
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
569 570
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
571 572 573
        clip_last_batch=False)
    trg_idx2word = test_data.load_dict(
        dict_path=args.trg_vocab_fpath, reverse=True)
574
    inferencer(test_data, trg_idx2word, args.use_wordpiece)
575 576


577
if __name__ == "__main__":
578
    args = parse_args()
579
    infer(args)